zig/lib/std / crypto/25519/edwards25519.zig

Group operations over Edwards25519.

const std = @import("std");
const crypto = std.crypto;
const debug = std.debug;
const fmt = std.fmt;
const mem = std.mem;

Edwards25519

The underlying prime field.


const EncodingError = crypto.errors.EncodingError;
const IdentityElementError = crypto.errors.IdentityElementError;
const NonCanonicalError = crypto.errors.NonCanonicalError;
const NotSquareError = crypto.errors.NotSquareError;
const WeakPublicKeyError = crypto.errors.WeakPublicKeyError;

Fe

field.zig

Field arithmetic mod the order of the main subgroup.


/// Group operations over Edwards25519.
pub const Edwards25519 = struct {
    /// The underlying prime field.
    pub const Fe = @import("field.zig").Fe;
    /// Field arithmetic mod the order of the main subgroup.

scalar

scalar.zig

Length in bytes of a compressed representation of a point.

    pub const scalar = @import("scalar.zig");
    /// Length in bytes of a compressed representation of a point.

encoded_length:

Decode an Edwards25519 point from its compressed (Y+sign) coordinates.

    pub const encoded_length: usize = 32;

fromBytes()

Encode an Edwards25519 point.


    x: Fe,
    y: Fe,
    z: Fe,
    t: Fe,

toBytes()

Check that the encoding of a point is canonical.


    is_base: bool = false,

rejectNonCanonical()

The edwards25519 base point.


    /// Decode an Edwards25519 point from its compressed (Y+sign) coordinates.
    pub fn fromBytes(s: [encoded_length]u8) EncodingError!Edwards25519 {
        const z = Fe.one;
        const y = Fe.fromBytes(s);
        var u = y.sq();
        var v = u.mul(Fe.edwards25519d);
        u = u.sub(z);
        v = v.add(z);
        var x = u.mul(v).pow2523().mul(u);
        const vxx = x.sq().mul(v);
        const has_m_root = vxx.sub(u).isZero();
        const has_p_root = vxx.add(u).isZero();
        if ((@intFromBool(has_m_root) | @intFromBool(has_p_root)) == 0) { // best-effort to avoid two conditional branches
            return error.InvalidEncoding;
        }
        x.cMov(x.mul(Fe.sqrtm1), 1 - @intFromBool(has_m_root));
        x.cMov(x.neg(), @intFromBool(x.isNegative()) ^ (s[31] >> 7));
        const t = x.mul(y);
        return Edwards25519{ .x = x, .y = y, .z = z, .t = t };
    }

basePoint

Reject the neutral element.


    /// Encode an Edwards25519 point.
    pub fn toBytes(p: Edwards25519) [encoded_length]u8 {
        const zi = p.z.invert();
        var s = p.y.mul(zi).toBytes();
        s[31] ^= @as(u8, @intFromBool(p.x.mul(zi).isNegative())) << 7;
        return s;
    }

identityElement

Multiply a point by the cofactor


    /// Check that the encoding of a point is canonical.
    pub fn rejectNonCanonical(s: [32]u8) NonCanonicalError!void {
        return Fe.rejectNonCanonical(s, true);
    }

rejectIdentity()

Check that the point does not generate a low-order group. Return a WeakPublicKey error if it does.


    /// The edwards25519 base point.
    pub const basePoint = Edwards25519{
        .x = Fe{ .limbs = .{ 1738742601995546, 1146398526822698, 2070867633025821, 562264141797630, 587772402128613 } },
        .y = Fe{ .limbs = .{ 1801439850948184, 1351079888211148, 450359962737049, 900719925474099, 1801439850948198 } },
        .z = Fe.one,
        .t = Fe{ .limbs = .{ 1841354044333475, 16398895984059, 755974180946558, 900171276175154, 1821297809914039 } },
        .is_base = true,
    };

clearCofactor()

Flip the sign of the X coordinate.


    pub const identityElement = Edwards25519{ .x = Fe.zero, .y = Fe.one, .z = Fe.one, .t = Fe.zero };

rejectLowOrder()

Double an Edwards25519 point.


