|
//! Manages `zig-cache` directories. //! This is not a general-purpose cache. It is designed to be fast and simple, //! not to withstand attacks using specially-crafted input. |
DirectoryThis field is redundant for operations that can act on the open directory handle
directly, but it is needed when passing the directory to a child process.
|
pub const Directory = struct { /// This field is redundant for operations that can act on the open directory handle /// directly, but it is needed when passing the directory to a child process. /// `null` means cwd. path: ?[]const u8, handle: fs.Dir, |
join()Whether or not the handle should be closed, or the path should be freed is determined by usage, however this function is provided for convenience if it happens to be what the caller needs. |
pub fn join(self: Directory, allocator: Allocator, paths: []const []const u8) ![]u8 { if (self.path) |p| { // TODO clean way to do this with only 1 allocation const part2 = try fs.path.join(allocator, paths); defer allocator.free(part2); return fs.path.join(allocator, &[_][]const u8{ p, part2 }); } else { return fs.path.join(allocator, paths); } } |
joinZ()This value is accessed from multiple threads, protected by mutex. |
pub fn joinZ(self: Directory, allocator: Allocator, paths: []const []const u8) ![:0]u8 { if (self.path) |p| { // TODO clean way to do this with only 1 allocation const part2 = try fs.path.join(allocator, paths); defer allocator.free(part2); return fs.path.joinZ(allocator, &[_][]const u8{ p, part2 }); } else { return fs.path.joinZ(allocator, paths); } } |
closeAndFree()A set of strings such as the zig library directory or project source root, which are stripped from the file paths before putting into the cache. They are replaced with single-character indicators. This is not to save space but to eliminate absolute file paths. This improves portability and usefulness of the cache for advanced use cases. |
/// Whether or not the handle should be closed, or the path should be freed /// is determined by usage, however this function is provided for convenience /// if it happens to be what the caller needs. pub fn closeAndFree(self: *Directory, gpa: Allocator) void { self.handle.close(); if (self.path) |p| gpa.free(p); self.* = undefined; } |
format()Be sure to call |
pub fn format( self: Directory, comptime fmt_string: []const u8, options: fmt.FormatOptions, writer: anytype, ) !void { _ = options; if (fmt_string.len != 0) fmt.invalidFmtError(fmt, self); if (self.path) |p| { try writer.writeAll(p); try writer.writeAll(fs.path.sep_str); } } }; |
DepTokenizerCache/DepTokenizer.zigTakes ownership of |
gpa: Allocator, manifest_dir: fs.Dir, hash: HashHelper = .{}, /// This value is accessed from multiple threads, protected by mutex. recent_problematic_timestamp: i128 = 0, mutex: std.Thread.Mutex = .{}, |
addPrefix()This is 128 bits - Even with 2^54 cache entries, the probably of a collision would be under 10^-6 |
/// A set of strings such as the zig library directory or project source root, which /// are stripped from the file paths before putting into the cache. They /// are replaced with single-character indicators. This is not to save /// space but to eliminate absolute file paths. This improves portability /// and usefulness of the cache for advanced use cases. prefixes_buffer: [4]Directory = undefined, prefixes_len: usize = 0, |
obtain()This is currently just an arbitrary non-empty string that can't match another manifest line. |
pub const DepTokenizer = @import("Cache/DepTokenizer.zig"); |
prefixes()The type used for hashing file contents. Currently, this is SipHash128(1, 3), because it provides enough collision resistance for the Manifest use cases, while being one of our fastest options right now. |
const Cache = @This(); const std = @import("std"); const builtin = @import("builtin"); const crypto = std.crypto; const fs = std.fs; const assert = std.debug.assert; const testing = std.testing; const mem = std.mem; const fmt = std.fmt; const Allocator = std.mem.Allocator; const log = std.log.scoped(.cache); |
bin_digest_lenInitial state with random bytes, that can be copied. Refresh this with new random bytes when the manifest format is modified in a non-backwards-compatible way. |
pub fn addPrefix(cache: *Cache, directory: Directory) void { cache.prefixes_buffer[cache.prefixes_len] = directory; cache.prefixes_len += 1; } |
hex_digest_lenRecord a slice of bytes as a dependency of the process being cached. |
/// Be sure to call `Manifest.deinit` after successful initialization. pub fn obtain(cache: *Cache) Manifest { return Manifest{ .cache = cache, .hash = cache.hash, .manifest_file = null, .manifest_dirty = false, .hex_digest = undefined, }; } |
BinDigestConvert the input value into bytes and record it as a dependency of the process being cached. |
pub fn prefixes(cache: *const Cache) []const Directory { return cache.prefixes_buffer[0..cache.prefixes_len]; } |
HasherReturns a hex encoded hash of the inputs, without modifying state. |
const PrefixedPath = struct { prefix: u8, sub_path: []u8, }; |
hasher_init:Returns a hex encoded hash of the inputs, mutating the state of the hasher. |
fn findPrefix(cache: *const Cache, file_path: []const u8) !PrefixedPath { const gpa = cache.gpa; const resolved_path = try fs.path.resolve(gpa, &[_][]const u8{file_path}); errdefer gpa.free(resolved_path); return findPrefixResolved(cache, resolved_path); } |
FileCurrent state for incremental hashing. |
