|
const std = @import("../../std.zig"); const tls = std.crypto.tls; const Client = @This(); const net = std.net; const mem = std.mem; const crypto = std.crypto; const assert = std.debug.assert; const Certificate = std.crypto.Certificate; |
StreamInterfaceThe ending index of cleartext bytes inside |
const max_ciphertext_len = tls.max_ciphertext_len; const hkdfExpandLabel = tls.hkdfExpandLabel; const int2 = tls.int2; const int3 = tls.int3; const array = tls.array; const enum_array = tls.enum_array; |
ReadErrorThe ending index of ciphertext bytes inside |
read_seq: u64, write_seq: u64, /// The starting index of cleartext bytes inside `partially_read_buffer`. partial_cleartext_idx: u15, /// The ending index of cleartext bytes inside `partially_read_buffer` as well /// as the starting index of ciphertext bytes. partial_ciphertext_idx: u15, /// The ending index of ciphertext bytes inside `partially_read_buffer`. partial_ciphertext_end: u15, /// When this is true, the stream may still not be at the end because there /// may be data in `partially_read_buffer`. received_close_notify: bool, /// By default, reaching the end-of-stream when reading from the server will /// cause `error.TlsConnectionTruncated` to be returned, unless a close_notify /// message has been received. By setting this flag to `true`, instead, the /// end-of-stream will be forwarded to the application layer above TLS. /// This makes the application vulnerable to truncation attacks unless the /// application layer itself verifies that the amount of data received equals /// the amount of data expected, such as HTTP with the Content-Length header. allow_truncation_attacks: bool = false, application_cipher: tls.ApplicationCipher, /// The size is enough to contain exactly one TLSCiphertext record. /// This buffer is segmented into four parts: /// 0. unused /// 1. cleartext /// 2. ciphertext /// 3. unused /// The fields `partial_cleartext_idx`, `partial_ciphertext_idx`, and /// `partial_ciphertext_end` describe the span of the segments. partially_read_buffer: [tls.max_ciphertext_record_len]u8, |
readv()When this is true, the stream may still not be at the end because there
may be data in |
/// This is an example of the type that is needed by the read and write /// functions. It can have any fields but it must at least have these /// functions. /// /// Note that `std.net.Stream` conforms to this interface. /// /// This declaration serves as documentation only. pub const StreamInterface = struct { /// Can be any error set. pub const ReadError = error{}; |
WriteErrorBy default, reaching the end-of-stream when reading from the server will
cause |
/// Returns the number of bytes read. The number read may be less than the /// buffer space provided. End-of-stream is indicated by a return value of 0. /// /// The `iovecs` parameter is mutable because so that function may to /// mutate the fields in order to handle partial reads from the underlying /// stream layer. pub fn readv(this: @This(), iovecs: []std.os.iovec) ReadError!usize { _ = .{ this, iovecs }; @panic("unimplemented"); } |
writev()The size is enough to contain exactly one TLSCiphertext record.
This buffer is segmented into four parts:
0. unused
1. cleartext
2. ciphertext
3. unused
The fields |
/// Can be any error set. pub const WriteError = error{}; |
writevAll()This is an example of the type that is needed by the read and write
functions. It can have any fields but it must at least have these
functions.
Note that |
/// Returns the number of bytes read, which may be less than the buffer /// space provided. A short read does not indicate end-of-stream. pub fn writev(this: @This(), iovecs: []const std.os.iovec_const) WriteError!usize { _ = .{ this, iovecs }; @panic("unimplemented"); } |
InitError()Can be any error set. |
/// Returns the number of bytes read, which may be less than the buffer /// space provided, indicating end-of-stream. /// The `iovecs` parameter is mutable in case this function needs to mutate /// the fields in order to handle partial writes from the underlying layer. pub fn writevAll(this: @This(), iovecs: []std.os.iovec_const) WriteError!usize { // This can be implemented in terms of writev, or specialized if desired. _ = .{ this, iovecs }; @panic("unimplemented"); } }; |
init()Returns the number of bytes read. The number read may be less than the
buffer space provided. End-of-stream is indicated by a return value of 0.
The |
pub fn InitError(comptime Stream: type) type { return std.mem.Allocator.Error || Stream.WriteError || Stream.ReadError || tls.AlertDescription.Error || error{ InsufficientEntropy, DiskQuota, LockViolation, NotOpenForWriting, TlsUnexpectedMessage, TlsIllegalParameter, TlsDecryptFailure, TlsRecordOverflow, TlsBadRecordMac, CertificateFieldHasInvalidLength, CertificateHostMismatch, CertificatePublicKeyInvalid, CertificateExpired, CertificateFieldHasWrongDataType, CertificateIssuerMismatch, CertificateNotYetValid, CertificateSignatureAlgorithmMismatch, CertificateSignatureAlgorithmUnsupported, CertificateSignatureInvalid, CertificateSignatureInvalidLength, CertificateSignatureNamedCurveUnsupported, CertificateSignatureUnsupportedBitCount, TlsCertificateNotVerified, TlsBadSignatureScheme, TlsBadRsaSignatureBitCount, InvalidEncoding, IdentityElement, SignatureVerificationFailed, TlsDecryptError, TlsConnectionTruncated, TlsDecodeError, UnsupportedCertificateVersion, CertificateTimeInvalid, CertificateHasUnrecognizedObjectId, CertificateHasInvalidBitString, MessageTooLong, NegativeIntoUnsigned, TargetTooSmall, BufferTooSmall, InvalidSignature, NotSquare, NonCanonical, }; } |
write()Can be any error set. |
/// Initiates a TLS handshake and establishes a TLSv1.3 session with `stream`, which /// must conform to `StreamInterface`. /// /// `host` is only borrowed during this function call. pub fn init(stream: anytype, ca_bundle: Certificate.Bundle, host: []const u8) InitError(@TypeOf(stream))!Client { const host_len: u16 = @intCast(host.len); |
writeAll()Returns the number of bytes read, which may be less than the buffer space provided. A short read does not indicate end-of-stream. |
var random_buffer: [128]u8 = undefined; crypto.random.bytes(&random_buffer); const hello_rand = random_buffer[0..32].*; const legacy_session_id = random_buffer[32..64].*; const x25519_kp_seed = random_buffer[64..96].*; const secp256r1_kp_seed = random_buffer[96..128].*; |
writeAllEnd()Returns the number of bytes read, which may be less than the buffer
space provided, indicating end-of-stream.