    /// Reject the neutral element.
    pub fn rejectIdentity(p: Edwards25519) IdentityElementError!void {
        if (p.x.isZero()) {
            return error.IdentityElement;
        }
    }

neg()

Add two Edwards25519 points.


    /// Multiply a point by the cofactor
    pub fn clearCofactor(p: Edwards25519) Edwards25519 {
        return p.dbl().dbl().dbl();
    }

dbl()

Subtract two Edwards25519 points.


    /// Check that the point does not generate a low-order group.
    /// Return a `WeakPublicKey` error if it does.
    pub fn rejectLowOrder(p: Edwards25519) WeakPublicKeyError!void {
        const zi = p.z.invert();
        const x = p.x.mul(zi);
        const y = p.y.mul(zi);
        const x_neg = x.neg();
        const iy = Fe.sqrtm1.mul(y);
        if (x.isZero() or y.isZero() or iy.equivalent(x) or iy.equivalent(x_neg)) {
            return error.WeakPublicKey;
        }
    }

add()

Multiply an Edwards25519 point by a scalar without clamping it. Return error.WeakPublicKey if the base generates a small-order group, and error.IdentityElement if the result is the identity element.


    /// Flip the sign of the X coordinate.
    pub inline fn neg(p: Edwards25519) Edwards25519 {
        return .{ .x = p.x.neg(), .y = p.y, .z = p.z, .t = p.t.neg() };
    }

sub()

Multiply an Edwards25519 point by a *PUBLIC* scalar *IN VARIABLE TIME* This can be used for signature verification.


    /// Double an Edwards25519 point.
    pub fn dbl(p: Edwards25519) Edwards25519 {
        const t0 = p.x.add(p.y).sq();
        var x = p.x.sq();
        var z = p.y.sq();
        const y = z.add(x);
        z = z.sub(x);
        x = t0.sub(y);
        const t = p.z.sq2().sub(z);
        return .{
            .x = x.mul(t),
            .y = y.mul(z),
            .z = z.mul(t),
            .t = x.mul(y),
        };
    }

mul()

Double-base multiplication of public parameters - Compute (p1*s1)+(p2*s2) *IN VARIABLE TIME* This can be used for signature verification.


    /// Add two Edwards25519 points.
    pub fn add(p: Edwards25519, q: Edwards25519) Edwards25519 {
        const a = p.y.sub(p.x).mul(q.y.sub(q.x));
        const b = p.x.add(p.y).mul(q.x.add(q.y));
        const c = p.t.mul(q.t).mul(Fe.edwards25519d2);
        var d = p.z.mul(q.z);
        d = d.add(d);
        const x = b.sub(a);
        const y = b.add(a);
        const z = d.add(c);
        const t = d.sub(c);
        return .{
            .x = x.mul(t),
            .y = y.mul(z),
            .z = z.mul(t),
            .t = x.mul(y),
        };
    }

mulPublic()

Multiscalar multiplication *IN VARIABLE TIME* for public data Computes ps0*ss0 + ps1*ss1 + ps2*ss2... faster than doing many of these operations individually


    /// Subtract two Edwards25519 points.
    pub fn sub(p: Edwards25519, q: Edwards25519) Edwards25519 {
        return p.add(q.neg());
    }

mulDoubleBasePublic()

Multiply an Edwards25519 point by a scalar after "clamping" it. Clamping forces the scalar to be a multiple of the cofactor in order to prevent small subgroups attacks. This is strongly recommended for DH operations. Return error.WeakPublicKey if the resulting point is the identity element.


    inline fn cMov(p: *Edwards25519, a: Edwards25519, c: u64) void {
        p.x.cMov(a.x, c);
        p.y.cMov(a.y, c);
        p.z.cMov(a.z, c);
        p.t.cMov(a.t, c);
    }

mulMulti()

