|
const std = @import("std"); const assert = std.debug.assert; const elf = std.elf; const fs = std.fs; const macho = std.macho; const math = std.math; const mem = std.mem; const testing = std.testing; |
base_idReturns true if the |
const CheckObject = @This(); |
create()Returns true if the |
const Allocator = mem.Allocator; const Step = std.Build.Step; |
format()Returns true if the |
pub const base_id = .check_object; |
checkStart()Returns true if the |
step: Step, source: std.Build.LazyPath, max_bytes: usize = 20 * 1024 * 1024, checks: std.ArrayList(Check), obj_format: std.Target.ObjectFormat, |
checkExact()Will return true if the |
pub fn create( owner: *std.Build, source: std.Build.LazyPath, obj_format: std.Target.ObjectFormat, ) *CheckObject { const gpa = owner.allocator; const self = gpa.create(CheckObject) catch @panic("OOM"); self.* = .{ .step = Step.init(.{ .id = .check_file, .name = "CheckObject", .owner = owner, .makeFn = make, }), .source = source.dupe(owner), .checks = std.ArrayList(Check).init(gpa), .obj_format = obj_format, }; self.source.addStepDependencies(&self.step); return self; } |
checkExactPath()Creates a new empty sequence of actions. |
const SearchPhrase = struct { string: []const u8, file_source: ?std.Build.LazyPath = null, |
checkContains()Adds an exact match phrase to the latest created Check with |
fn resolve(phrase: SearchPhrase, b: *std.Build, step: *Step) []const u8 { const file_source = phrase.file_source orelse return phrase.string; return b.fmt("{s} {s}", .{ phrase.string, file_source.getPath2(b, step) }); } }; |
checkContainsPath()Like |
/// There five types of actions currently supported: /// .exact - will do an exact match against the haystack /// .contains - will check for existence within the haystack /// .not_present - will check for non-existence within the haystack /// .extract - will do an exact match and extract into a variable enclosed within `{name}` braces /// .compute_cmp - will perform an operation on the extracted global variables /// using the MatchAction. It currently only supports an addition. The operation is required /// to be specified in Reverse Polish Notation to ease in operator-precedence parsing (well, /// to avoid any parsing really). /// For example, if the two extracted values were saved as `vmaddr` and `entryoff` respectively /// they could then be added with this simple program `vmaddr entryoff +`. const Action = struct { tag: enum { exact, contains, not_present, extract, compute_cmp }, phrase: SearchPhrase, expected: ?ComputeCompareExpected = null, |
checkExtract()Adds a fuzzy match phrase to the latest created Check with |
/// Returns true if the `phrase` is an exact match with the haystack and variable was successfully extracted. fn extract( act: Action, b: *std.Build, step: *Step, haystack: []const u8, global_vars: anytype, ) !bool { assert(act.tag == .extract); const hay = mem.trim(u8, haystack, " "); const phrase = mem.trim(u8, act.phrase.resolve(b, step), " "); |
checkExtractFileSource()Like |
var candidate_vars = std.ArrayList(struct { name: []const u8, value: u64 }).init(b.allocator); var hay_it = mem.tokenizeScalar(u8, hay, ' '); var needle_it = mem.tokenizeScalar(u8, phrase, ' '); |
checkNotPresent()Adds an exact match phrase with variable extractor to the latest created Check
with |
while (needle_it.next()) |needle_tok| { const hay_tok = hay_it.next() orelse break; if (mem.startsWith(u8, needle_tok, "{")) { const closing_brace = mem.indexOf(u8, needle_tok, "}") orelse return error.MissingClosingBrace; if (closing_brace != needle_tok.len - 1) return error.ClosingBraceNotLast; |
checkNotPresentFileSource()Like |
const name = needle_tok[1..closing_brace]; if (name.len == 0) return error.MissingBraceValue; const value = std.fmt.parseInt(u64, hay_tok, 16) catch return false; try candidate_vars.append(.{ .name = name, .value = value, }); } else { if (!mem.eql(u8, hay_tok, needle_tok)) return false; } } |
checkInSymtab()Adds another searched phrase to the latest created Check with |
if (candidate_vars.items.len == 0) return false; |
checkInDynamicSymtab()Like |
for (candidate_vars.items) |cv| try global_vars.putNoClobber(cv.name, cv.value); |
checkInDynamicSection()Creates a new check checking specifically symbol table parsed and dumped from the object file. |
return true; } |
checkComputeCompare()Creates a new check checking specifically dynamic symbol table parsed and dumped from the object file. This check is target-dependent and applicable to ELF only. |
/// Returns true if the `phrase` is an exact match with the haystack. fn exact( act: Action, b: *std.Build, step: *Step, haystack: []const u8, ) bool { assert(act.tag == .exact); const hay = mem.trim(u8, haystack, " "); const phrase = mem.trim(u8, act.phrase.resolve(b, step), " "); return mem.eql(u8, hay, phrase); } /// Returns true if the `phrase` exists within the haystack. fn contains( act: Action, b: *std.Build, step: *Step, haystack: []const u8, ) bool { assert(act.tag == .contains); const hay = mem.trim(u8, haystack, " "); const phrase = mem.trim(u8, act.phrase.resolve(b, step), " "); return mem.indexOf(u8, hay, phrase) != null; } /// Returns true if the `phrase` does not exist within the haystack. fn notPresent( act: Action, b: *std.Build, step: *Step, haystack: []const u8, ) bool { assert(act.tag == .not_present); return !contains(.