|
const std = @import("../std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const expect = std.testing.expect; |
Stack()push operation, but only if you are the first item in the stack. if you did not succeed in being the first item in the stack, returns the other item that was there. |
/// Many reader, many writer, non-allocating, thread-safe /// Uses a spinlock to protect push() and pop() /// When building in single threaded mode, this is a simple linked list. pub fn Stack(comptime T: type) type { return struct { root: ?*Node, lock: @TypeOf(lock_init), |
Self |
const lock_init = if (builtin.single_threaded) {} else false; |
Node |
pub const Self = @This(); |
init() |
pub const Node = struct { next: ?*Node, data: T, }; |
pushFirst() |
pub fn init() Self { return Self{ .root = null, .lock = lock_init, }; } |
push() |
/// push operation, but only if you are the first item in the stack. if you did not succeed in /// being the first item in the stack, returns the other item that was there. pub fn pushFirst(self: *Self, node: *Node) ?*Node { node.next = null; return @cmpxchgStrong(?*Node, &self.root, null, node, .SeqCst, .SeqCst); } |
pop() |
pub fn push(self: *Self, node: *Node) void { if (builtin.single_threaded) { node.next = self.root; self.root = node; } else { while (@atomicRmw(bool, &self.lock, .Xchg, true, .SeqCst)) {} defer assert(@atomicRmw(bool, &self.lock, .Xchg, false, .SeqCst)); |
isEmpty() |
node.next = self.root; self.root = node; } } |
Test:std.atomic.stack |
pub fn pop(self: *Self) ?*Node { if (builtin.single_threaded) { const root = self.root orelse return null; self.root = root.next; return root; } else { while (@atomicRmw(bool, &self.lock, .Xchg, true, .SeqCst)) {} defer assert(@atomicRmw(bool, &self.lock, .Xchg, false, .SeqCst)); const root = self.root orelse return null; self.root = root.next; return root; } } pub fn isEmpty(self: *Self) bool { return @atomicLoad(?*Node, &self.root, .SeqCst) == null; } }; } const Context = struct { allocator: std.mem.Allocator, stack: *Stack(i32), put_sum: isize, get_sum: isize, get_count: usize, puts_done: bool, }; // TODO add lazy evaluated build options and then put puts_per_thread behind // some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor // CI we would use a less aggressive setting since at 1 core, while we still // want this test to pass, we need a smaller value since there is so much thrashing // we would also use a less aggressive setting when running in valgrind const puts_per_thread = 500; const put_thread_count = 3; test "std.atomic.stack" { var plenty_of_memory = try std.heap.page_allocator.alloc(u8, 300 * 1024); defer std.heap.page_allocator.free(plenty_of_memory); var fixed_buffer_allocator = std.heap.FixedBufferAllocator.init(plenty_of_memory); var a = fixed_buffer_allocator.threadSafeAllocator(); var stack = Stack(i32).init(); var context = Context{ .allocator = a, .stack = &stack, .put_sum = 0, .get_sum = 0, .puts_done = false, .get_count = 0, }; if (builtin.single_threaded) { { var i: usize = 0; while (i < put_thread_count) : (i += 1) { try expect(startPuts(&context) == 0); } } context.puts_done = true; { var i: usize = 0; while (i < put_thread_count) : (i += 1) { try expect(startGets(&context) == 0); } } } else { var putters: [put_thread_count]std.Thread = undefined; for (&putters) |*t| { t.* = try std.Thread.spawn(.{}, startPuts, .{&context}); } var getters: [put_thread_count]std.Thread = undefined; for (&getters) |*t| { t.* = try std.Thread.spawn(.{}, startGets, .{&context}); } for (putters) |t| t.join(); @atomicStore(bool, &context.puts_done, true, .SeqCst); for (getters) |t| t.join(); } if (context.put_sum != context.get_sum) { std.debug.panic("failure\nput_sum:{} != get_sum:{}", .{ context.put_sum, context.get_sum }); } if (context.get_count != puts_per_thread * put_thread_count) { std.debug.panic("failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}", .{ context.get_count, @as(u32, puts_per_thread), @as(u32, put_thread_count), }); } } fn startPuts(ctx: *Context) u8 { var put_count: usize = puts_per_thread; var prng = std.rand.DefaultPrng.init(0xdeadbeef); const random = prng.random(); while (put_count != 0) : (put_count -= 1) { std.time.sleep(1); // let the os scheduler be our fuzz const x = @as(i32, @bitCast(random.int(u32))); const node = ctx.allocator.create(Stack(i32).Node) catch unreachable; node.* = Stack(i32).Node{ .next = undefined, .data = x, }; ctx.stack.push(node); _ = @atomicRmw(isize, &ctx.put_sum, .Add, x, .SeqCst); } return 0; } fn startGets(ctx: *Context) u8 { while (true) { const last = @atomicLoad(bool, &ctx.puts_done, .SeqCst); while (ctx.stack.pop()) |node| { std.time.sleep(1); // let the os scheduler be our fuzz _ = @atomicRmw(isize, &ctx.get_sum, .Add, node.data, .SeqCst); _ = @atomicRmw(usize, &ctx.get_count, .Add, 1, .SeqCst); } if (last) return 0; } } |
Generated by zstd-live on 2025-08-12 12:37:59 UTC. |