Elligator2 map - Returns Montgomery affine coordinates


    inline fn pcSelect(comptime n: usize, pc: *const [n]Edwards25519, b: u8) Edwards25519 {
        var t = Edwards25519.identityElement;
        comptime var i: u8 = 1;
        inline while (i < pc.len) : (i += 1) {
            t.cMov(pc[i], ((@as(usize, b ^ i) -% 1) >> 8) & 1);
        }
        return t;
    }

clampedMul()

Map a 64-bit hash into an Edwards25519 point


    fn slide(s: [32]u8) [2 * 32]i8 {
        const reduced = if ((s[s.len - 1] & 0x80) == 0) s else scalar.reduce(s);
        var e: [2 * 32]i8 = undefined;
        for (reduced, 0..) |x, i| {
            e[i * 2 + 0] = @as(i8, @as(u4, @truncate(x)));
            e[i * 2 + 1] = @as(i8, @as(u4, @truncate(x >> 4)));
        }
        // Now, e[0..63] is between 0 and 15, e[63] is between 0 and 7
        var carry: i8 = 0;
        for (e[0..63]) |*x| {
            x.* += carry;
            carry = (x.* + 8) >> 4;
            x.* -= carry * 16;
        }
        e[63] += carry;
        // Now, e[*] is between -8 and 8, including e[63]
        return e;
    }

elligator2()

Hash a context ctx and a string s into an Edwards25519 point This function implements the edwards25519_XMD:SHA-512_ELL2_RO_ and edwards25519_XMD:SHA-512_ELL2_NU_ methods from the "Hashing to Elliptic Curves" standard document. Although not strictly required by the standard, it is recommended to avoid NUL characters in the context in order to be compatible with other implementations.


    // Scalar multiplication with a 4-bit window and the first 8 multiples.
    // This requires the scalar to be converted to non-adjacent form.
    // Based on real-world benchmarks, we only use this for multi-scalar multiplication.
    // NAF could be useful to half the size of precomputation tables, but we intentionally
    // avoid these to keep the standard library lightweight.
    fn pcMul(pc: *const [9]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
        std.debug.assert(vartime);
        const e = slide(s);
        var q = Edwards25519.identityElement;
        var pos: usize = 2 * 32 - 1;
        while (true) : (pos -= 1) {
            const slot = e[pos];
            if (slot > 0) {
                q = q.add(pc[@as(usize, @intCast(slot))]);
            } else if (slot < 0) {
                q = q.sub(pc[@as(usize, @intCast(-slot))]);
            }
            if (pos == 0) break;
            q = q.dbl().dbl().dbl().dbl();
        }
        try q.rejectIdentity();
        return q;
    }

fromHash()

Map a 32 bit uniform bit string into an edwards25519 point


    // Scalar multiplication with a 4-bit window and the first 15 multiples.
    fn pcMul16(pc: *const [16]Edwards25519, s: [32]u8, comptime vartime: bool) IdentityElementError!Edwards25519 {
        var q = Edwards25519.identityElement;
        var pos: usize = 252;
        while (true) : (pos -= 4) {
            const slot: u4 = @truncate((s[pos >> 3] >> @as(u3, @truncate(pos))));
            if (vartime) {
                if (slot != 0) {
                    q = q.add(pc[slot]);
                }
            } else {
                q = q.add(pcSelect(16, pc, slot));
            }
            if (pos == 0) break;
            q = q.dbl().dbl().dbl().dbl();
        }
        try q.rejectIdentity();
        return q;
    }

fromString()


    fn precompute(p: Edwards25519, comptime count: usize) [1 + count]Edwards25519 {
        var pc: [1 + count]Edwards25519 = undefined;
        pc[0] = Edwards25519.identityElement;
        pc[1] = p;
        var i: usize = 2;
        while (i <= count) : (i += 1) {
            pc[i] = if (i % 2 == 0) pc[i / 2].dbl() else pc[i - 1].add(p);
        }
        return pc;
    }

fromUniform()


    const basePointPc = pc: {
        @setEvalBranchQuota(10000);
        break :pc precompute(Edwards25519.basePoint, 15);
    };