{ .tag = .contains, .phrase = act.phrase, .expected = act.expected, }, b, step, haystack); } /// Will return true if the `phrase` is correctly parsed into an RPN program and /// its reduced, computed value compares using `op` with the expected value, either /// a literal or another extracted variable. fn computeCmp(act: Action, b: *std.Build, step: *Step, global_vars: anytype) !bool { const gpa = step.owner.allocator; const phrase = act.phrase.resolve(b, step); var op_stack = std.ArrayList(enum { add, sub, mod, mul }).init(gpa); var values = std.ArrayList(u64).init(gpa); var it = mem.tokenizeScalar(u8, phrase, ' '); while (it.next()) |next| { if (mem.eql(u8, next, "+")) { try op_stack.append(.add); } else if (mem.eql(u8, next, "-")) { try op_stack.append(.sub); } else if (mem.eql(u8, next, "%")) { try op_stack.append(.mod); } else if (mem.eql(u8, next, "*")) { try op_stack.append(.mul); } else { const val = std.fmt.parseInt(u64, next, 0) catch blk: { break :blk global_vars.get(next) orelse { try step.addError( \\ \\========= variable was not extracted: =========== \\{s} \\================================================= , .{next}); return error.UnknownVariable; }; }; try values.append(val); } } var op_i: usize = 1; var reduced: u64 = values.items[0]; for (op_stack.items) |op| { const other = values.items[op_i]; switch (op) { .add => { reduced += other; }, .sub => { reduced -= other; }, .mod => { reduced %= other; }, .mul => { reduced *= other; }, } op_i += 1; } const exp_value = switch (act.expected.?.value) { .variable => |name| global_vars.get(name) orelse { try step.addError( \\ \\========= variable was not extracted: =========== \\{s} \\================================================= , .{name}); return error.UnknownVariable; }, .literal => |x| x, }; return math.compare(reduced, act.expected.?.op, exp_value); } }; const ComputeCompareExpected = struct { op: math.CompareOperator, value: union(enum) { variable: []const u8, literal: u64, }, pub fn format( value: @This(), comptime fmt: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { if (fmt.len != 0) std.fmt.invalidFmtError(fmt, value); _ = options; try writer.print("{s} ", .{@tagName(value.op)}); switch (value.value) { .variable => |name| try writer.writeAll(name), .literal => |x| try writer.print("{x}", .{x}), } } }; const Check = struct { actions: std.ArrayList(Action), fn create(allocator: Allocator) Check { return .{ .actions = std.ArrayList(Action).init(allocator), }; } fn extract(self: *Check, phrase: SearchPhrase) void { self.actions.append(.{ .tag = .extract, .phrase = phrase, }) catch @panic("OOM"); } fn exact(self: *Check, phrase: SearchPhrase) void { self.actions.append(.{ .tag = .exact, .phrase = phrase, }) catch @panic("OOM"); } fn contains(self: *Check, phrase: SearchPhrase) void { self.actions.append(.{ .tag = .contains, .phrase = phrase, }) catch @panic("OOM"); } fn notPresent(self: *Check, phrase: SearchPhrase) void { self.actions.append(.{ .tag = .not_present, .phrase = phrase, }) catch @panic("OOM"); } fn computeCmp(self: *Check, phrase: SearchPhrase, expected: ComputeCompareExpected) void { self.actions.append(.{ .tag = .compute_cmp, .phrase = phrase, .expected = expected, }) catch @panic("OOM"); } }; /// Creates a new empty sequence of actions. pub fn checkStart(self: *CheckObject) void { var new_check = Check.create(self.step.owner.allocator); self.checks.append(new_check) catch @panic("OOM"); } /// Adds an exact match phrase to the latest created Check with `CheckObject.checkStart()`. pub fn checkExact(self: *CheckObject, phrase: []const u8) void { self.checkExactInner(phrase, null); } /// Like `checkExact()` but takes an additional argument `LazyPath` which will be /// resolved to a full search query in `make()`. pub fn checkExactPath(self: *CheckObject, phrase: []const u8, file_source: std.Build.LazyPath) void { self.checkExactInner(phrase, file_source); } fn checkExactInner(self: *CheckObject, phrase: []const u8, file_source: ?std.Build.LazyPath) void { assert(self.checks.items.len > 0); const last = &self.checks.items[self.checks.items.len - 1]; last.exact(.{ .string = self.step.owner.dupe(phrase), .file_source = file_source }); } /// Adds a fuzzy match phrase to the latest created Check with `CheckObject.checkStart()`. pub fn checkContains(self: *CheckObject, phrase: []const u8) void { self.checkContainsInner(phrase, null); } /// Like `checkContains()` but takes an additional argument `FileSource` which will be /// resolved to a full search query in `make()`. pub fn checkContainsPath(self: *CheckObject, phrase: []const u8, file_source: std.Build.LazyPath) void { self.checkContainsInner(phrase, file_source); } fn checkContainsInner(self: *CheckObject, phrase: []const u8, file_source: ?std.Build.FileSource) void { assert(self.checks.items.len > 0); const last = &self.checks.items[self.checks.items.len - 1]; last.contains(.{ .string = self.step.owner.dupe(phrase), .file_source = file_source }); } /// Adds an exact match phrase with variable extractor to the latest created Check /// with `CheckObject.checkStart()`. pub fn checkExtract(self: *CheckObject, phrase: []const u8) void { self.checkExtractInner(phrase, null); } /// Like `checkExtract()` but takes an additional argument `FileSource` which will be /// resolved to a full search query in `make()`. pub fn checkExtractFileSource(self: *CheckObject, phrase: []const u8, file_source: std.Build.FileSource) void { self.checkExtractInner(phrase, file_source); } fn checkExtractInner(self: *CheckObject, phrase: []const u8, file_source: ?std.Build.FileSource) void { assert(self.checks.items.len > 0); const last = &self.checks.items[self.checks.items.len - 1]; last.extract(.{ .string = self.step.owner.dupe(phrase), .file_source = file_source }); } /// Adds another searched phrase to the latest created Check with `CheckObject.checkStart(...)` /// however ensures there is no matching phrase in the output. pub fn checkNotPresent(self: *CheckObject, phrase: []const u8) void { self.checkNotPresentInner(phrase, null); } /// Like `checkExtract()` but takes an additional argument `FileSource` which will be /// resolved to a full search query in `make()`. pub fn checkNotPresentFileSource(self: *CheckObject, phrase: []const u8, file_source: std.Build.FileSource) void { self.checkNotPresentInner(phrase, file_source); } fn checkNotPresentInner(self: *CheckObject, phrase: []const u8, file_source: ?std.Build.FileSource) void { assert(self.checks.items.len > 0); const last = &self.checks.items[self.checks.items.len - 1]; last.notPresent(.