|
const std = @import("std.zig"); const builtin = @import("builtin"); const unicode = std.unicode; const io = std.io; const fs = std.fs; const os = std.os; const process = std.process; const File = std.fs.File; const windows = os.windows; const linux = os.linux; const mem = std.mem; const math = std.math; const debug = std.debug; const EnvMap = process.EnvMap; const Os = std.builtin.Os; const TailQueue = std.TailQueue; const maxInt = std.math.maxInt; const assert = std.debug.assert; |
ChildProcessLeave as null to use the current env map using the supplied allocator. |
pub const ChildProcess = struct { |
IdSet to change the user id when spawning the child process. |
pub const Id = switch (builtin.os.tag) { .windows => windows.HANDLE, .wasi => void, else => os.pid_t, }; |
ResourceUsageStatisticsSet to change the group id when spawning the child process. |
/// Available after calling `spawn()`. This becomes `undefined` after calling `wait()`. /// On Windows this is the hProcess. /// On POSIX this is the pid. id: Id, thread_handle: if (builtin.os.tag == .windows) windows.HANDLE else void, |
getMaxRss()Set to change the current working directory when spawning the child process. |
allocator: mem.Allocator, |
Arg0ExpandSet to change the current working directory when spawning the child process.
This is not yet implemented for Windows. See https://github.com/ziglang/zig/issues/5190
Once that is done, |
stdin: ?File, stdout: ?File, stderr: ?File, |
SpawnErrorDarwin-only. Disable ASLR for the child process. |
term: ?(SpawnError!Term), |
TermDarwin-only. Start child process in suspended state as if SIGSTOP was sent. |
argv: []const []const u8, |
StdIoSet to true to obtain rusage information for the child process.
Depending on the target platform and implementation status, the
requested statistics may or may not be available. If they are
available, then the |
/// Leave as null to use the current env map using the supplied allocator. env_map: ?*const EnvMap, |
init()This is available after calling wait if
|
stdin_behavior: StdIo, stdout_behavior: StdIo, stderr_behavior: StdIo, |
setUserName()Returns the peak resident set size of the child process, in bytes, if available. |
/// Set to change the user id when spawning the child process. uid: if (builtin.os.tag == .windows or builtin.os.tag == .wasi) void else ?os.uid_t, |
spawn()POSIX-only. |
/// Set to change the group id when spawning the child process. gid: if (builtin.os.tag == .windows or builtin.os.tag == .wasi) void else ?os.gid_t, |
spawnAndWait()Windows-only. One of:
* |
/// Set to change the current working directory when spawning the child process. cwd: ?[]const u8, /// Set to change the current working directory when spawning the child process. /// This is not yet implemented for Windows. See https://github.com/ziglang/zig/issues/5190 /// Once that is done, `cwd` will be deprecated in favor of this field. cwd_dir: ?fs.Dir = null, |
kill()Windows-only. |
err_pipe: ?if (builtin.os.tag == .windows) void else [2]os.fd_t, |
killWindows()First argument in argv is the executable. |
expand_arg0: Arg0Expand, |
killPosix()On success must call |
/// Darwin-only. Disable ASLR for the child process. disable_aslr: bool = false, |
wait()Forcibly terminates child process and then cleans up all resources. |
/// Darwin-only. Start child process in suspended state as if SIGSTOP was sent. start_suspended: bool = false, |
ExecResultBlocks until child process terminates and then cleans up all resources. |
/// Set to true to obtain rusage information for the child process. /// Depending on the target platform and implementation status, the /// requested statistics may or may not be available. If they are /// available, then the `resource_usage_statistics` field will be populated /// after calling `wait`. /// On Linux and Darwin, this obtains rusage statistics from wait4(). request_resource_usage_statistics: bool = false, |
collectOutput()Collect the output from the process's stdout and stderr. Will return once all output
has been collected. This does not mean that the process has ended. |
/// This is available after calling wait if /// `request_resource_usage_statistics` was set to `true` before calling /// `spawn`. resource_usage_statistics: ResourceUsageStatistics = .{}, |
ExecErrorSpawns a child process, waits for it, collecting stdout and stderr, and then returns. If it succeeds, the caller owns result.stdout and result.stderr memory. |
pub const ResourceUsageStatistics = struct { rusage: @TypeOf(rusage_init) = rusage_init, |
exec()Expects |
/// Returns the peak resident set size of the child process, in bytes, /// if available. pub inline fn getMaxRss(rus: ResourceUsageStatistics) ?usize { switch (builtin.os.tag) { .linux => { if (rus.rusage) |ru| { return @as(usize, @intCast(ru.maxrss)) * 1024; } else { return null; } }, .windows => { if (rus.rusage) |ru| { return ru.PeakWorkingSetSize; } else { return null; } }, .macos, .ios => { if (rus.rusage) |ru| { // Darwin oddly reports in bytes instead of kilobytes. return @as(usize, @intCast(ru.maxrss)); } else { return null; } }, else => return null, } } |
Test:windowsCreateProcessSupportsExtensionCase-insensitive UTF-16 lookup |
const rusage_init = switch (builtin.os.tag) { .linux, .macos, .ios => @as(?std.os.rusage, null), .windows => @as(?windows.VM_COUNTERS, null), else => {}, }; }; |
createWindowsEnvBlock()Caller must dealloc. |
pub const Arg0Expand = os.Arg0Expand; |
createNullDelimitedEnvMap()Caller must free result. |
pub const SpawnError = error{ OutOfMemory, |
Test:createNullDelimitedEnvMap |