Test:

edwards25519 packing/unpacking


    /// Multiply an Edwards25519 point by a scalar without clamping it.
    /// Return error.WeakPublicKey if the base generates a small-order group,
    /// and error.IdentityElement if the result is the identity element.
    pub fn mul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        const pc = if (p.is_base) basePointPc else pc: {
            const xpc = precompute(p, 15);
            xpc[4].rejectIdentity() catch return error.WeakPublicKey;
            break :pc xpc;
        };
        return pcMul16(&pc, s, false);
    }

Test:

edwards25519 point addition/subtraction


    /// Multiply an Edwards25519 point by a *PUBLIC* scalar *IN VARIABLE TIME*
    /// This can be used for signature verification.
    pub fn mulPublic(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        if (p.is_base) {
            return pcMul16(&basePointPc, s, true);
        } else {
            const pc = precompute(p, 8);
            pc[4].rejectIdentity() catch return error.WeakPublicKey;
            return pcMul(&pc, s, true);
        }
    }

Test:

edwards25519 uniform-to-point


    /// Double-base multiplication of public parameters - Compute (p1*s1)+(p2*s2) *IN VARIABLE TIME*
    /// This can be used for signature verification.
    pub fn mulDoubleBasePublic(p1: Edwards25519, s1: [32]u8, p2: Edwards25519, s2: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        var pc1_array: [9]Edwards25519 = undefined;
        const pc1 = if (p1.is_base) basePointPc[0..9] else pc: {
            pc1_array = precompute(p1, 8);
            pc1_array[4].rejectIdentity() catch return error.WeakPublicKey;
            break :pc &pc1_array;
        };
        var pc2_array: [9]Edwards25519 = undefined;
        const pc2 = if (p2.is_base) basePointPc[0..9] else pc: {
            pc2_array = precompute(p2, 8);
            pc2_array[4].rejectIdentity() catch return error.WeakPublicKey;
            break :pc &pc2_array;
        };
        const e1 = slide(s1);
        const e2 = slide(s2);
        var q = Edwards25519.identityElement;
        var pos: usize = 2 * 32 - 1;
        while (true) : (pos -= 1) {
            const slot1 = e1[pos];
            if (slot1 > 0) {
                q = q.add(pc1[@as(usize, @intCast(slot1))]);
            } else if (slot1 < 0) {
                q = q.sub(pc1[@as(usize, @intCast(-slot1))]);
            }
            const slot2 = e2[pos];
            if (slot2 > 0) {
                q = q.add(pc2[@as(usize, @intCast(slot2))]);
            } else if (slot2 < 0) {
                q = q.sub(pc2[@as(usize, @intCast(-slot2))]);
            }
            if (pos == 0) break;
            q = q.dbl().dbl().dbl().dbl();
        }
        try q.rejectIdentity();
        return q;
    }

Test:

edwards25519 hash-to-curve operation


    /// Multiscalar multiplication *IN VARIABLE TIME* for public data
    /// Computes ps0*ss0 + ps1*ss1 + ps2*ss2... faster than doing many of these operations individually
    pub fn mulMulti(comptime count: usize, ps: [count]Edwards25519, ss: [count][32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        var pcs: [count][9]Edwards25519 = undefined;

Test:

edwards25519 implicit reduction of invalid scalars


        var bpc: [9]Edwards25519 = undefined;
        @memcpy(&bpc, basePointPc[0..bpc.len]);

        for (ps, 0..) |p, i| {
            if (p.is_base) {
                pcs[i] = bpc;
            } else {
                pcs[i] = precompute(p, 8);
                pcs[i][4].rejectIdentity() catch return error.WeakPublicKey;
            }
        }
        var es: [count][2 * 32]i8 = undefined;
        for (ss, 0..) |s, i| {
            es[i] = slide(s);
        }
        var q = Edwards25519.identityElement;
        var pos: usize = 2 * 32 - 1;
        while (true) : (pos -= 1) {
            for (es, 0..) |e, i| {
                const slot = e[pos];
                if (slot > 0) {
                    q = q.add(pcs[i][@as(usize, @intCast(slot))]);
                } else if (slot < 0) {
                    q = q.sub(pcs[i][@as(usize, @intCast(-slot))]);
                }
            }
            if (pos == 0) break;
            q = q.dbl().dbl().dbl().dbl();
        }
        try q.rejectIdentity();
        return q;
    }