{ .string = self.step.owner.dupe(phrase), .file_source = file_source }); } /// Creates a new check checking specifically symbol table parsed and dumped from the object /// file. pub fn checkInSymtab(self: *CheckObject) void { const label = switch (self.obj_format) { .macho => MachODumper.symtab_label, .elf => ElfDumper.symtab_label, .wasm => WasmDumper.symtab_label, .coff => @panic("TODO symtab for coff"), else => @panic("TODO other file formats"), }; self.checkStart(); self.checkExact(label); } /// Creates a new check checking specifically dynamic symbol table parsed and dumped from the object /// file. /// This check is target-dependent and applicable to ELF only. pub fn checkInDynamicSymtab(self: *CheckObject) void { const label = switch (self.obj_format) { .elf => ElfDumper.dynamic_symtab_label, else => @panic("Unsupported target platform"), }; self.checkStart(); self.checkExact(label); } /// Creates a new check checking specifically dynamic section parsed and dumped from the object /// file. /// This check is target-dependent and applicable to ELF only. pub fn checkInDynamicSection(self: *CheckObject) void { const label = switch (self.obj_format) { .elf => ElfDumper.dynamic_section_label, else => @panic("Unsupported target platform"), }; self.checkStart(); self.checkExact(label); } /// Creates a new standalone, singular check which allows running simple binary operations /// on the extracted variables. It will then compare the reduced program with the value of /// the expected variable. pub fn checkComputeCompare( self: *CheckObject, program: []const u8, expected: ComputeCompareExpected, ) void { var new_check = Check.create(self.step.owner.allocator); new_check.computeCmp(.{ .string = self.step.owner.dupe(program) }, expected); self.checks.append(new_check) catch @panic("OOM"); } fn make(step: *Step, prog_node: *std.Progress.Node) !void { _ = prog_node; const b = step.owner; const gpa = b.allocator; const self = @fieldParentPtr(CheckObject, "step", step); const src_path = self.source.getPath(b); const contents = fs.cwd().readFileAllocOptions( gpa, src_path, self.max_bytes, null, @alignOf(u64), null, ) catch |err| return step.fail("unable to read '{s}': {s}", .{ src_path, @errorName(err) }); const output = switch (self.obj_format) { .macho => try MachODumper.parseAndDump(step, contents), .elf => try ElfDumper.parseAndDump(step, contents), .coff => @panic("TODO coff parser"), .wasm => try WasmDumper.parseAndDump(step, contents), else => unreachable, }; var vars = std.StringHashMap(u64).init(gpa); for (self.checks.items) |chk| { var it = mem.tokenizeAny(u8, output, "\r\n"); for (chk.actions.items) |act| { switch (act.tag) { .exact => { while (it.next()) |line| { if (act.exact(b, step, line)) break; } else { return step.fail( \\ \\========= expected to find: ========================== \\{s} \\========= but parsed file does not contain it: ======= \\{s} \\====================================================== , .{ act.phrase.resolve(b, step), output }); } }, .contains => { while (it.next()) |line| { if (act.contains(b, step, line)) break; } else { return step.fail( \\ \\========= expected to find: ========================== \\*{s}* \\========= but parsed file does not contain it: ======= \\{s} \\====================================================== , .{ act.phrase.resolve(b, step), output }); } }, .not_present => { while (it.next()) |line| { if (act.notPresent(b, step, line)) continue; return step.fail( \\ \\========= expected not to find: =================== \\{s} \\========= but parsed file does contain it: ======== \\{s} \\=================================================== , .{ act.phrase.resolve(b, step), output }); } }, .extract => { while (it.next()) |line| { if (try act.extract(b, step, line, &vars)) break; } else { return step.fail( \\ \\========= expected to find and extract: ============== \\{s} \\========= but parsed file does not contain it: ======= \\{s} \\====================================================== , .{ act.phrase.resolve(b, step), output }); } }, .compute_cmp => { const res = act.computeCmp(b, step, vars) catch |err| switch (err) { error.UnknownVariable => { return step.fail( \\========= from parsed file: ===================== \\{s} \\================================================= , .{output}); }, else => |e| return e, }; if (!res) { return step.fail( \\ \\========= comparison failed for action: =========== \\{s} {} \\========= from parsed file: ======================= \\{s} \\=================================================== , .{ act.phrase.resolve(b, step), act.expected.?, output }); } }, } } } } const MachODumper = struct { const LoadCommandIterator = macho.LoadCommandIterator; const symtab_label = "symbol table"; const Symtab = struct { symbols: []align(1) const macho.nlist_64, strings: []const u8, }; fn parseAndDump(step: *Step, bytes: []align(@alignOf(u64)) const u8) ![]const u8 { const gpa = step.owner.allocator; var stream = std.io.fixedBufferStream(bytes); const reader = stream.reader(); const hdr = try reader.readStruct(macho.mach_header_64); if (hdr.magic != macho.MH_MAGIC_64) { return error.InvalidMagicNumber; } var output = std.ArrayList(u8).init(gpa); const writer = output.writer(); var symtab: ?Symtab = null; var sections = std.ArrayList(macho.section_64).init(gpa); var imports = std.ArrayList([]const u8).init(gpa); var it = LoadCommandIterator{ .ncmds = hdr.ncmds, .buffer = bytes[@sizeOf(macho.mach_header_64)..][0..hdr.sizeofcmds], }; var i: usize = 0; while (it.next()) |cmd| { switch (cmd.cmd()) { .SEGMENT_64 => { const seg = cmd.cast(macho.segment_command_64).?; try sections.ensureUnusedCapacity(seg.nsects); for (cmd.getSections()) |sect| { sections.appendAssumeCapacity(sect); } }, .SYMTAB => { const lc = cmd.cast(macho.symtab_command).?; const symbols = @as([*]align(1) const macho.nlist_64, @ptrCast(bytes.ptr + lc.symoff))[0..lc.nsyms]; const strings = bytes[lc.stroff..][0..lc.strsize]; symtab = .