/// POSIX-only. `StdIo.Ignore` was selected and opening `/dev/null` returned ENODEV. NoDevice, /// Windows-only. One of: /// * `cwd` was provided and it could not be re-encoded into UTF16LE, or /// * The `PATH` or `PATHEXT` environment variable contained invalid UTF-8. InvalidUtf8, /// Windows-only. `cwd` was provided, but the path did not exist when spawning the child process. CurrentWorkingDirectoryUnlinked, } || os.ExecveError || os.SetIdError || os.ChangeCurDirError || windows.CreateProcessError || windows.GetProcessMemoryInfoError || windows.WaitForSingleObjectError; pub const Term = union(enum) { Exited: u8, Signal: u32, Stopped: u32, Unknown: u32, }; pub const StdIo = enum { Inherit, Ignore, Pipe, Close, }; /// First argument in argv is the executable. pub fn init(argv: []const []const u8, allocator: mem.Allocator) ChildProcess { return .{ .allocator = allocator, .argv = argv, .id = undefined, .thread_handle = undefined, .err_pipe = null, .term = null, .env_map = null, .cwd = null, .uid = if (builtin.os.tag == .windows or builtin.os.tag == .wasi) {} else null, .gid = if (builtin.os.tag == .windows or builtin.os.tag == .wasi) {} else null, .stdin = null, .stdout = null, .stderr = null, .stdin_behavior = StdIo.Inherit, .stdout_behavior = StdIo.Inherit, .stderr_behavior = StdIo.Inherit, .expand_arg0 = .no_expand, }; } pub fn setUserName(self: *ChildProcess, name: []const u8) !void { const user_info = try std.process.getUserInfo(name); self.uid = user_info.uid; self.gid = user_info.gid; } /// On success must call `kill` or `wait`. /// After spawning the `id` is available. pub fn spawn(self: *ChildProcess) SpawnError!void { if (!std.process.can_spawn) { @compileError("the target operating system cannot spawn processes"); } if (builtin.os.tag == .windows) { return self.spawnWindows(); } else { return self.spawnPosix(); } } pub fn spawnAndWait(self: *ChildProcess) SpawnError!Term { try self.spawn(); return self.wait(); } /// Forcibly terminates child process and then cleans up all resources. pub fn kill(self: *ChildProcess) !Term { if (builtin.os.tag == .windows) { return self.killWindows(1); } else { return self.killPosix(); } } pub fn killWindows(self: *ChildProcess, exit_code: windows.UINT) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } try windows.TerminateProcess(self.id, exit_code); try self.waitUnwrappedWindows(); return self.term.?; } pub fn killPosix(self: *ChildProcess) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } try os.kill(self.id, os.SIG.TERM); try self.waitUnwrapped(); return self.term.?; } /// Blocks until child process terminates and then cleans up all resources. pub fn wait(self: *ChildProcess) !Term { const term = if (builtin.os.tag == .windows) try self.waitWindows() else try self.waitPosix(); self.id = undefined; return term; } pub const ExecResult = struct { term: Term, stdout: []u8, stderr: []u8, }; fn fifoToOwnedArrayList(fifo: *std.io.PollFifo) std.ArrayList(u8) { if (fifo.head > 0) { @memcpy(fifo.buf[0..fifo.count], fifo.buf[fifo.head..][0..fifo.count]); } const result = std.ArrayList(u8){ .items = fifo.buf[0..fifo.count], .capacity = fifo.buf.len, .allocator = fifo.allocator, }; fifo.* = std.io.PollFifo.init(fifo.allocator); return result; } /// Collect the output from the process's stdout and stderr. Will return once all output /// has been collected. This does not mean that the process has ended. `wait` should still /// be called to wait for and clean up the process. /// /// The process must be started with stdout_behavior and stderr_behavior == .Pipe pub fn collectOutput( child: ChildProcess, stdout: *std.ArrayList(u8), stderr: *std.ArrayList(u8), max_output_bytes: usize, ) !void { debug.assert(child.stdout_behavior == .Pipe); debug.assert(child.stderr_behavior == .Pipe); // we could make this work with multiple allocators but YAGNI if (stdout.allocator.ptr != stderr.allocator.ptr or stdout.allocator.vtable != stderr.allocator.vtable) @panic("ChildProcess.collectOutput only supports 1 allocator"); var poller = std.io.poll(stdout.allocator, enum { stdout, stderr }, .{ .stdout = child.stdout.?, .stderr = child.stderr.?, }); defer poller.deinit(); while (try poller.poll()) { if (poller.fifo(.stdout).count > max_output_bytes) return error.StdoutStreamTooLong; if (poller.fifo(.stderr).count > max_output_bytes) return error.StderrStreamTooLong; } stdout.* = fifoToOwnedArrayList(poller.fifo(.stdout)); stderr.* = fifoToOwnedArrayList(poller.fifo(.stderr)); } pub const ExecError = os.GetCwdError || os.ReadError || SpawnError || os.PollError || error{ StdoutStreamTooLong, StderrStreamTooLong, }; /// Spawns a child process, waits for it, collecting stdout and stderr, and then returns. /// If it succeeds, the caller owns result.stdout and result.stderr memory. pub fn exec(args: struct { allocator: mem.Allocator, argv: []const []const u8, cwd: ?[]const u8 = null, cwd_dir: ?fs.Dir = null, env_map: ?*const EnvMap = null, max_output_bytes: usize = 50 * 1024, expand_arg0: Arg0Expand = .no_expand, }) ExecError!ExecResult { var child = ChildProcess.init(args.argv, args.allocator); child.stdin_behavior = .Ignore; child.stdout_behavior = .Pipe; child.stderr_behavior = .Pipe; child.cwd = args.cwd; child.cwd_dir = args.cwd_dir; child.env_map = args.env_map; child.expand_arg0 = args.expand_arg0; var stdout = std.ArrayList(u8).init(args.allocator); var stderr = std.ArrayList(u8).init(args.allocator); errdefer { stdout.deinit(); stderr.deinit(); } try child.spawn(); try child.collectOutput(&stdout, &stderr, args.max_output_bytes); return ExecResult{ .term = try child.wait(), .stdout = try stdout.toOwnedSlice(), .stderr = try stderr.toOwnedSlice(), }; } fn waitWindows(self: *ChildProcess) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } try self.waitUnwrappedWindows(); return self.term.?; } fn waitPosix(self: *ChildProcess) !Term { if (self.term) |term| { self.cleanupStreams(); return term; } try self.waitUnwrapped(); return self.term.?; } fn waitUnwrappedWindows(self: *ChildProcess) !void { const result = windows.WaitForSingleObjectEx(self.id, windows.INFINITE, false); self.term = @as(SpawnError!Term, x: { var exit_code: windows.DWORD = undefined; if (windows.kernel32.GetExitCodeProcess(self.id, &exit_code) == 