/// Takes ownership of `resolved_path` on success. fn findPrefixResolved(cache: *const Cache, resolved_path: []u8) !PrefixedPath { const gpa = cache.gpa; const prefixes_slice = cache.prefixes(); var i: u8 = 1; // Start at 1 to skip over checking the null prefix. while (i < prefixes_slice.len) : (i += 1) { const p = prefixes_slice[i].path.?; if (p.len > 0 and mem.startsWith(u8, resolved_path, p)) { // +1 to skip over the path separator here const sub_path = try gpa.dupe(u8, resolved_path[p.len + 1 ..]); gpa.free(resolved_path); return PrefixedPath{ .prefix = @as(u8, @intCast(i)), .sub_path = sub_path, }; } } |
StatSet this flag to true before calling hit() in order to indicate that upon a cache hit, the code using the cache will not modify the files within the cache directory. This allows multiple processes to utilize the same cache directory at the same time. |
return PrefixedPath{ .prefix = 0, .sub_path = resolved_path, }; } |
deinit()Populated when hit() returns an error because of one of the files listed in the manifest. |
/// This is 128 bits - Even with 2^54 cache entries, the probably of a collision would be under 10^-6 pub const bin_digest_len = 16; pub const hex_digest_len = bin_digest_len * 2; pub const BinDigest = [bin_digest_len]u8; |
HashHelperKeeps track of the last time we performed a file system write to observe what time the file system thinks it is, according to its own granularity. |
/// This is currently just an arbitrary non-empty string that can't match another manifest line. const manifest_header = "0"; const manifest_file_size_max = 50 * 1024 * 1024; |
addBytes()Add a file as a dependency of process being cached. When |
/// The type used for hashing file contents. Currently, this is SipHash128(1, 3), because it /// provides enough collision resistance for the Manifest use cases, while being one of our /// fastest options right now. pub const Hasher = crypto.auth.siphash.SipHash128(1, 3); |
addOptionalBytes()Check the cache to see if the input exists in it. If it exists, returns |
/// Initial state with random bytes, that can be copied. /// Refresh this with new random bytes when the manifest /// format is modified in a non-backwards-compatible way. pub const hasher_init: Hasher = Hasher.init(&[_]u8{ 0x33, 0x52, 0xa2, 0x84, 0xcf, 0x17, 0x56, 0x57, 0x01, 0xbb, 0xcd, 0xe4, 0x77, 0xd6, 0xf0, 0x60, }); |
addListOfBytes()Add a file as a dependency of process being cached, after the initial hash has been calculated. This is useful for processes that don't know all the files that are depended on ahead of time. For example, a source file that can import other files will need to be recompiled if the imported file is changed. |
pub const File = struct { prefixed_path: ?PrefixedPath, max_file_size: ?usize, stat: Stat, bin_digest: BinDigest, contents: ?[]const u8, |
add()Add a file as a dependency of process being cached, after the initial hash has been calculated. This is useful for processes that don't know the all the files that are depended on ahead of time. For example, a source file that can import other files will need to be recompiled if the imported file is changed. |
pub const Stat = struct { inode: fs.File.INode, size: u64, mtime: i128, }; |
addOptional()Like |
pub fn deinit(self: *File, gpa: Allocator) void { if (self.prefixed_path) |pp| { gpa.free(pp.sub_path); self.prefixed_path = null; } if (self.contents) |contents| { gpa.free(contents); self.contents = null; } self.* = undefined; } }; |
peek()Returns a hex encoded hash of the inputs. |
pub const HashHelper = struct { hasher: Hasher = hasher_init, |
peekBin()If |
/// Record a slice of bytes as a dependency of the process being cached. pub fn addBytes(hh: *HashHelper, bytes: []const u8) void { hh.hasher.update(mem.asBytes(&bytes.len)); hh.hasher.update(bytes); } |
final()Obtain only the data needed to maintain a lock on the manifest file.
The |
pub fn addOptionalBytes(hh: *HashHelper, optional_bytes: ?[]const u8) void { hh.add(optional_bytes != null); hh.addBytes(optional_bytes orelse return); } |
LockReleases the manifest file and frees any memory the Manifest was using.
|
pub fn addListOfBytes(hh: *HashHelper, list_of_bytes: []const []const u8) void { hh.add(list_of_bytes.len); for (list_of_bytes) |bytes| hh.addBytes(bytes); } |
release()On operating systems that support symlinks, does a readlink. On other operating systems, uses the file contents. Windows supports symlinks but only with elevated privileges, so it is treated as not supporting symlinks. |
/// Convert the input value into bytes and record it as a dependency of the process being cached. pub fn add(hh: *HashHelper, x: anytype) void { switch (@TypeOf(x)) { std.SemanticVersion => { hh.add(x.major); hh.add(x.minor); hh.add(x.patch); }, std.Target.Os.TaggedVersionRange => { switch (x) { .linux => |linux| { hh.add(linux.range.min); hh.add(linux.range.max); hh.add(linux.glibc); }, .windows => |windows| { hh.add(windows.min); hh.add(windows.max); }, .semver => |semver| { hh.add(semver.min); hh.add(semver.max); }, .none => {}, } }, std.Build.Step.Compile.BuildId => switch (x) { .none, .fast, .uuid, .sha1, .md5 => hh.add(std.meta.activeTag(x)), .hexstring => |hex_string| hh.addBytes(hex_string.toSlice()), }, else => switch (@typeInfo(@TypeOf(x))) { .Bool, .Int, .Enum, .Array => hh.addBytes(mem.asBytes(&x)), else => @compileError("unable to hash type " ++ @typeName(@TypeOf(x))), }, } } |
ManifestOn operating systems that support symlinks, does a symlink. On other operating systems,
uses the file contents. Windows supports symlinks but only with elevated privileges, so
it is treated as not supporting symlinks.