{ .symbols = symbols, .strings = strings }; }, .LOAD_DYLIB, .LOAD_WEAK_DYLIB, .REEXPORT_DYLIB, => { try imports.append(cmd.getDylibPathName()); }, else => {}, } try dumpLoadCommand(cmd, i, writer); try writer.writeByte('\n'); i += 1; } if (symtab) |stab| { try dumpSymtab(sections.items, imports.items, stab, writer); } return output.toOwnedSlice(); } fn dumpLoadCommand(lc: macho.LoadCommandIterator.LoadCommand, index: usize, writer: anytype) !void { // print header first try writer.print( \\LC {d} \\cmd {s} \\cmdsize {d} , .{ index, @tagName(lc.cmd()), lc.cmdsize() }); switch (lc.cmd()) { .SEGMENT_64 => { const seg = lc.cast(macho.segment_command_64).?; try writer.writeByte('\n'); try writer.print( \\segname {s} \\vmaddr {x} \\vmsize {x} \\fileoff {x} \\filesz {x} , .{ seg.segName(), seg.vmaddr, seg.vmsize, seg.fileoff, seg.filesize, }); for (lc.getSections()) |sect| { try writer.writeByte('\n'); try writer.print( \\sectname {s} \\addr {x} \\size {x} \\offset {x} \\align {x} , .{ sect.sectName(), sect.addr, sect.size, sect.offset, sect.@"align", }); } }, .ID_DYLIB, .LOAD_DYLIB, .LOAD_WEAK_DYLIB, .REEXPORT_DYLIB, => { const dylib = lc.cast(macho.dylib_command).?; try writer.writeByte('\n'); try writer.print( \\name {s} \\timestamp {d} \\current version {x} \\compatibility version {x} , .{ lc.getDylibPathName(), dylib.dylib.timestamp, dylib.dylib.current_version, dylib.dylib.compatibility_version, }); }, .MAIN => { const main = lc.cast(macho.entry_point_command).?; try writer.writeByte('\n'); try writer.print( \\entryoff {x} \\stacksize {x} , .{ main.entryoff, main.stacksize }); }, .RPATH => { try writer.writeByte('\n'); try writer.print( \\path {s} , .{ lc.getRpathPathName(), }); }, .UUID => { const uuid = lc.cast(macho.uuid_command).?; try writer.writeByte('\n'); try writer.print("uuid {x}", .{std.fmt.fmtSliceHexLower(&uuid.uuid)}); }, .DATA_IN_CODE, .FUNCTION_STARTS, .CODE_SIGNATURE, => { const llc = lc.cast(macho.linkedit_data_command).?; try writer.writeByte('\n'); try writer.print( \\dataoff {x} \\datasize {x} , .{ llc.dataoff, llc.datasize }); }, .DYLD_INFO_ONLY => { const dlc = lc.cast(macho.dyld_info_command).?; try writer.writeByte('\n'); try writer.print( \\rebaseoff {x} \\rebasesize {x} \\bindoff {x} \\bindsize {x} \\weakbindoff {x} \\weakbindsize {x} \\lazybindoff {x} \\lazybindsize {x} \\exportoff {x} \\exportsize {x} , .{ dlc.rebase_off, dlc.rebase_size, dlc.bind_off, dlc.bind_size, dlc.weak_bind_off, dlc.weak_bind_size, dlc.lazy_bind_off, dlc.lazy_bind_size, dlc.export_off, dlc.export_size, }); }, .SYMTAB => { const slc = lc.cast(macho.symtab_command).?; try writer.writeByte('\n'); try writer.print( \\symoff {x} \\nsyms {x} \\stroff {x} \\strsize {x} , .{ slc.symoff, slc.nsyms, slc.stroff, slc.strsize, }); }, .DYSYMTAB => { const dlc = lc.cast(macho.dysymtab_command).?; try writer.writeByte('\n'); try writer.print( \\ilocalsym {x} \\nlocalsym {x} \\iextdefsym {x} \\nextdefsym {x} \\iundefsym {x} \\nundefsym {x} \\indirectsymoff {x} \\nindirectsyms {x} , .{ dlc.ilocalsym, dlc.nlocalsym, dlc.iextdefsym, dlc.nextdefsym, dlc.iundefsym, dlc.nundefsym, dlc.indirectsymoff, dlc.nindirectsyms, }); }, else => {}, } } fn dumpSymtab( sections: []const macho.section_64, imports: []const []const u8, symtab: Symtab, writer: anytype, ) !void { try writer.writeAll(symtab_label ++ "\n"); for (symtab.symbols) |sym| { if (sym.stab()) continue; const sym_name = mem.sliceTo(@as([*:0]const u8, @ptrCast(symtab.strings.ptr + sym.n_strx)), 0); if (sym.sect()) { const sect = sections[sym.n_sect - 1]; try writer.print("{x} ({s},{s})", .{ sym.n_value, sect.segName(), sect.sectName(), }); if (sym.ext()) { try writer.writeAll(" external"); } try writer.print(" {s}\n", .{sym_name}); } else if (sym.undf()) { const ordinal = @divTrunc(@as(i16, @bitCast(sym.n_desc)), macho.N_SYMBOL_RESOLVER); const import_name = blk: { if (ordinal <= 0) { if (ordinal == macho.BIND_SPECIAL_DYLIB_SELF) break :blk "self import"; if (ordinal == macho.BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) break :blk "main executable"; if (ordinal == macho.BIND_SPECIAL_DYLIB_FLAT_LOOKUP) break :blk "flat lookup"; unreachable; } const full_path = imports[@as(u16, @bitCast(ordinal)) - 1]; const basename = fs.path.basename(full_path); assert(basename.len > 0); const ext = mem.lastIndexOfScalar(u8, basename, '.') orelse basename.len; break :blk basename[0..ext]; }; try writer.writeAll("(undefined)"); if (sym.weakRef()) { try writer.writeAll(" weak"); } if (sym.ext()) { try writer.writeAll(" external"); } try writer.print(" {s} (from {s})\n", .{ sym_name, import_name, }); } else unreachable; } } }; const ElfDumper = struct { const symtab_label = "symbol table"; const dynamic_symtab_label = "dynamic symbol table"; const dynamic_section_label = "dynamic section"; const Symtab = struct { symbols: []align(1) const elf.Elf64_Sym, strings: []const u8, fn get(st: Symtab, index: usize) ?elf.Elf64_Sym { if (index >= st.symbols.len) return null; return st.symbols[index]; } fn getName(st: Symtab, index: usize) ?