0) { break :x Term{ .Unknown = 0 }; } else { break :x Term{ .Exited = @as(u8, @truncate(exit_code)) }; } }); if (self.request_resource_usage_statistics) { self.resource_usage_statistics.rusage = try windows.GetProcessMemoryInfo(self.id); } os.close(self.id); os.close(self.thread_handle); self.cleanupStreams(); return result; } fn waitUnwrapped(self: *ChildProcess) !void { const res: os.WaitPidResult = res: { if (self.request_resource_usage_statistics) { switch (builtin.os.tag) { .linux, .macos, .ios => { var ru: std.os.rusage = undefined; const res = os.wait4(self.id, 0, &ru); self.resource_usage_statistics.rusage = ru; break :res res; }, else => {}, } } break :res os.waitpid(self.id, 0); }; const status = res.status; self.cleanupStreams(); self.handleWaitResult(status); } fn handleWaitResult(self: *ChildProcess, status: u32) void { self.term = self.cleanupAfterWait(status); } fn cleanupStreams(self: *ChildProcess) void { if (self.stdin) |*stdin| { stdin.close(); self.stdin = null; } if (self.stdout) |*stdout| { stdout.close(); self.stdout = null; } if (self.stderr) |*stderr| { stderr.close(); self.stderr = null; } } fn cleanupAfterWait(self: *ChildProcess, status: u32) !Term { if (self.err_pipe) |err_pipe| { defer destroyPipe(err_pipe); if (builtin.os.tag == .linux) { var fd = [1]std.os.pollfd{std.os.pollfd{ .fd = err_pipe[0], .events = std.os.POLL.IN, .revents = undefined, }}; // Check if the eventfd buffer stores a non-zero value by polling // it, that's the error code returned by the child process. _ = std.os.poll(&fd, 0) catch unreachable; // According to eventfd(2) the descriptor is readable if the counter // has a value greater than 0 if ((fd[0].revents & std.os.POLL.IN) != 0) { const err_int = try readIntFd(err_pipe[0]); return @as(SpawnError, @errSetCast(@errorFromInt(err_int))); } } else { // Write maxInt(ErrInt) to the write end of the err_pipe. This is after // waitpid, so this write is guaranteed to be after the child // pid potentially wrote an error. This way we can do a blocking // read on the error pipe and either get maxInt(ErrInt) (no error) or // an error code. try writeIntFd(err_pipe[1], maxInt(ErrInt)); const err_int = try readIntFd(err_pipe[0]); // Here we potentially return the fork child's error from the parent // pid. if (err_int != maxInt(ErrInt)) { return @as(SpawnError, @errSetCast(@errorFromInt(err_int))); } } } return statusToTerm(status); } fn statusToTerm(status: u32) Term { return if (os.W.IFEXITED(status)) Term{ .Exited = os.W.EXITSTATUS(status) } else if (os.W.IFSIGNALED(status)) Term{ .Signal = os.W.TERMSIG(status) } else if (os.W.IFSTOPPED(status)) Term{ .Stopped = os.W.STOPSIG(status) } else Term{ .Unknown = status }; } fn spawnPosix(self: *ChildProcess) SpawnError!void { const pipe_flags = if (io.is_async) os.O.NONBLOCK else 0; const stdin_pipe = if (self.stdin_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined; errdefer if (self.stdin_behavior == StdIo.Pipe) { destroyPipe(stdin_pipe); }; const stdout_pipe = if (self.stdout_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined; errdefer if (self.stdout_behavior == StdIo.Pipe) { destroyPipe(stdout_pipe); }; const stderr_pipe = if (self.stderr_behavior == StdIo.Pipe) try os.pipe2(pipe_flags) else undefined; errdefer if (self.stderr_behavior == StdIo.Pipe) { destroyPipe(stderr_pipe); }; const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore); const dev_null_fd = if (any_ignore) os.openZ("/dev/null", os.O.RDWR, 0) catch |err| switch (err) { error.PathAlreadyExists => unreachable, error.NoSpaceLeft => unreachable, error.FileTooBig => unreachable, error.DeviceBusy => unreachable, error.FileLocksNotSupported => unreachable, error.BadPathName => unreachable, // Windows-only error.InvalidHandle => unreachable, // WASI-only error.WouldBlock => unreachable, error.NetworkNotFound => unreachable, // Windows-only else => |e| return e, } else undefined; defer { if (any_ignore) os.close(dev_null_fd); } var arena_allocator = std.heap.ArenaAllocator.init(self.allocator); defer arena_allocator.deinit(); const arena = arena_allocator.allocator(); // The POSIX standard does not allow malloc() between fork() and execve(), // and `self.allocator` may be a libc allocator. // I have personally observed the child process deadlocking when it tries // to call malloc() due to a heap allocation between fork() and execve(), // in musl v1.1.24. // Additionally, we want to reduce the number of possible ways things // can fail between fork() and execve(). // Therefore, we do all the allocation for the execve() before the fork(). // This means we must do the null-termination of argv and env vars here. const argv_buf = try arena.allocSentinel(?[*:0]const u8, self.argv.len, null); for (self.argv, 0..) |arg, i| argv_buf[i] = (try arena.dupeZ(u8, arg)).ptr; const envp = m: { if (self.env_map) |env_map| { const envp_buf = try createNullDelimitedEnvMap(arena, env_map); break :m envp_buf.ptr; } else if (builtin.link_libc) { break :m std.c.environ; } else if (builtin.output_mode == .Exe) { // Then we have Zig start code and this works. // TODO type-safety for null-termination of `os.environ`. break :m @as([*:null]const ?