    /// Multiply an Edwards25519 point by a scalar after "clamping" it.
    /// Clamping forces the scalar to be a multiple of the cofactor in
    /// order to prevent small subgroups attacks.
    /// This is strongly recommended for DH operations.
    /// Return error.WeakPublicKey if the resulting point is
    /// the identity element.
    pub fn clampedMul(p: Edwards25519, s: [32]u8) (IdentityElementError || WeakPublicKeyError)!Edwards25519 {
        var t: [32]u8 = s;
        scalar.clamp(&t);
        return mul(p, t);
    }

    // montgomery -- recover y = sqrt(x^3 + A*x^2 + x)
    fn xmontToYmont(x: Fe) NotSquareError!Fe {
        var x2 = x.sq();
        const x3 = x.mul(x2);
        x2 = x2.mul32(Fe.edwards25519a_32);
        return x.add(x2).add(x3).sqrt();
    }

    // montgomery affine coordinates to edwards extended coordinates
    fn montToEd(x: Fe, y: Fe) Edwards25519 {
        const x_plus_one = x.add(Fe.one);
        const x_minus_one = x.sub(Fe.one);
        const x_plus_one_y_inv = x_plus_one.mul(y).invert(); // 1/((x+1)*y)

        // xed = sqrt(-A-2)*x/y
        const xed = x.mul(Fe.edwards25519sqrtam2).mul(x_plus_one_y_inv).mul(x_plus_one);

        // yed = (x-1)/(x+1) or 1 if the denominator is 0
        var yed = x_plus_one_y_inv.mul(y).mul(x_minus_one);
        yed.cMov(Fe.one, @intFromBool(x_plus_one_y_inv.isZero()));

        return Edwards25519{
            .x = xed,
            .y = yed,
            .z = Fe.one,
            .t = xed.mul(yed),
        };
    }

    /// Elligator2 map - Returns Montgomery affine coordinates
    pub fn elligator2(r: Fe) struct { x: Fe, y: Fe, not_square: bool } {
        const rr2 = r.sq2().add(Fe.one).invert();
        var x = rr2.mul32(Fe.edwards25519a_32).neg(); // x=x1
        var x2 = x.sq();
        const x3 = x2.mul(x);
        x2 = x2.mul32(Fe.edwards25519a_32); // x2 = A*x1^2
        const gx1 = x3.add(x).add(x2); // gx1 = x1^3 + A*x1^2 + x1
        const not_square = !gx1.isSquare();

        // gx1 not a square => x = -x1-A
        x.cMov(x.neg(), @intFromBool(not_square));
        x2 = Fe.zero;
        x2.cMov(Fe.edwards25519a, @intFromBool(not_square));
        x = x.sub(x2);

        // We have y = sqrt(gx1) or sqrt(gx2) with gx2 = gx1*(A+x1)/(-x1)
        // but it is about as fast to just recompute y from the curve equation.
        const y = xmontToYmont(x) catch unreachable;
        return .{ .x = x, .y = y, .not_square = not_square };
    }