[]const u8 { const sym = st.get(index) orelse return null; return getString(st.strings, sym.st_name); } }; const Context = struct { gpa: Allocator, data: []const u8, hdr: elf.Elf64_Ehdr, shdrs: []align(1) const elf.Elf64_Shdr, phdrs: []align(1) const elf.Elf64_Phdr, shstrtab: []const u8, symtab: ?Symtab = null, dysymtab: ?Symtab = null, }; fn parseAndDump(step: *Step, bytes: []const u8) ![]const u8 { const gpa = step.owner.allocator; var stream = std.io.fixedBufferStream(bytes); const reader = stream.reader(); const hdr = try reader.readStruct(elf.Elf64_Ehdr); if (!mem.eql(u8, hdr.e_ident[0..4], "\x7fELF")) { return error.InvalidMagicNumber; } const shdrs = @as([*]align(1) const elf.Elf64_Shdr, @ptrCast(bytes.ptr + hdr.e_shoff))[0..hdr.e_shnum]; const phdrs = @as([*]align(1) const elf.Elf64_Phdr, @ptrCast(bytes.ptr + hdr.e_phoff))[0..hdr.e_phnum]; var ctx = Context{ .gpa = gpa, .data = bytes, .hdr = hdr, .shdrs = shdrs, .phdrs = phdrs, .shstrtab = undefined, }; ctx.shstrtab = getSectionContents(ctx, ctx.hdr.e_shstrndx); for (ctx.shdrs, 0..) |shdr, i| switch (shdr.sh_type) { elf.SHT_SYMTAB, elf.SHT_DYNSYM => { const raw = getSectionContents(ctx, i); const nsyms = @divExact(raw.len, @sizeOf(elf.Elf64_Sym)); const symbols = @as([*]align(1) const elf.Elf64_Sym, @ptrCast(raw.ptr))[0..nsyms]; const strings = getSectionContents(ctx, shdr.sh_link); switch (shdr.sh_type) { elf.SHT_SYMTAB => { ctx.symtab = .{ .symbols = symbols, .strings = strings, }; }, elf.SHT_DYNSYM => { ctx.dysymtab = .{ .symbols = symbols, .strings = strings, }; }, else => unreachable, } }, else => {}, }; var output = std.ArrayList(u8).init(gpa); const writer = output.writer(); try dumpHeader(ctx, writer); try dumpShdrs(ctx, writer); try dumpPhdrs(ctx, writer); try dumpDynamicSection(ctx, writer); try dumpSymtab(ctx, .symtab, writer); try dumpSymtab(ctx, .dysymtab, writer); return output.toOwnedSlice(); } inline fn getSectionName(ctx: Context, shndx: usize) []const u8 { const shdr = ctx.shdrs[shndx]; return getString(ctx.shstrtab, shdr.sh_name); } fn getSectionContents(ctx: Context, shndx: usize) []const u8 { const shdr = ctx.shdrs[shndx]; assert(shdr.sh_offset < ctx.data.len); assert(shdr.sh_offset + shdr.sh_size <= ctx.data.len); return ctx.data[shdr.sh_offset..][0..shdr.sh_size]; } fn getSectionByName(ctx: Context, name: []const u8) ?usize { for (0..ctx.shdrs.len) |shndx| { if (mem.eql(u8, getSectionName(ctx, shndx), name)) return shndx; } else return null; } fn getString(strtab: []const u8, off: u32) []const u8 { assert(off < strtab.len); return mem.sliceTo(@as([*:0]const u8, @ptrCast(strtab.ptr + off)), 0); } fn dumpHeader(ctx: Context, writer: anytype) !void { try writer.writeAll("header\n"); try writer.print("type {s}\n", .{@tagName(ctx.hdr.e_type)}); try writer.print("entry {x}\n", .{ctx.hdr.e_entry}); } fn dumpShdrs(ctx: Context, writer: anytype) !void { if (ctx.shdrs.len == 0) return; try writer.writeAll("section headers\n"); for (ctx.shdrs, 0..) |shdr, shndx| { try writer.print("shdr {d}\n", .{shndx}); try writer.print("name {s}\n", .{getSectionName(ctx, shndx)}); try writer.print("type {s}\n", .{fmtShType(shdr.sh_type)}); try writer.print("addr {x}\n", .{shdr.sh_addr}); try writer.print("offset {x}\n", .{shdr.sh_offset}); try writer.print("size {x}\n", .{shdr.sh_size}); try writer.print("addralign {x}\n", .{shdr.sh_addralign}); // TODO dump formatted sh_flags } } fn dumpDynamicSection(ctx: Context, writer: anytype) !void { const shndx = getSectionByName(ctx, ".dynamic") orelse return; const shdr = ctx.shdrs[shndx]; const strtab = getSectionContents(ctx, shdr.sh_link); const data = getSectionContents(ctx, shndx); const nentries = @divExact(data.len, @sizeOf(elf.Elf64_Dyn)); const entries = @as([*]align(1) const elf.Elf64_Dyn, @ptrCast(data.ptr))[0..nentries]; try writer.writeAll(ElfDumper.dynamic_section_label ++ "\n"); for (entries) |entry| { const key = @as(u64, @bitCast(entry.d_tag)); const value = entry.d_val; const key_str = switch (key) { elf.DT_NEEDED => "NEEDED", elf.DT_SONAME => "SONAME", elf.DT_INIT_ARRAY => "INIT_ARRAY", elf.DT_INIT_ARRAYSZ => "INIT_ARRAYSZ", elf.DT_FINI_ARRAY => "FINI_ARRAY", elf.DT_FINI_ARRAYSZ => "FINI_ARRAYSZ", elf.DT_HASH => "HASH", elf.DT_GNU_HASH => "GNU_HASH", elf.DT_STRTAB => "STRTAB", elf.DT_SYMTAB => "SYMTAB", elf.DT_STRSZ => "STRSZ", elf.DT_SYMENT => "SYMENT", elf.DT_PLTGOT => "PLTGOT", elf.DT_PLTRELSZ => "PLTRELSZ", elf.DT_PLTREL => "PLTREL", elf.DT_JMPREL => "JMPREL", elf.DT_RELA => "RELA", elf.DT_RELASZ => "RELASZ", elf.DT_RELAENT => "RELAENT", elf.DT_VERDEF => "VERDEF", elf.DT_VERDEFNUM => "VERDEFNUM", elf.DT_FLAGS => "FLAGS", elf.DT_FLAGS_1 => "FLAGS_1", elf.DT_VERNEED => "VERNEED", elf.DT_VERNEEDNUM => "VERNEEDNUM", elf.DT_VERSYM => "VERSYM", elf.DT_RELACOUNT => "RELACOUNT", elf.DT_RPATH => "RPATH", elf.DT_RUNPATH => "RUNPATH", elf.DT_INIT => "INIT", elf.DT_FINI => "FINI", elf.DT_NULL => "NULL", else => "UNKNOWN", }; try writer.print("{s}", .{key_str}); switch (key) { elf.DT_NEEDED, elf.DT_SONAME, elf.DT_RPATH, elf.DT_RUNPATH, => { const name = getString(strtab, @intCast(value)); try writer.print(" {s}", .{name}); }, elf.DT_INIT_ARRAY, elf.DT_FINI_ARRAY, elf.DT_HASH, elf.DT_GNU_HASH, elf.DT_STRTAB, elf.DT_SYMTAB, elf.DT_PLTGOT, elf.DT_JMPREL, elf.DT_RELA, elf.DT_VERDEF, elf.DT_VERNEED, elf.DT_VERSYM, elf.DT_INIT, elf.DT_FINI, elf.DT_NULL, => try writer.print(" {x}", .{value}), elf.DT_INIT_ARRAYSZ, elf.DT_FINI_ARRAYSZ, elf.DT_STRSZ, elf.DT_SYMENT, elf.DT_PLTRELSZ, elf.DT_RELASZ, elf.DT_RELAENT, elf.DT_RELACOUNT, => try writer.print(" {d}", .{value}), elf.DT_PLTREL => try writer.writeAll(switch (value) { elf.DT_REL => " REL", elf.DT_RELA => " RELA", else => " UNKNOWN", }), elf.DT_FLAGS => if (value > 0) { if (value & elf.DF_ORIGIN != 0) try writer.writeAll(" ORIGIN"); if (value & elf.DF_SYMBOLIC != 0) try writer.writeAll(" SYMBOLIC"); if (value & elf.DF_TEXTREL != 0) try writer.writeAll(" TEXTREL"); if (value & elf.DF_BIND_NOW != 0) try writer.writeAll(" BIND_NOW"); if (value & elf.DF_STATIC_TLS != 0) try writer.writeAll(" STATIC_TLS"); }, elf.DT_FLAGS_1 => if (value > 0) { if (value & elf.DF_1_NOW != 0) try writer.writeAll(" NOW"); if (value & elf.DF_1_GLOBAL != 0) try writer.writeAll(" GLOBAL"); if (value & elf.DF_1_GROUP != 0) try writer.writeAll(" GROUP"); if (value & elf.DF_1_NODELETE != 0) try writer.writeAll(" NODELETE"); if (value & elf.DF_1_LOADFLTR != 0) try writer.writeAll(" LOADFLTR"); if (value & elf.DF_1_INITFIRST != 0) try writer.writeAll(" INITFIRST"); if (value & elf.DF_1_NOOPEN != 0) try writer.writeAll(" NOOPEN"); if (value & elf.DF_1_ORIGIN != 0) try writer.writeAll(" ORIGIN"); if (value & elf.DF_1_DIRECT != 0) try writer.writeAll(" DIRECT"); if (value & elf.DF_1_TRANS != 0) try writer.writeAll(" TRANS"); if (value & elf.DF_1_INTERPOSE != 0) try writer.writeAll(" INTERPOSE"); if (value & elf.DF_1_NODEFLIB != 0) try writer.writeAll(" NODEFLIB"); if (value & elf.DF_1_NODUMP != 0) try writer.writeAll(" NODUMP"); if (value & elf.DF_1_CONFALT != 0) try writer.writeAll(" CONFALT"); if (value & elf.DF_1_ENDFILTEE != 0) try writer.writeAll(" ENDFILTEE"); if (value & elf.DF_1_DISPRELDNE != 0) try writer.writeAll(" DISPRELDNE"); if (value & elf.DF_1_DISPRELPND != 0) try writer.writeAll(" DISPRELPND"); if (value & elf.DF_1_NODIRECT != 0) try writer.writeAll(" NODIRECT"); if (value & elf.DF_1_IGNMULDEF != 0) try writer.writeAll(" IGNMULDEF"); if (value & elf.DF_1_NOKSYMS != 0) try writer.writeAll(" NOKSYMS"); if (value & elf.DF_1_NOHDR != 0) try writer.writeAll(" NOHDR"); if (value & elf.DF_1_EDITED != 0) try writer.writeAll(" EDITED"); if (value & elf.DF_1_NORELOC != 0) try writer.writeAll(" NORELOC"); if (value & elf.DF_1_SYMINTPOSE != 0) try writer.writeAll(" SYMINTPOSE"); if (value & elf.DF_1_GLOBAUDIT != 0) try writer.writeAll(" GLOBAUDIT"); if (value & elf.DF_1_SINGLETON != 0) try writer.writeAll(" SINGLETON"); if (value & elf.DF_1_STUB != 0) try writer.writeAll(" STUB"); if (value & elf.DF_1_PIE != 0) try writer.writeAll(" PIE"); }, else => try writer.print(" {x}", .{value}), } try writer.writeByte('\n'); } } fn fmtShType(sh_type: u32) std.fmt.Formatter(formatShType) { return .{ .data = sh_type }; } fn formatShType( sh_type: u32, comptime unused_fmt_string: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = unused_fmt_string; _ = options; const name = switch (sh_type) { elf.SHT_NULL => "NULL", elf.SHT_PROGBITS => "PROGBITS", elf.SHT_SYMTAB => "SYMTAB", elf.SHT_STRTAB => "STRTAB", elf.SHT_RELA => "RELA", elf.SHT_HASH => "HASH", elf.SHT_DYNAMIC => "DYNAMIC", elf.SHT_NOTE => "NOTE", elf.SHT_NOBITS => "NOBITS", elf.SHT_REL => "REL", elf.SHT_SHLIB => "SHLIB", elf.SHT_DYNSYM => "DYNSYM", elf.SHT_INIT_ARRAY => "INIT_ARRAY", elf.SHT_FINI_ARRAY => "FINI_ARRAY", elf.SHT_PREINIT_ARRAY => "PREINIT_ARRAY", elf.SHT_GROUP => "GROUP", elf.SHT_SYMTAB_SHNDX => "SYMTAB_SHNDX", elf.SHT_X86_64_UNWIND => "X86_64_UNWIND", elf.SHT_LLVM_ADDRSIG => "LLVM_ADDRSIG", elf.SHT_GNU_HASH => "GNU_HASH", elf.SHT_GNU_VERDEF => "VERDEF", elf.SHT_GNU_VERNEED => "VERNEED", elf.SHT_GNU_VERSYM => "VERSYM", else => if (elf.SHT_LOOS <= sh_type and sh_type < elf.SHT_HIOS) { return try writer.print("LOOS+0x{x}", .{sh_type - elf.SHT_LOOS}); } else if (elf.SHT_LOPROC <= sh_type and sh_type < elf.SHT_HIPROC) { return try writer.print("LOPROC+0x{x}", .{sh_type - elf.SHT_LOPROC}); } else if (elf.SHT_LOUSER <= sh_type and sh_type < elf.SHT_HIUSER) { return try writer.print("LOUSER+0x{x}", .{sh_type - elf.SHT_LOUSER}); } else "UNKNOWN", }; try writer.writeAll(name); } fn dumpPhdrs(ctx: Context, writer: anytype) !void { if (ctx.phdrs.len == 0) return; try writer.writeAll("program headers\n"); for (ctx.phdrs, 0..) |phdr, phndx| { try writer.print("phdr {d}\n", .{phndx}); try writer.print("type {s}\n", .{fmtPhType(phdr.p_type)}); try writer.print("vaddr {x}\n", .{phdr.p_vaddr}); try writer.print("paddr {x}\n", .{phdr.p_paddr}); try writer.print("offset {x}\n", .{phdr.p_offset}); try writer.print("memsz {x}\n", .{phdr.p_memsz}); try writer.print("filesz {x}\n", .{phdr.p_filesz}); try writer.print("align {x}\n", .{phdr.p_align}); { const flags = phdr.p_flags; try writer.writeAll("flags"); if (flags > 0) try writer.writeByte(' '); if (flags & elf.PF_R != 0) { try writer.writeByte('R'); } if (flags & elf.PF_W != 0) { try writer.writeByte('W'); } if (flags & elf.PF_X != 0) { try writer.writeByte('E'); } if (flags & elf.PF_MASKOS != 0) { try writer.writeAll("OS"); } if (flags & elf.PF_MASKPROC != 0) { try writer.writeAll("PROC"); } try writer.writeByte('\n'); } } } fn fmtPhType(ph_type: u32) std.fmt.Formatter(formatPhType) { return .{ .data = ph_type }; } fn formatPhType( ph_type: u32, comptime unused_fmt_string: []const u8, options: std.fmt.FormatOptions, writer: anytype, ) !void { _ = unused_fmt_string; _ = options; const p_type = switch (ph_type) { elf.PT_NULL => "NULL", elf.PT_LOAD => "LOAD", elf.PT_DYNAMIC => "DYNAMIC", elf.PT_INTERP => "INTERP", elf.PT_NOTE => "NOTE", elf.PT_SHLIB => "SHLIB", elf.PT_PHDR => "PHDR", elf.PT_TLS => "TLS", elf.PT_NUM => "NUM", elf.PT_GNU_EH_FRAME => "GNU_EH_FRAME", elf.PT_GNU_STACK => "GNU_STACK", elf.PT_GNU_RELRO => "GNU_RELRO", else => if (elf.PT_LOOS <= ph_type and ph_type < elf.PT_HIOS) { return try writer.print("LOOS+0x{x}", .{ph_type - elf.PT_LOOS}); } else if (elf.PT_LOPROC <= ph_type and ph_type < elf.PT_HIPROC) { return try writer.print("LOPROC+0x{x}", .{ph_type - elf.PT_LOPROC}); } else "UNKNOWN", }; try writer.writeAll(p_type); } fn dumpSymtab(ctx: Context, comptime @"type": enum { symtab, dysymtab }, writer: anytype) !void { const symtab = switch (@"type") { .symtab => ctx.symtab, .dysymtab => ctx.dysymtab, } orelse return; try writer.writeAll(switch (@"type") { .symtab => symtab_label, .dysymtab => dynamic_symtab_label, } ++ "\n"); for (symtab.symbols, 0..) |sym, index| { try writer.print("{x} {x}", .{ sym.st_value, sym.st_size }); { if (elf.SHN_LORESERVE <= sym.st_shndx and sym.st_shndx < elf.SHN_HIRESERVE) { if (elf.SHN_LOPROC <= sym.st_shndx and sym.st_shndx < elf.SHN_HIPROC) { try writer.print(" LO+{d}", .{sym.st_shndx - elf.SHN_LOPROC}); } else { const sym_ndx = &switch (sym.st_shndx) { elf.SHN_ABS => "ABS", elf.SHN_COMMON => "COM", elf.SHN_LIVEPATCH => "LIV", else => "UNK", }; try writer.print(" {s}", .{sym_ndx}); } } else if (sym.st_shndx == elf.SHN_UNDEF) { try writer.writeAll(" UND"); } else { try writer.print(" {x}", .