[*:0]const u8, @ptrCast(os.environ.ptr)); } else { // TODO come up with a solution for this. @compileError("missing std lib enhancement: ChildProcess implementation has no way to collect the environment variables to forward to the child process"); } }; // This pipe is used to communicate errors between the time of fork // and execve from the child process to the parent process. const err_pipe = blk: { if (builtin.os.tag == .linux) { const fd = try os.eventfd(0, linux.EFD.CLOEXEC); // There's no distinction between the readable and the writeable // end with eventfd break :blk [2]os.fd_t{ fd, fd }; } else { break :blk try os.pipe2(os.O.CLOEXEC); } }; errdefer destroyPipe(err_pipe); const pid_result = try os.fork(); if (pid_result == 0) { // we are the child setUpChildIo(self.stdin_behavior, stdin_pipe[0], os.STDIN_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err); setUpChildIo(self.stdout_behavior, stdout_pipe[1], os.STDOUT_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err); setUpChildIo(self.stderr_behavior, stderr_pipe[1], os.STDERR_FILENO, dev_null_fd) catch |err| forkChildErrReport(err_pipe[1], err); if (self.stdin_behavior == .Pipe) { os.close(stdin_pipe[0]); os.close(stdin_pipe[1]); } if (self.stdout_behavior == .Pipe) { os.close(stdout_pipe[0]); os.close(stdout_pipe[1]); } if (self.stderr_behavior == .Pipe) { os.close(stderr_pipe[0]); os.close(stderr_pipe[1]); } if (self.cwd_dir) |cwd| { os.fchdir(cwd.fd) catch |err| forkChildErrReport(err_pipe[1], err); } else if (self.cwd) |cwd| { os.chdir(cwd) catch |err| forkChildErrReport(err_pipe[1], err); } if (self.gid) |gid| { os.setregid(gid, gid) catch |err| forkChildErrReport(err_pipe[1], err); } if (self.uid) |uid| { os.setreuid(uid, uid) catch |err| forkChildErrReport(err_pipe[1], err); } const err = switch (self.expand_arg0) { .expand => os.execvpeZ_expandArg0(.expand, argv_buf.ptr[0].?, argv_buf.ptr, envp), .no_expand => os.execvpeZ_expandArg0(.no_expand, argv_buf.ptr[0].?, argv_buf.ptr, envp), }; forkChildErrReport(err_pipe[1], err); } // we are the parent const pid = @as(i32, @intCast(pid_result)); if (self.stdin_behavior == StdIo.Pipe) { self.stdin = File{ .handle = stdin_pipe[1] }; } else { self.stdin = null; } if (self.stdout_behavior == StdIo.Pipe) { self.stdout = File{ .handle = stdout_pipe[0] }; } else { self.stdout = null; } if (self.stderr_behavior == StdIo.Pipe) { self.stderr = File{ .handle = stderr_pipe[0] }; } else { self.stderr = null; } self.id = pid; self.err_pipe = err_pipe; self.term = null; if (self.stdin_behavior == StdIo.Pipe) { os.close(stdin_pipe[0]); } if (self.stdout_behavior == StdIo.Pipe) { os.close(stdout_pipe[1]); } if (self.stderr_behavior == StdIo.Pipe) { os.close(stderr_pipe[1]); } } fn spawnWindows(self: *ChildProcess) SpawnError!void { const saAttr = windows.SECURITY_ATTRIBUTES{ .nLength = @sizeOf(windows.SECURITY_ATTRIBUTES), .bInheritHandle = windows.TRUE, .lpSecurityDescriptor = null, }; const any_ignore = (self.stdin_behavior == StdIo.Ignore or self.stdout_behavior == StdIo.Ignore or self.stderr_behavior == StdIo.Ignore); const nul_handle = if (any_ignore) // "\Device\Null" or "\??\NUL" windows.OpenFile(&[_]u16{ '\\', 'D', 'e', 'v', 'i', 'c', 'e', '\\', 'N', 'u', 'l', 'l' }, .{ .access_mask = windows.GENERIC_READ | windows.SYNCHRONIZE, .share_access = windows.FILE_SHARE_READ, .creation = windows.OPEN_EXISTING, .io_mode = .blocking, }) catch |err| switch (err) { error.PathAlreadyExists => unreachable, // not possible for "NUL" error.PipeBusy => unreachable, // not possible for "NUL" error.FileNotFound => unreachable, // not possible for "NUL" error.AccessDenied => unreachable, // not possible for "NUL" error.NameTooLong => unreachable, // not possible for "NUL" error.WouldBlock => unreachable, // not possible for "NUL" error.NetworkNotFound => unreachable, // not possible for "NUL" else => |e| return e, } else undefined; defer { if (any_ignore) os.close(nul_handle); } if (any_ignore) { try windows.SetHandleInformation(nul_handle, windows.HANDLE_FLAG_INHERIT, 0); } var g_hChildStd_IN_Rd: ?windows.HANDLE = null; var g_hChildStd_IN_Wr: ?windows.HANDLE = null; switch (self.stdin_behavior) { StdIo.Pipe => { try windowsMakePipeIn(&g_hChildStd_IN_Rd, &g_hChildStd_IN_Wr, &saAttr); }, StdIo.Ignore => { g_hChildStd_IN_Rd = nul_handle; }, StdIo.Inherit => { g_hChildStd_IN_Rd = windows.GetStdHandle(windows.STD_INPUT_HANDLE) catch null; }, StdIo.Close => { g_hChildStd_IN_Rd = null; }, } errdefer if (self.stdin_behavior == StdIo.Pipe) { windowsDestroyPipe(g_hChildStd_IN_Rd, g_hChildStd_IN_Wr); }; var g_hChildStd_OUT_Rd: ?windows.HANDLE = null; var g_hChildStd_OUT_Wr: ?windows.HANDLE = null; switch (self.stdout_behavior) { StdIo.Pipe => { try windowsMakeAsyncPipe(&g_hChildStd_OUT_Rd, &g_hChildStd_OUT_Wr, &saAttr); }, StdIo.Ignore => { g_hChildStd_OUT_Wr = nul_handle; }, StdIo.Inherit => { g_hChildStd_OUT_Wr = windows.GetStdHandle(windows.STD_OUTPUT_HANDLE) catch null; }, StdIo.Close => { g_hChildStd_OUT_Wr = null; }, } errdefer if (self.stdin_behavior == StdIo.Pipe) { windowsDestroyPipe(g_hChildStd_OUT_Rd, g_hChildStd_OUT_Wr); }; var g_hChildStd_ERR_Rd: ?windows.HANDLE = null; var g_hChildStd_ERR_Wr: ?windows.HANDLE = null; switch (self.stderr_behavior) { StdIo.Pipe => { try windowsMakeAsyncPipe(&g_hChildStd_ERR_Rd, &g_hChildStd_ERR_Wr, &saAttr); }, StdIo.Ignore => { g_hChildStd_ERR_Wr = nul_handle; }, StdIo.Inherit => { g_hChildStd_ERR_Wr = windows.GetStdHandle(windows.STD_ERROR_HANDLE) catch null; }, StdIo.Close => { g_hChildStd_ERR_Wr = null; }, } errdefer if (self.stdin_behavior == StdIo.Pipe) { windowsDestroyPipe(g_hChildStd_ERR_Rd, g_hChildStd_ERR_Wr); }; const cmd_line = try windowsCreateCommandLine(self.allocator, self.argv); defer self.allocator.free(cmd_line); var siStartInfo = windows.STARTUPINFOW{ .cb = @sizeOf(windows.STARTUPINFOW), .hStdError = g_hChildStd_ERR_Wr, .hStdOutput = g_hChildStd_OUT_Wr, .hStdInput = g_hChildStd_IN_Rd, .dwFlags = windows.STARTF_USESTDHANDLES, .lpReserved = null, .lpDesktop = null, .lpTitle = null, .dwX = 0, .dwY = 0, .dwXSize = 0, .dwYSize = 0, .dwXCountChars = 0, .dwYCountChars = 0, .dwFillAttribute = 0, .wShowWindow = 0, .cbReserved2 = 0, .lpReserved2 = null, }; var piProcInfo: windows.PROCESS_INFORMATION = undefined; const cwd_w = if (self.cwd) |cwd| try unicode.utf8ToUtf16LeWithNull(self.allocator, cwd) else null; defer if (cwd_w) |cwd| self.allocator.free(cwd); const cwd_w_ptr = if (cwd_w) |cwd| cwd.ptr else null; const maybe_envp_buf = if (self.env_map) |env_map| try createWindowsEnvBlock(self.allocator, env_map) else null; defer if (maybe_envp_buf) |envp_buf| self.allocator.free(envp_buf); const