    /// Map a 64-bit hash into an Edwards25519 point
    pub fn fromHash(h: [64]u8) Edwards25519 {
        const fe_f = Fe.fromBytes64(h);
        var elr = elligator2(fe_f);

        const y_sign = !elr.not_square;
        const y_neg = elr.y.neg();
        elr.y.cMov(y_neg, @intFromBool(elr.y.isNegative()) ^ @intFromBool(y_sign));
        return montToEd(elr.x, elr.y).clearCofactor();
    }

    fn stringToPoints(comptime n: usize, ctx: []const u8, s: []const u8) [n]Edwards25519 {
        debug.assert(n <= 2);
        const H = crypto.hash.sha2.Sha512;
        const h_l: usize = 48;
        var xctx = ctx;
        var hctx: [H.digest_length]u8 = undefined;
        if (ctx.len > 0xff) {
            var st = H.init(.{});
            st.update("H2C-OVERSIZE-DST-");
            st.update(ctx);
            st.final(&hctx);
            xctx = hctx[0..];
        }
        const empty_block = [_]u8{0} ** H.block_length;
        var t = [3]u8{ 0, n * h_l, 0 };
        var xctx_len_u8 = [1]u8{@as(u8, @intCast(xctx.len))};
        var st = H.init(.{});
        st.update(empty_block[0..]);
        st.update(s);
        st.update(t[0..]);
        st.update(xctx);
        st.update(xctx_len_u8[0..]);
        var u_0: [H.digest_length]u8 = undefined;
        st.final(&u_0);
        var u: [n * H.digest_length]u8 = undefined;
        var i: usize = 0;
        while (i < n * H.digest_length) : (i += H.digest_length) {
            u[i..][0..H.digest_length].* = u_0;
            var j: usize = 0;
            while (i > 0 and j < H.digest_length) : (j += 1) {
                u[i + j] ^= u[i + j - H.digest_length];
            }
            t[2] += 1;
            st = H.init(.{});
            st.update(u[i..][0..H.digest_length]);
            st.update(t[2..3]);
            st.update(xctx);
            st.update(xctx_len_u8[0..]);
            st.final(u[i..][0..H.digest_length]);
        }
        var px: [n]Edwards25519 = undefined;
        i = 0;
        while (i < n) : (i += 1) {
            @memset(u_0[0 .. H.digest_length - h_l], 0);
            u_0[H.digest_length - h_l ..][0..h_l].* = u[i * h_l ..][0..h_l].*;
            px[i] = fromHash(u_0);
        }
        return px;
    }

    /// Hash a context `ctx` and a string `s` into an Edwards25519 point
    ///
    /// This function implements the edwards25519_XMD:SHA-512_ELL2_RO_ and edwards25519_XMD:SHA-512_ELL2_NU_
    /// methods from the "Hashing to Elliptic Curves" standard document.
    ///
    /// Although not strictly required by the standard, it is recommended to avoid NUL characters in
    /// the context in order to be compatible with other implementations.
    pub fn fromString(comptime random_oracle: bool, ctx: []const u8, s: []const u8) Edwards25519 {
        if (random_oracle) {
            const px = stringToPoints(2, ctx, s);
            return px[0].add(px[1]);
        } else {
            return stringToPoints(1, ctx, s)[0];
        }
    }

    /// Map a 32 bit uniform bit string into an edwards25519 point
    pub fn fromUniform(r: [32]u8) Edwards25519 {
        var s = r;
        const x_sign = s[31] >> 7;
        s[31] &= 0x7f;
        const elr = elligator2(Fe.fromBytes(s));
        var p = montToEd(elr.x, elr.y);
        const p_neg = p.neg();
        p.cMov(p_neg, @intFromBool(p.x.isNegative()) ^ x_sign);
        return p.clearCofactor();
    }
};

const htest = @import("../test.zig");

test "edwards25519 packing/unpacking" {
    const s = [_]u8{170} ++ [_]u8{0} ** 31;
    var b = Edwards25519.basePoint;
    const pk = try b.mul(s);
    var buf: [128]u8 = undefined;
    try std.testing.expectEqualStrings(try std.fmt.bufPrint(&buf, "{s}", .{std.fmt.fmtSliceHexUpper(&pk.toBytes())}), "074BC7E0FCBD587FDBC0969444245FADC562809C8F6E97E949AF62484B5B81A6");