{sym.st_shndx}); } } blk: { const tt = sym.st_type(); const sym_type = switch (tt) { elf.STT_NOTYPE => "NOTYPE", elf.STT_OBJECT => "OBJECT", elf.STT_FUNC => "FUNC", elf.STT_SECTION => "SECTION", elf.STT_FILE => "FILE", elf.STT_COMMON => "COMMON", elf.STT_TLS => "TLS", elf.STT_NUM => "NUM", elf.STT_GNU_IFUNC => "IFUNC", else => if (elf.STT_LOPROC <= tt and tt < elf.STT_HIPROC) { break :blk try writer.print(" LOPROC+{d}", .{tt - elf.STT_LOPROC}); } else if (elf.STT_LOOS <= tt and tt < elf.STT_HIOS) { break :blk try writer.print(" LOOS+{d}", .{tt - elf.STT_LOOS}); } else "UNK", }; try writer.print(" {s}", .{sym_type}); } blk: { const bind = sym.st_bind(); const sym_bind = switch (bind) { elf.STB_LOCAL => "LOCAL", elf.STB_GLOBAL => "GLOBAL", elf.STB_WEAK => "WEAK", elf.STB_NUM => "NUM", else => if (elf.STB_LOPROC <= bind and bind < elf.STB_HIPROC) { break :blk try writer.print(" LOPROC+{d}", .{bind - elf.STB_LOPROC}); } else if (elf.STB_LOOS <= bind and bind < elf.STB_HIOS) { break :blk try writer.print(" LOOS+{d}", .{bind - elf.STB_LOOS}); } else "UNKNOWN", }; try writer.print(" {s}", .{sym_bind}); } const sym_vis = @as(elf.STV, @enumFromInt(sym.st_other)); try writer.print(" {s}", .{@tagName(sym_vis)}); const sym_name = switch (sym.st_type()) { elf.STT_SECTION => getSectionName(ctx, sym.st_shndx), else => symtab.getName(index).?, }; try writer.print(" {s}\n", .{sym_name}); } } }; const WasmDumper = struct { const symtab_label = "symbols"; fn parseAndDump(step: *Step, bytes: []const u8) ![]const u8 { const gpa = step.owner.allocator; var fbs = std.io.fixedBufferStream(bytes); const reader = fbs.reader(); const buf = try reader.readBytesNoEof(8); if (!mem.eql(u8, buf[0..4], &std.wasm.magic)) { return error.InvalidMagicByte; } if (!mem.eql(u8, buf[4..], &std.wasm.version)) { return error.UnsupportedWasmVersion; } var output = std.ArrayList(u8).init(gpa); errdefer output.deinit(); const writer = output.writer(); while (reader.readByte()) |current_byte| { const section = std.meta.intToEnum(std.wasm.Section, current_byte) catch { return step.fail("Found invalid section id '{d}'", .{current_byte}); }; const section_length = try std.leb.readULEB128(u32, reader); try parseAndDumpSection(step, section, bytes[fbs.pos..][0..section_length], writer); fbs.pos += section_length; } else |_| {} // reached end of stream return output.toOwnedSlice(); } fn parseAndDumpSection( step: *Step, section: std.wasm.Section, data: []const u8, writer: anytype, ) !void { var fbs = std.io.fixedBufferStream(data); const reader = fbs.reader(); try writer.print( \\Section {s} \\size {d} , .{ @tagName(section), data.len }); switch (section) { .type, .import, .function, .table, .memory, .global, .@"export", .element, .code, .data, => { const entries = try std.leb.readULEB128(u32, reader); try writer.print("\nentries {d}\n", .{entries}); try dumpSection(step, section, data[fbs.pos..], entries, writer); }, .custom => { const name_length = try std.leb.readULEB128(u32, reader); const name = data[fbs.pos..][0..name_length]; fbs.pos += name_length; try writer.print("\nname {s}\n", .{name}); if (mem.eql(u8, name, "name")) { try parseDumpNames(step, reader, writer, data); } else if (mem.eql(u8, name, "producers")) { try parseDumpProducers(reader, writer, data); } else if (mem.eql(u8, name, "target_features")) { try parseDumpFeatures(reader, writer, data); } // TODO: Implement parsing and dumping other custom sections (such as relocations) }, .start => { const start = try std.leb.readULEB128(u32, reader); try writer.print("\nstart {d}\n", .{start}); }, .data_count => { const count = try std.leb.readULEB128(u32, reader); try writer.print("\ncount {d}\n", .{count}); }, else => {}, // skip unknown sections } } fn dumpSection(step: *Step, section: std.wasm.Section, data: []const u8, entries: u32, writer: anytype) !void { var fbs = std.io.fixedBufferStream(data); const reader = fbs.reader(); switch (section) { .type => { var i: u32 = 0; while (i < entries) : (i += 1) { const func_type = try reader.readByte(); if (func_type != std.wasm.function_type) { return step.fail("expected function type, found byte '{d}'", .{func_type}); } const params = try std.leb.readULEB128(u32, reader); try writer.print("params {d}\n", .{params}); var index: u32 = 0; while (index < params) : (index += 1) { try parseDumpType(step, std.wasm.Valtype, reader, writer); } else index = 0; const returns = try std.leb.readULEB128(u32, reader); try writer.print("returns {d}\n", .{returns}); while (index < returns) : (index += 1) { try parseDumpType(step, std.wasm.Valtype, reader, writer); } } }, .import => { var i: u32 = 0; while (i < entries) : (i += 1) { const module_name_len = try std.leb.readULEB128(u32, reader); const module_name = data[fbs.pos..][0..module_name_len]; fbs.pos += module_name_len; const name_len = try std.leb.readULEB128(u32, reader); const name = data[fbs.pos..][0..name_len]; fbs.pos += name_len; const kind = std.meta.intToEnum(std.wasm.ExternalKind, try reader.readByte()) catch { return step.fail("invalid import kind", .{}); }; try writer.print( \\module {s} \\name {s} \\kind {s} , .{ module_name, name, @tagName(kind) }); try writer.writeByte('\n'); switch (kind) { .function => { try writer.print("index {d}\n", .{try std.leb.readULEB128(u32, reader)}); }, .memory => { try parseDumpLimits(reader, writer); }, .global => { try parseDumpType(step, std.wasm.Valtype, reader, writer); try writer.print("mutable {}\n", .{0x01 == try std.leb.readULEB128(u32, reader)}); }, .table => { try parseDumpType(step, std.wasm.RefType, reader, writer); try parseDumpLimits(reader, writer); }, } } }, .function => { var i: u32 = 0; while (i < entries) : (i += 1) { try writer.print("index {d}\n", .{try std.leb.readULEB128(u32, reader)}); } }, .table => { var i: u32 = 0; while (i < entries) : (i += 1) { try parseDumpType(step, std.wasm.RefType, reader, writer); try parseDumpLimits(reader, writer); } }, .memory => { var i: u32 = 0; while (i < entries) : (i += 1) { try parseDumpLimits(reader, writer); } }, .global => { var i: u32 = 0; while (i < entries) : (i += 1) { try parseDumpType(step, std.wasm.Valtype, reader, writer); try writer.print("mutable {}\n", .