envp_ptr = if (maybe_envp_buf) |envp_buf| envp_buf.ptr else null; const app_name_utf8 = self.argv[0]; const app_name_is_absolute = fs.path.isAbsolute(app_name_utf8); // the cwd set in ChildProcess is in effect when choosing the executable path // to match posix semantics var cwd_path_w_needs_free = false; const cwd_path_w = x: { // If the app name is absolute, then we need to use its dirname as the cwd if (app_name_is_absolute) { cwd_path_w_needs_free = true; const dir = fs.path.dirname(app_name_utf8).?; break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, dir); } else if (self.cwd) |cwd| { cwd_path_w_needs_free = true; break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, cwd); } else { break :x &[_:0]u16{}; // empty for cwd } }; defer if (cwd_path_w_needs_free) self.allocator.free(cwd_path_w); // If the app name has more than just a filename, then we need to separate that // into the basename and dirname and use the dirname as an addition to the cwd // path. This is because NtQueryDirectoryFile cannot accept FileName params with // path separators. const app_basename_utf8 = fs.path.basename(app_name_utf8); // If the app name is absolute, then the cwd will already have the app's dirname in it, // so only populate app_dirname if app name is a relative path with > 0 path separators. const maybe_app_dirname_utf8 = if (!app_name_is_absolute) fs.path.dirname(app_name_utf8) else null; const app_dirname_w: ?[:0]u16 = x: { if (maybe_app_dirname_utf8) |app_dirname_utf8| { break :x try unicode.utf8ToUtf16LeWithNull(self.allocator, app_dirname_utf8); } break :x null; }; defer if (app_dirname_w != null) self.allocator.free(app_dirname_w.?); const app_name_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, app_basename_utf8); defer self.allocator.free(app_name_w); const cmd_line_w = try unicode.utf8ToUtf16LeWithNull(self.allocator, cmd_line); defer self.allocator.free(cmd_line_w); exec: { const PATH: [:0]const u16 = std.os.getenvW(unicode.utf8ToUtf16LeStringLiteral("PATH")) orelse &[_:0]u16{}; const PATHEXT: [:0]const u16 = std.os.getenvW(unicode.utf8ToUtf16LeStringLiteral("PATHEXT")) orelse &[_:0]u16{}; var app_buf = std.ArrayListUnmanaged(u16){}; defer app_buf.deinit(self.allocator); try app_buf.appendSlice(self.allocator, app_name_w); var dir_buf = std.ArrayListUnmanaged(u16){}; defer dir_buf.deinit(self.allocator); if (cwd_path_w.len > 0) { try dir_buf.appendSlice(self.allocator, cwd_path_w); } if (app_dirname_w) |app_dir| { if (dir_buf.items.len > 0) try dir_buf.append(self.allocator, fs.path.sep); try dir_buf.appendSlice(self.allocator, app_dir); } if (dir_buf.items.len > 0) { // Need to normalize the path, openDirW can't handle things like double backslashes const normalized_len = windows.normalizePath(u16, dir_buf.items) catch return error.BadPathName; dir_buf.shrinkRetainingCapacity(normalized_len); } windowsCreateProcessPathExt(self.allocator, &dir_buf, &app_buf, PATHEXT, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo) catch |no_path_err| { var original_err = switch (no_path_err) { error.FileNotFound, error.InvalidExe, error.AccessDenied => |e| e, error.UnrecoverableInvalidExe => return error.InvalidExe, else => |e| return e, }; // If the app name had path separators, that disallows PATH searching, // and there's no need to search the PATH if the app name is absolute. // We still search the path if the cwd is absolute because of the // "cwd set in ChildProcess is in effect when choosing the executable path // to match posix semantics" behavior--we don't want to skip searching // the PATH just because we were trying to set the cwd of the child process. if (app_dirname_w != null or app_name_is_absolute) { return original_err; } var it = mem.tokenizeScalar(u16, PATH, ';'); while (it.next()) |search_path| { dir_buf.clearRetainingCapacity(); try dir_buf.appendSlice(self.allocator, search_path); // Need to normalize the path, some PATH values can contain things like double // backslashes which openDirW can't handle const normalized_len = windows.normalizePath(u16, dir_buf.items) catch continue; dir_buf.shrinkRetainingCapacity(normalized_len); if (windowsCreateProcessPathExt(self.allocator, &dir_buf, &app_buf, PATHEXT, cmd_line_w.ptr, envp_ptr, cwd_w_ptr, &siStartInfo, &piProcInfo)) { break :exec; } else |err| switch (err) { error.FileNotFound, error.AccessDenied, error.InvalidExe => continue, error.UnrecoverableInvalidExe => return error.InvalidExe, else => |e| return e, } } else { return original_err; } }; } if (g_hChildStd_IN_Wr) |h| { self.stdin = File{ .handle = h }; } else { self.stdin = null; } if (g_hChildStd_OUT_Rd) |h| { self.stdout = File{ .handle = h }; } else { self.stdout = null; } if (g_hChildStd_ERR_Rd) |h| { self.stderr = File{ .handle = h }; } else { self.stderr = null; } self.id = piProcInfo.hProcess; self.thread_handle = piProcInfo.hThread; self.term = null; if (self.stdin_behavior == StdIo.Pipe) { os.close(g_hChildStd_IN_Rd.?); } if (self.stderr_behavior == StdIo.Pipe) { os.close(g_hChildStd_ERR_Wr.?); } if (self.stdout_behavior == StdIo.Pipe) { os.close(g_hChildStd_OUT_Wr.?); } } fn setUpChildIo(stdio: StdIo, pipe_fd: i32, std_fileno: i32, dev_null_fd: i32) !void { switch (stdio) { .Pipe => try os.dup2(pipe_fd, std_fileno), .Close => os.close(std_fileno), .Inherit => {}, .Ignore => try os.dup2(dev_null_fd, std_fileno), } } }; /// Expects `app_buf` to contain exactly the app name, and `dir_buf` to contain exactly the dir path. /// After return, `app_buf` will always contain exactly the app name and `dir_buf` will always contain exactly the dir path. /// Note: `app_buf` should not contain any leading path separators. /// Note: If the dir is the cwd, dir_buf should be empty (len = 0). fn windowsCreateProcessPathExt( allocator: mem.Allocator, dir_buf: *std.ArrayListUnmanaged(u16), app_buf: *std.ArrayListUnmanaged(u16), pathext: [:0]const u16, cmd_line: [*:0]u16, envp_ptr: ?