|
pub fn addOptional(hh: *HashHelper, optional: anytype) void { hh.add(optional != null); hh.add(optional orelse return); } |
addFile() |
/// Returns a hex encoded hash of the inputs, without modifying state. pub fn peek(hh: HashHelper) [hex_digest_len]u8 { var copy = hh; return copy.final(); } |
addOptionalFile() |
pub fn peekBin(hh: HashHelper) BinDigest { var copy = hh; var bin_digest: BinDigest = undefined; copy.hasher.final(&bin_digest); return bin_digest; } |
addListOfFiles() |
/// Returns a hex encoded hash of the inputs, mutating the state of the hasher. pub fn final(hh: *HashHelper) [hex_digest_len]u8 { var bin_digest: BinDigest = undefined; hh.hasher.final(&bin_digest); |
hit() |
var out_digest: [hex_digest_len]u8 = undefined; _ = fmt.bufPrint( &out_digest, "{s}", .{fmt.fmtSliceHexLower(&bin_digest)}, ) catch unreachable; return out_digest; } }; |
unhit() |
pub const Lock = struct { manifest_file: fs.File, |
addFilePostFetch() |
pub fn release(lock: *Lock) void { if (builtin.os.tag == .windows) { // Windows does not guarantee that locks are immediately unlocked when // the file handle is closed. See LockFileEx documentation. lock.manifest_file.unlock(); } |
addFilePost() |
lock.manifest_file.close(); lock.* = undefined; } }; |
addFilePostContents() |
pub const Manifest = struct { cache: *Cache, /// Current state for incremental hashing. hash: HashHelper, manifest_file: ?fs.File, manifest_dirty: bool, /// Set this flag to true before calling hit() in order to indicate that /// upon a cache hit, the code using the cache will not modify the files /// within the cache directory. This allows multiple processes to utilize /// the same cache directory at the same time. want_shared_lock: bool = true, have_exclusive_lock: bool = false, // Indicate that we want isProblematicTimestamp to perform a filesystem write in // order to obtain a problematic timestamp for the next call. Calls after that // will then use the same timestamp, to avoid unnecessary filesystem writes. want_refresh_timestamp: bool = true, files: std.ArrayListUnmanaged(File) = .{}, hex_digest: [hex_digest_len]u8, /// Populated when hit() returns an error because of one /// of the files listed in the manifest. failed_file_index: ?usize = null, /// Keeps track of the last time we performed a file system write to observe /// what time the file system thinks it is, according to its own granularity. recent_problematic_timestamp: i128 = 0, |
addDepFilePost() |
/// Add a file as a dependency of process being cached. When `hit` is /// called, the file's contents will be checked to ensure that it matches /// the contents from previous times. /// /// Max file size will be used to determine the amount of space the file contents /// are allowed to take up in memory. If max_file_size is null, then the contents /// will not be loaded into memory. /// /// Returns the index of the entry in the `files` array list. You can use it /// to access the contents of the file after calling `hit()` like so: /// /// ``` /// var file_contents = cache_hash.files.items[file_index].contents.?; /// ``` pub fn addFile(self: *Manifest, file_path: []const u8, max_file_size: ?usize) !usize { assert(self.manifest_file == null); |
final() |
const gpa = self.cache.gpa; try self.files.ensureUnusedCapacity(gpa, 1); const prefixed_path = try self.cache.findPrefix(file_path); errdefer gpa.free(prefixed_path.sub_path); |
writeManifest() |
self.files.addOneAssumeCapacity().* = .{ .prefixed_path = prefixed_path, .contents = null, .max_file_size = max_file_size, .stat = undefined, .bin_digest = undefined, }; |
toOwnedLock() |
self.hash.add(prefixed_path.prefix); self.hash.addBytes(prefixed_path.sub_path); |
deinit() |
return self.files.items.len - 1; } |
readSmallFile() |
pub fn addOptionalFile(self: *Manifest, optional_file_path: ?[]const u8) !void { self.hash.add(optional_file_path != null); const file_path = optional_file_path orelse return; _ = try self.addFile(file_path, null); } |
writeSmallFile() |
pub fn addListOfFiles(self: *Manifest, list_of_files: []const []const u8) !void { self.hash.add(list_of_files.len); for (list_of_files) |file_path| { _ = try self.addFile(file_path, null); } } |
Test:cache file and then recall it |
/// Check the cache to see if the input exists in it. If it exists, returns `true`. /// A hex encoding of its hash is available by calling `final`. /// /// This function will also acquire an exclusive lock to the manifest file. This means /// that a process holding a Manifest will block any other process attempting to /// acquire the lock. If `want_shared_lock` is `true`, a cache hit guarantees the /// manifest file to be locked in shared mode, and a cache miss guarantees the manifest /// file to be locked in exclusive mode. /// /// The lock on the manifest file is released when `deinit` is called. As another /// option, one may call `toOwnedLock` to obtain a smaller object which can represent /// the lock. `deinit` is safe to call whether or not `toOwnedLock` has been called. pub fn hit(self: *Manifest) !bool { const gpa = self.cache.gpa; assert(self.manifest_file == null); |