{0x01 == try std.leb.readULEB128(u1, reader)}); try parseDumpInit(step, reader, writer); } }, .@"export" => { var i: u32 = 0; while (i < entries) : (i += 1) { const name_len = try std.leb.readULEB128(u32, reader); const name = data[fbs.pos..][0..name_len]; fbs.pos += name_len; const kind_byte = try std.leb.readULEB128(u8, reader); const kind = std.meta.intToEnum(std.wasm.ExternalKind, kind_byte) catch { return step.fail("invalid export kind value '{d}'", .{kind_byte}); }; const index = try std.leb.readULEB128(u32, reader); try writer.print( \\name {s} \\kind {s} \\index {d} , .{ name, @tagName(kind), index }); try writer.writeByte('\n'); } }, .element => { var i: u32 = 0; while (i < entries) : (i += 1) { try writer.print("table index {d}\n", .{try std.leb.readULEB128(u32, reader)}); try parseDumpInit(step, reader, writer); const function_indexes = try std.leb.readULEB128(u32, reader); var function_index: u32 = 0; try writer.print("indexes {d}\n", .{function_indexes}); while (function_index < function_indexes) : (function_index += 1) { try writer.print("index {d}\n", .{try std.leb.readULEB128(u32, reader)}); } } }, .code => {}, // code section is considered opaque to linker .data => { var i: u32 = 0; while (i < entries) : (i += 1) { const flags = try std.leb.readULEB128(u32, reader); const index = if (flags & 0x02 != 0) try std.leb.readULEB128(u32, reader) else 0; try writer.print("memory index 0x{x}\n", .{index}); if (flags == 0) { try parseDumpInit(step, reader, writer); } const size = try std.leb.readULEB128(u32, reader); try writer.print("size {d}\n", .{size}); try reader.skipBytes(size, .{}); // we do not care about the content of the segments } }, else => unreachable, } } fn parseDumpType(step: *Step, comptime WasmType: type, reader: anytype, writer: anytype) !void { const type_byte = try reader.readByte(); const valtype = std.meta.intToEnum(WasmType, type_byte) catch { return step.fail("Invalid wasm type value '{d}'", .{type_byte}); }; try writer.print("type {s}\n", .{@tagName(valtype)}); } fn parseDumpLimits(reader: anytype, writer: anytype) !void { const flags = try std.leb.readULEB128(u8, reader); const min = try std.leb.readULEB128(u32, reader); try writer.print("min {x}\n", .{min}); if (flags != 0) { try writer.print("max {x}\n", .{try std.leb.readULEB128(u32, reader)}); } } fn parseDumpInit(step: *Step, reader: anytype, writer: anytype) !void { const byte = try reader.readByte(); const opcode = std.meta.intToEnum(std.wasm.Opcode, byte) catch { return step.fail("invalid wasm opcode '{d}'", .{byte}); }; switch (opcode) { .i32_const => try writer.print("i32.const {x}\n", .{try std.leb.readILEB128(i32, reader)}), .i64_const => try writer.print("i64.const {x}\n", .{try std.leb.readILEB128(i64, reader)}), .f32_const => try writer.print("f32.const {x}\n", .{@as(f32, @bitCast(try reader.readIntLittle(u32)))}), .f64_const => try writer.print("f64.const {x}\n", .{@as(f64, @bitCast(try reader.readIntLittle(u64)))}), .global_get => try writer.print("global.get {x}\n", .{try std.leb.readULEB128(u32, reader)}), else => unreachable, } const end_opcode = try std.leb.readULEB128(u8, reader); if (end_opcode != std.wasm.opcode(.end)) { return step.fail("expected 'end' opcode in init expression", .{}); } } fn parseDumpNames(step: *Step, reader: anytype, writer: anytype, data: []const u8) !void { while (reader.context.pos < data.len) { try parseDumpType(step, std.wasm.NameSubsection, reader, writer); const size = try std.leb.readULEB128(u32, reader); const entries = try std.leb.readULEB128(u32, reader); try writer.print( \\size {d} \\names {d} , .{ size, entries }); try writer.writeByte('\n'); var i: u32 = 0; while (i < entries) : (i += 1) { const index = try std.leb.readULEB128(u32, reader); const name_len = try std.leb.readULEB128(u32, reader); const pos = reader.context.pos; const name = data[pos..][0..name_len]; reader.context.pos += name_len; try writer.print( \\index {d} \\name {s} , .{ index, name }); try writer.writeByte('\n'); } } } fn parseDumpProducers(reader: anytype, writer: anytype, data: []const u8) !void { const field_count = try std.leb.readULEB128(u32, reader); try writer.print("fields {d}\n", .{field_count}); var current_field: u32 = 0; while (current_field < field_count) : (current_field += 1) { const field_name_length = try std.leb.readULEB128(u32, reader); const field_name = data[reader.context.pos..][0..field_name_length]; reader.context.pos += field_name_length; const value_count = try std.leb.readULEB128(u32, reader); try writer.print( \\field_name {s} \\values {d} , .{ field_name, value_count }); try writer.writeByte('\n'); var current_value: u32 = 0; while (current_value < value_count) : (current_value += 1) { const value_length = try std.leb.readULEB128(u32, reader); const value = data[reader.context.pos..][0..value_length]; reader.context.pos += value_length; const version_length = try std.leb.readULEB128(u32, reader); const version = data[reader.context.pos..][0..version_length]; reader.context.pos += version_length; try writer.print( \\value_name {s} \\version {s} , .{ value, version }); try writer.writeByte('\n'); } } } fn parseDumpFeatures(reader: anytype, writer: anytype, data: []const u8) !void { const feature_count = try std.leb.readULEB128(u32, reader); try writer.print("features {d}\n", .{feature_count}); var index: u32 = 0; while (index < feature_count) : (index += 1) { const prefix_byte = try std.leb.readULEB128(u8, reader); const name_length = try std.leb.readULEB128(u32, reader); const feature_name = data[reader.context.pos..][0..name_length]; reader.context.pos += name_length; try writer.print("{c} {s}\n", .{ prefix_byte, feature_name }); } } }; |
Generated by zstd-live on 2025-08-12 12:37:58 UTC. |