[*]u16, cwd_ptr: ?[*:0]u16, lpStartupInfo: *windows.STARTUPINFOW, lpProcessInformation: *windows.PROCESS_INFORMATION, ) !void { const app_name_len = app_buf.items.len; const dir_path_len = dir_buf.items.len; if (app_name_len == 0) return error.FileNotFound; defer app_buf.shrinkRetainingCapacity(app_name_len); defer dir_buf.shrinkRetainingCapacity(dir_path_len); // The name of the game here is to avoid CreateProcessW calls at all costs, // and only ever try calling it when we have a real candidate for execution. // Secondarily, we want to minimize the number of syscalls used when checking // for each PATHEXT-appended version of the app name. // // An overview of the technique used: // - Open the search directory for iteration (either cwd or a path from PATH) // - Use NtQueryDirectoryFile with a wildcard filename of `<app name>*` to // check if anything that could possibly match either the unappended version // of the app name or any of the versions with a PATHEXT value appended exists. // - If the wildcard NtQueryDirectoryFile call found nothing, we can exit early // without needing to use PATHEXT at all. // // This allows us to use a <open dir, NtQueryDirectoryFile, close dir> sequence // for any directory that doesn't contain any possible matches, instead of having // to use a separate look up for each individual filename combination (unappended + // each PATHEXT appended). For directories where the wildcard *does* match something, // we iterate the matches and take note of any that are either the unappended version, // or a version with a supported PATHEXT appended. We then try calling CreateProcessW // with the found versions in the appropriate order. var dir = dir: { // needs to be null-terminated try dir_buf.append(allocator, 0); defer dir_buf.shrinkRetainingCapacity(dir_path_len); const dir_path_z = dir_buf.items[0 .. dir_buf.items.len - 1 :0]; const prefixed_path = try windows.wToPrefixedFileW(dir_path_z); break :dir fs.cwd().openDirW(prefixed_path.span().ptr, .{}, true) catch return error.FileNotFound; }; defer dir.close(); // Add wildcard and null-terminator try app_buf.append(allocator, '*'); try app_buf.append(allocator, 0); const app_name_wildcard = app_buf.items[0 .. app_buf.items.len - 1 :0]; // This 2048 is arbitrary, we just want it to be large enough to get multiple FILE_DIRECTORY_INFORMATION entries // returned per NtQueryDirectoryFile call. var file_information_buf: [2048]u8 align(@alignOf(os.windows.FILE_DIRECTORY_INFORMATION)) = undefined; const file_info_maximum_single_entry_size = @sizeOf(windows.FILE_DIRECTORY_INFORMATION) + (windows.NAME_MAX * 2); if (file_information_buf.len < file_info_maximum_single_entry_size) { @compileError("file_information_buf must be large enough to contain at least one maximum size FILE_DIRECTORY_INFORMATION entry"); } var io_status: windows.IO_STATUS_BLOCK = undefined; const num_supported_pathext = @typeInfo(CreateProcessSupportedExtension).Enum.fields.len; var pathext_seen = [_]bool{false} ** num_supported_pathext; var any_pathext_seen = false; var unappended_exists = false; // Fully iterate the wildcard matches via NtQueryDirectoryFile and take note of all versions // of the app_name we should try to spawn. // Note: This is necessary because the order of the files returned is filesystem-dependent: // On NTFS, `blah.exe*` will always return `blah.exe` first if it exists. // On FAT32, it's possible for something like `blah.exe.obj` to be returned first. while (true) { const app_name_len_bytes = math.cast(u16, app_name_wildcard.len * 2) orelse return error.NameTooLong; var app_name_unicode_string = windows.UNICODE_STRING{ .Length = app_name_len_bytes, .MaximumLength = app_name_len_bytes, .Buffer = @constCast(app_name_wildcard.ptr), }; const rc = windows.ntdll.NtQueryDirectoryFile( dir.fd, null, null, null, &io_status, &file_information_buf, file_information_buf.len, .FileDirectoryInformation, windows.FALSE, // single result &app_name_unicode_string, windows.FALSE, // restart iteration ); // If we get nothing with the wildcard, then we can just bail out // as we know appending PATHEXT will not yield anything. switch (rc) { .SUCCESS => {}, .NO_SUCH_FILE => return error.FileNotFound, .NO_MORE_FILES => break, .ACCESS_DENIED => return error.AccessDenied, else => return windows.unexpectedStatus(rc), } // According to the docs, this can only happen if there is not enough room in the // buffer to write at least one complete FILE_DIRECTORY_INFORMATION entry. // Therefore, this condition should not be possible to hit with the buffer size we use. std.debug.assert(io_status.Information != 0); var it = windows.FileInformationIterator(windows.FILE_DIRECTORY_INFORMATION){ .buf = &file_information_buf }; while (it.next()) |info| { // Skip directories if (info.FileAttributes & windows.FILE_ATTRIBUTE_DIRECTORY != 0) continue; const filename = @as([*]u16, @ptrCast(&info.FileName))[0 .. info.FileNameLength / 2]; // Because all results start with the app_name since we're using the wildcard `app_name*`, // if the length is equal to app_name then this is an exact match if (filename.len == app_name_len) { // Note: We can't break early here because it's possible that the unappended version // fails to spawn, in which case we still want to try the PATHEXT appended versions. unappended_exists = true; } else if (windowsCreateProcessSupportsExtension(filename[app_name_len..])) |pathext_ext| { pathext_seen[@intFromEnum(pathext_ext)] = true; any_pathext_seen = true; } } } const unappended_err = unappended: { if (unappended_exists) { if (dir_path_len != 0) switch (dir_buf.items[dir_buf.items.len - 1]) { '/', '\\' => {}, else => try dir_buf.append(allocator, fs.path.sep), }; try dir_buf.appendSlice(allocator, app_buf.items[0..app_name_len]); try dir_buf.append(allocator, 0); const full_app_name = dir_buf.items[0 .. dir_buf.items.len - 1 :0]; if (windowsCreateProcess(full_app_name.ptr, cmd_line, envp_ptr, cwd_ptr, lpStartupInfo, lpProcessInformation)) |_| { return; } else |err| switch (err) { error.FileNotFound, error.AccessDenied, => break :unappended err, error.InvalidExe => { // On InvalidExe, if the extension of the app name is .exe then // it's treated as an unrecoverable error. Otherwise, it'll be // skipped as normal. const app_name = app_buf.items[0..app_name_len]; const ext_start = std.mem.lastIndexOfScalar(u16, app_name, '.') orelse break :unappended err; const ext = app_name[ext_start..]; if (windows.eqlIgnoreCaseWTF16(ext, unicode.utf8ToUtf16LeStringLiteral(".EXE"))) { return error.UnrecoverableInvalidExe; } break :unappended err; }, else => return err, } } break :unappended error.FileNotFound; }; if (!any_pathext_seen) return unappended_err; // Now try any PATHEXT appended versions that we've seen var ext_it = mem.tokenizeScalar(u16, pathext, ';'); while (ext_it.next()) |ext| { const ext_enum = windowsCreateProcessSupportsExtension(ext) orelse continue; if (!pathext_seen[@intFromEnum(ext_enum)]) continue; dir_buf.shrinkRetainingCapacity(dir_path_len); if (dir_path_len != 0) switch (dir_buf.items[dir_buf.items.len - 1]) { '/', '\\' => {}, else => try dir_buf.append(allocator, fs.path.sep), }; try dir_buf.appendSlice(allocator, app_buf.items[0..app_name_len]); try dir_buf.appendSlice(allocator, ext); try dir_buf.append(allocator, 0); const full_app_name = dir_buf.items[0 .. dir_buf.items.len - 1 :0]; if (windowsCreateProcess(full_app_name.ptr, cmd_line, envp_ptr, cwd_ptr, lpStartupInfo, lpProcessInformation)) |_| { return; } else |err| switch (err) { error.FileNotFound => continue, error.AccessDenied => continue, error.InvalidExe => { // On InvalidExe, if the extension of the app name is .exe then // it's treated as an unrecoverable error. Otherwise, it'll be // skipped as normal. if (windows.eqlIgnoreCaseWTF16(ext, unicode.utf8ToUtf16LeStringLiteral(".EXE"))) { return error.UnrecoverableInvalidExe; } continue; }, else => return err, } } return unappended_err; } fn windowsCreateProcess(app_name: [*:0]u16, cmd_line: [*:0]u16, envp_ptr: ?[*]u16, cwd_ptr: ?[*:0]u16, lpStartupInfo: *windows.STARTUPINFOW, lpProcessInformation: *windows.PROCESS_INFORMATION) !void { // TODO the docs for environment pointer say: // > A pointer to the environment block for the new process. If this parameter // > is NULL, the new process uses the environment of the calling process. // > ... // > An environment block can contain either Unicode or ANSI characters. If // > the environment block pointed to by lpEnvironment contains Unicode // > characters, be sure that dwCreationFlags includes CREATE_UNICODE_ENVIRONMENT. // > If this parameter is NULL and the environment block of the parent process // > contains Unicode characters, you must also ensure that dwCreationFlags // > includes CREATE_UNICODE_ENVIRONMENT. // This seems to imply that we have to somehow know whether our process parent passed // CREATE_UNICODE_ENVIRONMENT if we want to pass NULL for the environment parameter. // Since we do not know this information that would imply that we must not pass NULL // for the parameter. // However this would imply that programs compiled with -DUNICODE could not pass // environment variables to programs that were not, which seems unlikely. // More investigation is needed. return windows.CreateProcessW( app_name, cmd_line, null, null, windows.TRUE, windows.CREATE_UNICODE_ENVIRONMENT, @as(?*anyopaque, @ptrCast(envp_ptr)), cwd_ptr, lpStartupInfo, lpProcessInformation, ); } // Should be kept in sync with `windowsCreateProcessSupportsExtension` const CreateProcessSupportedExtension = enum { bat, cmd, com, exe, }; /// Case-insensitive UTF-16 lookup fn windowsCreateProcessSupportsExtension(ext: []const u16) ?CreateProcessSupportedExtension { if (ext.len != 4) return null; const State = enum { start, dot, b, ba, c, cm, co, e, ex, }; var state: State = .start; for (ext) |c| switch (state) { .start => switch (c) { '.' => state = .dot, else => return null, }, .dot => switch (c) { 'b', 'B' => state = .b, 'c', 'C' => state = .c, 'e', 'E' => state = .e, else => return null, }, .b => switch (c) { 'a', 'A' => state = .ba, else => return null, }, .c => switch (c) { 'm', 'M' => state = .cm, 'o', 'O' => state = .co, else => return null, }, .e => switch (c) { 'x', 'X' => state = .ex, else => return null, }, .ba => switch (c) { 't', 'T' => return .bat, else => return null, }, .cm => switch (c) { 'd', 'D' => return .cmd, else => return null, }, .co => switch (c) { 'm', 'M' => return .com, else => return null, }, .ex => switch (c) { 'e', 'E' => return .exe, else => return null, }, }; return null; } test "windowsCreateProcessSupportsExtension" { try std.testing.expectEqual(CreateProcessSupportedExtension.exe, windowsCreateProcessSupportsExtension(&[_]u16{ '.', 'e', 'X', 'e' }).?); try std.testing.expect(windowsCreateProcessSupportsExtension(&[_]u16{ '.', 'e', 'X', 'e', 'c' }) == null); } /// Caller must dealloc. fn windowsCreateCommandLine(allocator: mem.Allocator, argv: []const []const u8) ![:0]u8 { var buf = std.ArrayList(u8).init(allocator); defer buf.deinit(); for (argv, 0..) |arg, arg_i| { if (arg_i != 0) try buf.append(' '); if (mem.indexOfAny(u8, arg, " \t\n\"") == null) { try buf.appendSlice(arg); continue; } try buf.append('"'); var backslash_count: usize = 0; for (arg) |byte| { switch (byte) { '\\' => backslash_count += 1, '"' => { try buf.appendNTimes('\\', backslash_count * 2 + 1); try buf.append('"'); backslash_count = 0; }, else => { try buf.appendNTimes('\\', backslash_count); try buf.append(byte); backslash_count = 0; }, } } try buf.appendNTimes('\\', backslash_count * 2); try buf.append('"'); } return buf.toOwnedSliceSentinel(0); } fn windowsDestroyPipe(rd: ?windows.HANDLE, wr: ?windows.HANDLE) void { if (rd) |h| os.close(h); if (wr) |h| os.close(h); } fn windowsMakePipeIn(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void { var rd_h: windows.HANDLE = undefined; var wr_h: windows.HANDLE = undefined; try windows.CreatePipe(&rd_h, &wr_h, sattr); errdefer windowsDestroyPipe(rd_h, wr_h); try windows.SetHandleInformation(wr_h, windows.HANDLE_FLAG_INHERIT, 0); rd.