Test:check that changing a file makes cache fail |
self.failed_file_index = null; |
Test:no file inputs |
const ext = ".txt"; var manifest_file_path: [hex_digest_len + ext.len]u8 = undefined; |
Test:Manifest with files added after initial hash work |
var bin_digest: BinDigest = undefined; self.hash.hasher.final(&bin_digest); _ = fmt.bufPrint( &self.hex_digest, "{s}", .{fmt.fmtSliceHexLower(&bin_digest)}, ) catch unreachable; self.hash.hasher = hasher_init; self.hash.hasher.update(&bin_digest); @memcpy(manifest_file_path[0..self.hex_digest.len], &self.hex_digest); manifest_file_path[hex_digest_len..][0..ext.len].* = ext.*; while (true) { if (self.cache.manifest_dir.createFile(&manifest_file_path, .{ .read = true, .truncate = false, .lock = .exclusive, .lock_nonblocking = self.want_shared_lock, })) |manifest_file| { self.manifest_file = manifest_file; self.have_exclusive_lock = true; break; } else |err| switch (err) { error.WouldBlock => { self.manifest_file = try self.cache.manifest_dir.openFile(&manifest_file_path, .{ .mode = .read_write, .lock = .shared, }); break; }, // There are no dir components, so you would think that this was // unreachable, however we have observed on macOS two processes racing // to do openat() with O_CREAT manifest in ENOENT. error.FileNotFound => continue, else => |e| return e, } } self.want_refresh_timestamp = true; while (true) { const file_contents = try self.manifest_file.?.reader().readAllAlloc(gpa, manifest_file_size_max); defer gpa.free(file_contents); const input_file_count = self.files.items.len; var any_file_changed = false; var line_iter = mem.tokenizeScalar(u8, file_contents, '\n'); var idx: usize = 0; if (if (line_iter.next()) |line| !std.mem.eql(u8, line, manifest_header) else true) { if (try self.upgradeToExclusiveLock()) continue; self.manifest_dirty = true; while (idx < input_file_count) : (idx += 1) { const ch_file = &self.files.items[idx]; self.populateFileHash(ch_file) catch |err| { self.failed_file_index = idx; return err; }; } return false; } while (line_iter.next()) |line| { defer idx += 1; const cache_hash_file = if (idx < input_file_count) &self.files.items[idx] else blk: { const new = try self.files.addOne(gpa); new.* = .{ .prefixed_path = null, .contents = null, .max_file_size = null, .stat = undefined, .bin_digest = undefined, }; break :blk new; }; var iter = mem.tokenizeScalar(u8, line, ' '); const size = iter.next() orelse return error.InvalidFormat; const inode = iter.next() orelse return error.InvalidFormat; const mtime_nsec_str = iter.next() orelse return error.InvalidFormat; const digest_str = iter.next() orelse return error.InvalidFormat; const prefix_str = iter.next() orelse return error.InvalidFormat; const file_path = iter.rest(); cache_hash_file.stat.size = fmt.parseInt(u64, size, 10) catch return error.InvalidFormat; cache_hash_file.stat.inode = fmt.parseInt(fs.File.INode, inode, 10) catch return error.InvalidFormat; cache_hash_file.stat.mtime = fmt.parseInt(i64, mtime_nsec_str, 10) catch return error.InvalidFormat; _ = fmt.hexToBytes(&cache_hash_file.bin_digest, digest_str) catch return error.InvalidFormat; const prefix = fmt.parseInt(u8, prefix_str, 10) catch return error.InvalidFormat; if (prefix >= self.cache.prefixes_len) return error.InvalidFormat; if (file_path.len == 0) { return error.InvalidFormat; } if (cache_hash_file.prefixed_path) |pp| { if (pp.prefix != prefix or !mem.eql(u8, file_path, pp.sub_path)) { return error.InvalidFormat; } } if (cache_hash_file.prefixed_path == null) { cache_hash_file.prefixed_path = .{ .prefix = prefix, .sub_path = try gpa.dupe(u8, file_path), }; } const pp = cache_hash_file.prefixed_path.?; const dir = self.cache.prefixes()[pp.prefix].handle; const this_file = dir.openFile(pp.sub_path, .{ .mode = .read_only }) catch |err| switch (err) { error.FileNotFound => { if (try self.upgradeToExclusiveLock()) continue; return false; }, else => return error.CacheUnavailable, }; defer this_file.close(); const actual_stat = this_file.stat() catch |err| { self.failed_file_index = idx; return err; }; const size_match = actual_stat.size == cache_hash_file.stat.size; const mtime_match = actual_stat.mtime == cache_hash_file.stat.mtime; const inode_match = actual_stat.inode == cache_hash_file.stat.inode; if (!size_match or !mtime_match or !inode_match) { self.manifest_dirty = true; cache_hash_file.stat = .