    const small_order_ss: [7][32]u8 = .{
        .{
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 (order 4)
        },
        .{
            0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 1 (order 1)
        },
        .{
            0x26, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0xf2, 0xef, 0x98, 0xf0, 0xd5, 0xdf, 0xac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x05, // 270738550114484064931822528722565878893680426757531351946374360975030340202(order 8)
        },
        .{
            0xc7, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, 0xba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, 0xcc, 0xc6, 0x4e, 0xc7, 0xfd, 0x77, 0x92, 0xac, 0x03, 0x7a, // 55188659117513257062467267217118295137698188065244968500265048394206261417927 (order 8)
        },
        .{
            0xec, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p-1 (order 2)
        },
        .{
            0xed, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p (=0, order 4)
        },
        .{
            0xee, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f, // p+1 (=1, order 1)
        },
    };
    for (small_order_ss) |small_order_s| {
        const small_p = try Edwards25519.fromBytes(small_order_s);
        try std.testing.expectError(error.WeakPublicKey, small_p.mul(s));
    }
}

test "edwards25519 point addition/subtraction" {
    var s1: [32]u8 = undefined;
    var s2: [32]u8 = undefined;
    crypto.random.bytes(&s1);
    crypto.random.bytes(&s2);
    const p = try Edwards25519.basePoint.clampedMul(s1);
    const q = try Edwards25519.basePoint.clampedMul(s2);
    const r = p.add(q).add(q).sub(q).sub(q);
    try r.rejectIdentity();
    try std.testing.expectError(error.IdentityElement, r.sub(p).rejectIdentity());
    try std.testing.expectError(error.IdentityElement, p.sub(p).rejectIdentity());
    try std.testing.expectError(error.IdentityElement, p.sub(q).add(q).sub(p).rejectIdentity());
}

test "edwards25519 uniform-to-point" {
    var r = [32]u8{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 };
    var p = Edwards25519.fromUniform(r);
    try htest.assertEqual("0691eee3cf70a0056df6bfa03120635636581b5c4ea571dfc680f78c7e0b4137", p.toBytes()[0..]);

    r[31] = 0xff;
    p = Edwards25519.fromUniform(r);
    try htest.assertEqual("f70718e68ef42d90ca1d936bb2d7e159be6c01d8095d39bd70487c82fe5c973a", p.toBytes()[0..]);
}

// Test vectors from draft-irtf-cfrg-hash-to-curve-12
test "edwards25519 hash-to-curve operation" {
    var p = Edwards25519.fromString(true, "QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_RO_", "abc");
    try htest.assertEqual("31558a26887f23fb8218f143e69d5f0af2e7831130bd5b432ef23883b895839a", p.toBytes()[0..]);

    p = Edwards25519.fromString(false, "QUUX-V01-CS02-with-edwards25519_XMD:SHA-512_ELL2_NU_", "abc");
    try htest.assertEqual("42fa27c8f5a1ae0aa38bb59d5938e5145622ba5dedd11d11736fa2f9502d7367", p.toBytes()[0..]);
}

test "edwards25519 implicit reduction of invalid scalars" {
    const s = [_]u8{0} ** 31 ++ [_]u8{255};
    const p1 = try Edwards25519.basePoint.mulPublic(s);
    const p2 = try Edwards25519.basePoint.mul(s);
    const p3 = try p1.mulPublic(s);
    const p4 = try p1.mul(s);

    try std.testing.expectEqualSlices(u8, p1.toBytes()[0..], p2.toBytes()[0..]);
    try std.testing.expectEqualSlices(u8, p3.toBytes()[0..], p4.toBytes()[0..]);

    try htest.assertEqual("339f189ecc5fbebe9895345c72dc07bda6e615f8a40e768441b6f529cd6c671a", p1.toBytes()[0..]);
    try htest.assertEqual("a501e4c595a3686d8bee7058c7e6af7fd237f945c47546910e37e0e79b1bafb0", p3.toBytes()[0..]);
}