* = rd_h; wr.* = wr_h; } var pipe_name_counter = std.atomic.Atomic(u32).init(1); fn windowsMakeAsyncPipe(rd: *?windows.HANDLE, wr: *?windows.HANDLE, sattr: *const windows.SECURITY_ATTRIBUTES) !void { var tmp_bufw: [128]u16 = undefined; // Anonymous pipes are built upon Named pipes. // https://docs.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe // Asynchronous (overlapped) read and write operations are not supported by anonymous pipes. // https://docs.microsoft.com/en-us/windows/win32/ipc/anonymous-pipe-operations const pipe_path = blk: { var tmp_buf: [128]u8 = undefined; // Forge a random path for the pipe. const pipe_path = std.fmt.bufPrintZ( &tmp_buf, "\\\\.\\pipe\\zig-childprocess-{d}-{d}", .{ windows.kernel32.GetCurrentProcessId(), pipe_name_counter.fetchAdd(1, .Monotonic) }, ) catch unreachable; const len = std.unicode.utf8ToUtf16Le(&tmp_bufw, pipe_path) catch unreachable; tmp_bufw[len] = 0; break :blk tmp_bufw[0..len :0]; }; // Create the read handle that can be used with overlapped IO ops. const read_handle = windows.kernel32.CreateNamedPipeW( pipe_path.ptr, windows.PIPE_ACCESS_INBOUND | windows.FILE_FLAG_OVERLAPPED, windows.PIPE_TYPE_BYTE, 1, 4096, 4096, 0, sattr, ); if (read_handle == windows.INVALID_HANDLE_VALUE) { switch (windows.kernel32.GetLastError()) { else => |err| return windows.unexpectedError(err), } } errdefer os.close(read_handle); var sattr_copy = sattr.*; const write_handle = windows.kernel32.CreateFileW( pipe_path.ptr, windows.GENERIC_WRITE, 0, &sattr_copy, windows.OPEN_EXISTING, windows.FILE_ATTRIBUTE_NORMAL, null, ); if (write_handle == windows.INVALID_HANDLE_VALUE) { switch (windows.kernel32.GetLastError()) { else => |err| return windows.unexpectedError(err), } } errdefer os.close(write_handle); try windows.SetHandleInformation(read_handle, windows.HANDLE_FLAG_INHERIT, 0); rd.* = read_handle; wr.* = write_handle; } fn destroyPipe(pipe: [2]os.fd_t) void { os.close(pipe[0]); if (pipe[0] != pipe[1]) os.close(pipe[1]); } // Child of fork calls this to report an error to the fork parent. // Then the child exits. fn forkChildErrReport(fd: i32, err: ChildProcess.SpawnError) noreturn { writeIntFd(fd, @as(ErrInt, @intFromError(err))) catch {}; // If we're linking libc, some naughty applications may have registered atexit handlers // which we really do not want to run in the fork child. I caught LLVM doing this and // it caused a deadlock instead of doing an exit syscall. In the words of Avril Lavigne, // "Why'd you have to go and make things so complicated?" if (builtin.link_libc) { // The _exit(2) function does nothing but make the exit syscall, unlike exit(3) std.c._exit(1); } os.exit(1); } const ErrInt = std.meta.Int(.unsigned, @sizeOf(anyerror) * 8); fn writeIntFd(fd: i32, value: ErrInt) !void { const file = File{ .handle = fd, .capable_io_mode = .blocking, .intended_io_mode = .blocking, }; file.writer().writeIntNative(u64, @as(u64, @intCast(value))) catch return error.SystemResources; } fn readIntFd(fd: i32) !ErrInt { const file = File{ .handle = fd, .capable_io_mode = .blocking, .intended_io_mode = .blocking, }; return @as(ErrInt, @intCast(file.reader().readIntNative(u64) catch return error.SystemResources)); } /// Caller must free result. pub fn createWindowsEnvBlock(allocator: mem.Allocator, env_map: *const EnvMap) ![]u16 { // count bytes needed const max_chars_needed = x: { var max_chars_needed: usize = 4; // 4 for the final 4 null bytes var it = env_map.iterator(); while (it.next()) |pair| { // +1 for '=' // +1 for null byte max_chars_needed += pair.key_ptr.len + pair.value_ptr.len + 2; } break :x max_chars_needed; }; const result = try allocator.alloc(u16, max_chars_needed); errdefer allocator.free(result); var it = env_map.iterator(); var i: usize = 0; while (it.next()) |pair| { i += try unicode.utf8ToUtf16Le(result[i..], pair.key_ptr.*); result[i] = '='; i += 1; i += try unicode.utf8ToUtf16Le(result[i..], pair.value_ptr.*); result[i] = 0; i += 1; } result[i] = 0; i += 1; result[i] = 0; i += 1; result[i] = 0; i += 1; result[i] = 0; i += 1; return try allocator.realloc(result, i); } pub fn createNullDelimitedEnvMap(arena: mem.Allocator, env_map: *const EnvMap) ![:null]?[*:0]u8 { const envp_count = env_map.count(); const envp_buf = try arena.allocSentinel(?[*:0]u8, envp_count, null); { var it = env_map.iterator(); var i: usize = 0; while (it.next()) |pair| : (i += 1) { const env_buf = try arena.allocSentinel(u8, pair.key_ptr.len + pair.value_ptr.len + 1, 0); @memcpy(env_buf[0..pair.key_ptr.len], pair.key_ptr.*); env_buf[pair.key_ptr.len] = '='; @memcpy(env_buf[pair.key_ptr.len + 1 ..][0..pair.value_ptr.len], pair.value_ptr.*); envp_buf[i] = env_buf.ptr; } assert(i == envp_count); } return envp_buf; } test "createNullDelimitedEnvMap" { const testing = std.testing; const allocator = testing.allocator; var envmap = EnvMap.init(allocator); defer envmap.deinit(); try envmap.put("HOME", "/home/ifreund"); try envmap.put("WAYLAND_DISPLAY", "wayland-1"); try envmap.put("DISPLAY", ":1"); try envmap.put("DEBUGINFOD_URLS", " "); try envmap.put("XCURSOR_SIZE", "24"); var arena = std.heap.ArenaAllocator.init(allocator); defer arena.deinit(); const environ = try createNullDelimitedEnvMap(arena.allocator(), &envmap); try testing.expectEqual(@as(usize, 5), environ.len); inline for (.{ "HOME=/home/ifreund", "WAYLAND_DISPLAY=wayland-1", "DISPLAY=:1", "DEBUGINFOD_URLS= ", "XCURSOR_SIZE=24", }) |target| { for (environ) |variable| { if (mem.eql(u8, mem.span(variable orelse continue), target)) break; } else { try testing.expect(false); // Environment variable not found } } } |
Generated by zstd-live on 2025-08-12 12:37:59 UTC. |