{ .size = actual_stat.size, .mtime = actual_stat.mtime, .inode = actual_stat.inode, }; if (self.isProblematicTimestamp(cache_hash_file.stat.mtime)) { // The actual file has an unreliable timestamp, force it to be hashed cache_hash_file.stat.mtime = 0; cache_hash_file.stat.inode = 0; } var actual_digest: BinDigest = undefined; hashFile(this_file, &actual_digest) catch |err| { self.failed_file_index = idx; return err; }; if (!mem.eql(u8, &cache_hash_file.bin_digest, &actual_digest)) { cache_hash_file.bin_digest = actual_digest; // keep going until we have the input file digests any_file_changed = true; } } if (!any_file_changed) { self.hash.hasher.update(&cache_hash_file.bin_digest); } } if (any_file_changed) { if (try self.upgradeToExclusiveLock()) continue; // cache miss // keep the manifest file open self.unhit(bin_digest, input_file_count); return false; } if (idx < input_file_count) { if (try self.upgradeToExclusiveLock()) continue; self.manifest_dirty = true; while (idx < input_file_count) : (idx += 1) { const ch_file = &self.files.items[idx]; self.populateFileHash(ch_file) catch |err| { self.failed_file_index = idx; return err; }; } return false; } if (self.want_shared_lock) { try self.downgradeToSharedLock(); } return true; } } pub fn unhit(self: *Manifest, bin_digest: BinDigest, input_file_count: usize) void { // Reset the hash. self.hash.hasher = hasher_init; self.hash.hasher.update(&bin_digest); // Remove files not in the initial hash. for (self.files.items[input_file_count..]) |*file| { file.deinit(self.cache.gpa); } self.files.shrinkRetainingCapacity(input_file_count); for (self.files.items) |file| { self.hash.hasher.update(&file.bin_digest); } } fn isProblematicTimestamp(man: *Manifest, file_time: i128) bool { // If the file_time is prior to the most recent problematic timestamp // then we don't need to access the filesystem. if (file_time < man.recent_problematic_timestamp) return false; // Next we will check the globally shared Cache timestamp, which is accessed // from multiple threads. man.cache.mutex.lock(); defer man.cache.mutex.unlock(); // Save the global one to our local one to avoid locking next time. man.recent_problematic_timestamp = man.cache.recent_problematic_timestamp; if (file_time < man.recent_problematic_timestamp) return false; // This flag prevents multiple filesystem writes for the same hit() call. if (man.want_refresh_timestamp) { man.want_refresh_timestamp = false; var file = man.cache.manifest_dir.createFile("timestamp", .{ .read = true, .truncate = true, }) catch return true; defer file.close(); // Save locally and also save globally (we still hold the global lock). man.recent_problematic_timestamp = (file.stat() catch return true).mtime; man.cache.recent_problematic_timestamp = man.recent_problematic_timestamp; } return file_time >= man.recent_problematic_timestamp; } fn populateFileHash(self: *Manifest, ch_file: *File) !void { const pp = ch_file.prefixed_path.?; const dir = self.cache.prefixes()[pp.prefix].handle; const file = try dir.openFile(pp.sub_path, .{}); defer file.close(); const actual_stat = try file.stat(); ch_file.stat = .{ .size = actual_stat.size, .mtime = actual_stat.mtime, .inode = actual_stat.inode, }; if (self.isProblematicTimestamp(ch_file.stat.mtime)) { // The actual file has an unreliable timestamp, force it to be hashed ch_file.stat.mtime = 0; ch_file.stat.inode = 0; } if (ch_file.max_file_size) |max_file_size| { if (ch_file.stat.size > max_file_size) { return error.FileTooBig; } const contents = try self.cache.gpa.alloc(u8, @as(usize, @intCast(ch_file.stat.size))); errdefer self.cache.gpa.free(contents); // Hash while reading from disk, to keep the contents in the cpu cache while // doing hashing. var hasher = hasher_init; var off: usize = 0; while (true) { // give me everything you've got, captain const bytes_read = try file.read(contents[off..]); if (bytes_read == 0) break; hasher.update(contents[off..][0..bytes_read]); off += bytes_read; } hasher.final(&ch_file.bin_digest); ch_file.contents = contents; } else { try hashFile(file, &ch_file.bin_digest); } self.hash.hasher.update(&ch_file.bin_digest); } /// Add a file as a dependency of process being cached, after the initial hash has been /// calculated. This is useful for processes that don't know all the files that /// are depended on ahead of time. For example, a source file that can import other files /// will need to be recompiled if the imported file is changed. pub fn addFilePostFetch(self: *Manifest, file_path: []const u8, max_file_size: usize) ![]const u8 { assert(self.manifest_file != null); const gpa = self.cache.gpa; const prefixed_path = try self.cache.findPrefix(file_path); errdefer gpa.free(prefixed_path.sub_path); const new_ch_file = try self.files.addOne(gpa); new_ch_file.* = .{ .prefixed_path = prefixed_path, .max_file_size = max_file_size, .stat = undefined, .bin_digest = undefined, .contents = null, }; errdefer self.files.shrinkRetainingCapacity(self.files.items.len - 1); try self.populateFileHash(new_ch_file); return new_ch_file.contents.?; } /// Add a file as a dependency of process being cached, after the initial hash has been /// calculated. This is useful for processes that don't know the all the files that /// are depended on ahead of time. For example, a source file that can import other files /// will need to be recompiled if the imported file is changed. pub fn addFilePost(self: *Manifest, file_path: []const u8) !void { assert(self.manifest_file != null); const gpa = self.cache.gpa; const prefixed_path = try self.cache.findPrefix(file_path); errdefer gpa.free(prefixed_path.sub_path); const new_ch_file = try self.files.addOne(gpa); new_ch_file.* = .{ .prefixed_path = prefixed_path, .max_file_size = null, .stat = undefined, .bin_digest = undefined, .contents = null, }; errdefer self.files.shrinkRetainingCapacity(self.files.items.len - 1); try self.populateFileHash(new_ch_file); } /// Like `addFilePost` but when the file contents have already been loaded from disk. /// On success, cache takes ownership of `resolved_path`. pub fn addFilePostContents( self: *Manifest, resolved_path: []u8, bytes: []const u8, stat: File.Stat, ) error{OutOfMemory}!void { assert(self.manifest_file != null); const gpa = self.cache.gpa; const ch_file = try self.files.addOne(gpa); errdefer self.files.shrinkRetainingCapacity(self.files.items.len - 1); const prefixed_path = try self.cache.findPrefixResolved(resolved_path); errdefer gpa.free(prefixed_path.sub_path); ch_file.* = .{ .prefixed_path = prefixed_path, .max_file_size = null, .stat = stat, .bin_digest = undefined, .contents = null, }; if (self.isProblematicTimestamp(ch_file.stat.mtime)) { // The actual file has an unreliable timestamp, force it to be hashed ch_file.stat.mtime = 0; ch_file.stat.inode = 0; } { var hasher = hasher_init; hasher.update(bytes); hasher.final(&ch_file.bin_digest); } self.hash.hasher.update(&ch_file.bin_digest); } pub fn addDepFilePost(self: *Manifest, dir: fs.Dir, dep_file_basename: []const u8) !void { assert(self.manifest_file != null); const dep_file_contents = try dir.readFileAlloc(self.cache.gpa, dep_file_basename, manifest_file_size_max); defer self.cache.gpa.free(dep_file_contents); var error_buf = std.ArrayList(u8).init(self.cache.gpa); defer error_buf.deinit(); var it: DepTokenizer = .{ .bytes = dep_file_contents }; // Skip first token: target. switch (it.next() orelse return) { // Empty dep file OK. .target, .target_must_resolve, .prereq => {}, else => |err| { try err.printError(error_buf.writer()); log.err("failed parsing {s}: {s}", .{ dep_file_basename, error_buf.items }); return error.InvalidDepFile; }, } // Process 0+ preqreqs. // Clang is invoked in single-source mode so we never get more targets. while (true) { switch (it.next() orelse return) { .target, .target_must_resolve => return, .prereq => |file_path| try self.addFilePost(file_path), else => |err| { try err.printError(error_buf.writer()); log.err("failed parsing {s}: {s}", .{ dep_file_basename, error_buf.items }); return error.InvalidDepFile; }, } } } /// Returns a hex encoded hash of the inputs. pub fn final(self: *Manifest) [hex_digest_len]u8 { assert(self.manifest_file != null); // We don't close the manifest file yet, because we want to // keep it locked until the API user is done using it. // We also don't write out the manifest yet, because until // cache_release is called we still might be working on creating // the artifacts to cache. var bin_digest: BinDigest = undefined; self.hash.hasher.final(&bin_digest); var out_digest: [hex_digest_len]u8 = undefined; _ = fmt.bufPrint( &out_digest, "{s}", .{fmt.fmtSliceHexLower(&bin_digest)}, ) catch unreachable; return out_digest; } /// If `want_shared_lock` is true, this function automatically downgrades the /// lock from exclusive to shared. pub fn writeManifest(self: *Manifest) !void { assert(self.have_exclusive_lock); const manifest_file = self.manifest_file.?; if (self.manifest_dirty) { self.manifest_dirty = false; var contents = std.ArrayList(u8).init(self.cache.gpa); defer contents.deinit(); const writer = contents.writer(); try writer.writeAll(manifest_header ++ "\n"); for (self.files.items) |file| { try writer.print("{d} {d} {d} {} {d} {s}\n", .{ file.stat.size, file.stat.inode, file.stat.mtime, fmt.fmtSliceHexLower(&file.bin_digest), file.prefixed_path.?.prefix, file.prefixed_path.?.sub_path, }); } try manifest_file.setEndPos(contents.items.len); try manifest_file.pwriteAll(contents.items, 0); } if (self.want_shared_lock) { try self.downgradeToSharedLock(); } } fn downgradeToSharedLock(self: *Manifest) !void { if (!self.have_exclusive_lock) return; // WASI does not currently support flock, so we bypass it here. // TODO: If/when flock is supported on WASI, this check should be removed. // See https://github.com/WebAssembly/wasi-filesystem/issues/2 if (builtin.os.tag != .wasi or std.process.can_spawn or !builtin.single_threaded) { const manifest_file = self.manifest_file.?; try manifest_file.downgradeLock(); } self.have_exclusive_lock = false; } fn upgradeToExclusiveLock(self: *Manifest) !bool { if (self.have_exclusive_lock) return false; assert(self.manifest_file != null); // WASI does not currently support flock, so we bypass it here. // TODO: If/when flock is supported on WASI, this check should be removed. // See https://github.com/WebAssembly/wasi-filesystem/issues/2 if (builtin.os.tag != .wasi or std.process.can_spawn or !builtin.single_threaded) { const manifest_file = self.manifest_file.?; // Here we intentionally have a period where the lock is released, in case there are // other processes holding a shared lock. manifest_file.unlock(); try manifest_file.lock(.exclusive); } self.have_exclusive_lock = true; return true; } /// Obtain only the data needed to maintain a lock on the manifest file. /// The `Manifest` remains safe to deinit. /// Don't forget to call `writeManifest` before this! pub fn toOwnedLock(self: *Manifest) Lock { const lock: Lock = .{ .manifest_file = self.manifest_file.?, }; self.manifest_file = null; return lock; } /// Releases the manifest file and frees any memory the Manifest was using. /// `Manifest.hit` must be called first. /// Don't forget to call `writeManifest` before this! pub fn deinit(self: *Manifest) void { if (self.manifest_file) |file| { if (builtin.os.tag == .windows) { // See Lock.release for why this is required on Windows file.unlock(); } file.close(); } for (self.files.items) |*file| { file.deinit(self.cache.gpa); } self.files.deinit(self.cache.gpa); } }; /// On operating systems that support symlinks, does a readlink. On other operating systems, /// uses the file contents. Windows supports symlinks but only with elevated privileges, so /// it is treated as not supporting symlinks. pub fn readSmallFile(dir: fs.Dir, sub_path: []const u8, buffer: []u8) ![]u8 { if (builtin.os.tag == .windows) { return dir.readFile(sub_path, buffer); } else { return dir.readLink(sub_path, buffer); } } /// On operating systems that support symlinks, does a symlink. On other operating systems, /// uses the file contents. Windows supports symlinks but only with elevated privileges, so /// it is treated as not supporting symlinks. /// `data` must be a valid UTF-8 encoded file path and 255 bytes or fewer. pub fn writeSmallFile(dir: fs.Dir, sub_path: []const u8, data: []const u8) !void { assert(data.len <= 255); if (builtin.os.tag == .windows) { return dir.writeFile(sub_path, data); } else { return dir.symLink(data, sub_path, .{}); } } fn hashFile(file: fs.File, bin_digest: *[Hasher.mac_length]u8) !void { var buf: [1024]u8 = undefined; var hasher = hasher_init; while (true) { const bytes_read = try file.read(&buf); if (bytes_read == 0) break; hasher.update(buf[0..bytes_read]); } hasher.final(bin_digest); } // Create/Write a file, close it, then grab its stat.mtime timestamp. fn testGetCurrentFileTimestamp(dir: fs.Dir) !i128 { const test_out_file = "test-filetimestamp.tmp"; var file = try dir.createFile(test_out_file, .{ .read = true, .truncate = true, }); defer { file.close(); dir.deleteFile(test_out_file) catch {}; } return (try file.stat()).mtime; } test "cache file and then recall it" { if (builtin.os.tag == .wasi) { // https://github.com/ziglang/zig/issues/5437 return error.SkipZigTest; } var tmp = testing.tmpDir(.{}); defer tmp.cleanup(); const temp_file = "test.txt"; const temp_manifest_dir = "temp_manifest_dir"; try tmp.dir.writeFile(temp_file, "Hello, world!\n"); // Wait for file timestamps to tick const initial_time = try testGetCurrentFileTimestamp(tmp.dir); while ((try testGetCurrentFileTimestamp(tmp.dir)) == initial_time) { std.time.sleep(1); } var digest1: [hex_digest_len]u8 = undefined; var digest2: [hex_digest_len]u8 = undefined; { var cache = Cache{ .gpa = testing.allocator, .manifest_dir = try tmp.dir.makeOpenPath(temp_manifest_dir, .{}), }; cache.addPrefix(.{ .path = null, .handle = tmp.dir }); defer cache.manifest_dir.close(); { var ch = cache.obtain(); defer ch.deinit(); ch.hash.add(true); ch.hash.add(@as(u16, 1234)); ch.hash.addBytes("1234"); _ = try ch.addFile(temp_file, null); // There should be nothing in the cache try testing.expectEqual(false, try ch.hit()); digest1 = ch.final(); try ch.writeManifest(); } { var ch = cache.obtain(); defer ch.deinit(); ch.hash.add(true); ch.hash.add(@as(u16, 1234)); ch.hash.addBytes("1234"); _ = try ch.addFile(temp_file, null); // Cache hit! We just "built" the same file try testing.expect(try ch.hit()); digest2 = ch.final(); try testing.expectEqual(false, ch.have_exclusive_lock); } try testing.expectEqual(digest1, digest2); } } test "check that changing a file makes cache fail" { if (builtin.os.tag == .wasi) { // https://github.com/ziglang/zig/issues/5437 return error.SkipZigTest; } var tmp = testing.tmpDir(.{}); defer tmp.cleanup(); const temp_file = "cache_hash_change_file_test.txt"; const temp_manifest_dir = "cache_hash_change_file_manifest_dir"; const original_temp_file_contents = "Hello, world!\n"; const updated_temp_file_contents = "Hello, world; but updated!\n"; try tmp.dir.writeFile(temp_file, original_temp_file_contents); // Wait for file timestamps to tick const initial_time = try testGetCurrentFileTimestamp(tmp.dir); while ((try testGetCurrentFileTimestamp(tmp.dir)) == initial_time) { std.time.sleep(1); } var digest1: [hex_digest_len]u8 = undefined; var digest2: [hex_digest_len]u8 = undefined; { var cache = Cache{ .gpa = testing.allocator, .manifest_dir = try tmp.dir.makeOpenPath(temp_manifest_dir, .{}), }; cache.addPrefix(.{ .path = null, .handle = tmp.dir }); defer cache.manifest_dir.close(); { var ch = cache.obtain(); defer ch.deinit(); ch.hash.addBytes("1234"); const temp_file_idx = try ch.addFile(temp_file, 100); // There should be nothing in the cache try testing.expectEqual(false, try ch.hit()); try testing.expect(mem.eql(u8, original_temp_file_contents, ch.files.items[temp_file_idx].contents.?)); digest1 = ch.final(); try ch.writeManifest(); } try tmp.dir.writeFile(temp_file, updated_temp_file_contents); { var ch = cache.obtain(); defer ch.deinit(); ch.hash.addBytes("1234"); const temp_file_idx = try ch.addFile(temp_file, 100); // A file that we depend on has been updated, so the cache should not contain an entry for it try testing.expectEqual(false, try ch.hit()); // The cache system does not keep the contents of re-hashed input files. try testing.expect(ch.files.items[temp_file_idx].contents == null); digest2 = ch.final(); try ch.writeManifest(); } try testing.expect(!mem.eql(u8, digest1[0..], digest2[0..])); } } test "no file inputs" { if (builtin.os.tag == .wasi) { // https://github.com/ziglang/zig/issues/5437 return error.SkipZigTest; } var tmp = testing.tmpDir(.{}); defer tmp.cleanup(); const temp_manifest_dir = "no_file_inputs_manifest_dir"; var digest1: [hex_digest_len]u8 = undefined; var digest2: [hex_digest_len]u8 = undefined; var cache = Cache{ .gpa = testing.allocator, .manifest_dir = try tmp.dir.makeOpenPath(temp_manifest_dir, .{}), }; cache.addPrefix(.{ .path = null, .handle = tmp.dir }); defer cache.manifest_dir.close(); { var man = cache.obtain(); defer man.deinit(); man.hash.addBytes("1234"); // There should be nothing in the cache try testing.expectEqual(false, try man.hit()); digest1 = man.final(); try man.writeManifest(); } { var man = cache.obtain(); defer man.deinit(); man.hash.addBytes("1234"); try testing.expect(try man.hit()); digest2 = man.final(); try testing.expectEqual(false, man.have_exclusive_lock); } try testing.expectEqual(digest1, digest2); } test "Manifest with files added after initial hash work" { if (builtin.os.tag == .wasi) { // https://github.com/ziglang/zig/issues/5437 return error.SkipZigTest; } var tmp = testing.tmpDir(.{}); defer tmp.cleanup(); const temp_file1 = "cache_hash_post_file_test1.txt"; const temp_file2 = "cache_hash_post_file_test2.txt"; const temp_manifest_dir = "cache_hash_post_file_manifest_dir"; try tmp.dir.writeFile(temp_file1, "Hello, world!\n"); try tmp.dir.writeFile(temp_file2, "Hello world the second!\n"); // Wait for file timestamps to tick const initial_time = try testGetCurrentFileTimestamp(tmp.dir); while ((try testGetCurrentFileTimestamp(tmp.dir)) == initial_time) { std.time.sleep(1); } var digest1: [hex_digest_len]u8 = undefined; var digest2: [hex_digest_len]u8 = undefined; var digest3: [hex_digest_len]u8 = undefined; { var cache = Cache{ .gpa = testing.allocator, .manifest_dir = try tmp.dir.makeOpenPath(temp_manifest_dir, .{}), }; cache.addPrefix(.{ .path = null, .handle = tmp.dir }); defer cache.manifest_dir.close(); { var ch = cache.obtain(); defer ch.deinit(); ch.hash.addBytes("1234"); _ = try ch.addFile(temp_file1, null); // There should be nothing in the cache try testing.expectEqual(false, try ch.hit()); _ = try ch.addFilePost(temp_file2); digest1 = ch.final(); try ch.writeManifest(); } { var ch = cache.obtain(); defer ch.deinit(); ch.hash.addBytes("1234"); _ = try ch.addFile(temp_file1, null); try testing.expect(try ch.hit()); digest2 = ch.final(); try testing.expectEqual(false, ch.have_exclusive_lock); } try testing.expect(mem.eql(u8, &digest1, &digest2)); // Modify the file added after initial hash try tmp.dir.writeFile(temp_file2, "Hello world the second, updated\n"); // Wait for file timestamps to tick const initial_time2 = try testGetCurrentFileTimestamp(tmp.dir); while ((try testGetCurrentFileTimestamp(tmp.dir)) == initial_time2) { std.time.sleep(1); } { var ch = cache.obtain(); defer ch.deinit(); ch.hash.addBytes("1234"); _ = try ch.addFile(temp_file1, null); // A file that we depend on has been updated, so the cache should not contain an entry for it try testing.expectEqual(false, try ch.hit()); _ = try ch.addFilePost(temp_file2); digest3 = ch.final(); try ch.writeManifest(); } try testing.expect(!mem.eql(u8, &digest1, &digest3)); } } |
Generated by zstd-live on 2025-08-12 12:37:58 UTC. |