The |
const x25519_kp = crypto.dh.X25519.KeyPair.create(x25519_kp_seed) catch |err| switch (err) { // Only possible to happen if the private key is all zeroes. error.IdentityElement => return error.InsufficientEntropy, }; const secp256r1_kp = crypto.sign.ecdsa.EcdsaP256Sha256.KeyPair.create(secp256r1_kp_seed) catch |err| switch (err) { // Only possible to happen if the private key is all zeroes. error.IdentityElement => return error.InsufficientEntropy, }; const kyber768_kp = crypto.kem.kyber_d00.Kyber768.KeyPair.create(null) catch {}; |
writeEnd()Initiates a TLS handshake and establishes a TLSv1.3 session with |
const extensions_payload = tls.extension(.supported_versions, [_]u8{ 0x02, // byte length of supported versions 0x03, 0x04, // TLS 1.3 }) ++ tls.extension(.signature_algorithms, enum_array(tls.SignatureScheme, &.{ .ecdsa_secp256r1_sha256, .ecdsa_secp384r1_sha384, .ecdsa_secp521r1_sha512, .rsa_pss_rsae_sha256, .rsa_pss_rsae_sha384, .rsa_pss_rsae_sha512, .rsa_pkcs1_sha256, .rsa_pkcs1_sha384, .rsa_pkcs1_sha512, .ed25519, })) ++ tls.extension(.supported_groups, enum_array(tls.NamedGroup, &.{ .x25519_kyber768d00, .secp256r1, .x25519, })) ++ tls.extension( .key_share, array(1, int2(@intFromEnum(tls.NamedGroup.x25519)) ++ array(1, x25519_kp.public_key) ++ int2(@intFromEnum(tls.NamedGroup.secp256r1)) ++ array(1, secp256r1_kp.public_key.toUncompressedSec1()) ++ int2(@intFromEnum(tls.NamedGroup.x25519_kyber768d00)) ++ array(1, x25519_kp.public_key ++ kyber768_kp.public_key.toBytes())), ) ++ int2(@intFromEnum(tls.ExtensionType.server_name)) ++ int2(host_len + 5) ++ // byte length of this extension payload int2(host_len + 3) ++ // server_name_list byte count [1]u8{0x00} ++ // name_type int2(host_len); |
eof()In this state we expect only an encrypted_extensions message. |
const extensions_header = int2(@intCast(extensions_payload.len + host_len)) ++ extensions_payload; |
readAtLeast()In this state we expect certificate messages. |
const legacy_compression_methods = 0x0100; |
read()In this state we expect certificate or certificate_verify messages. certificate messages are ignored since the trust chain is already established. |
const client_hello = int2(@intFromEnum(tls.ProtocolVersion.tls_1_2)) ++ hello_rand ++ [1]u8{32} ++ legacy_session_id ++ cipher_suites ++ int2(legacy_compression_methods) ++ extensions_header; |
readAll()In this state, we expect only the finished message. |
const out_handshake = [_]u8{@intFromEnum(tls.HandshakeType.client_hello)} ++ int3(@intCast(client_hello.len + host_len)) ++ client_hello; |
readv()Sends TLS-encrypted data to |
const plaintext_header = [_]u8{ @intFromEnum(tls.ContentType.handshake), 0x03, 0x01, // legacy_record_version } ++ int2(@intCast(out_handshake.len + host_len)) ++ out_handshake; |
readvAtLeast()Sends TLS-encrypted data to |
{ var iovecs = [_]std.os.iovec_const{ .{ .iov_base = &plaintext_header, .iov_len = plaintext_header.len, }, .{ .iov_base = host.ptr, .iov_len = host.len, }, }; try stream.writevAll(&iovecs); } |
readvAdvanced()Sends TLS-encrypted data to |
const client_hello_bytes1 = plaintext_header[5..]; var handshake_cipher: tls.HandshakeCipher = undefined; var handshake_buffer: [8000]u8 = undefined; var d: tls.Decoder = .{ .buf = &handshake_buffer }; { try d.readAtLeastOurAmt(stream, tls.record_header_len); const ct = d.decode(tls.ContentType); d.skip(2); // legacy_record_version const record_len = d.decode(u16); try d.readAtLeast(stream, record_len); const server_hello_fragment = d.buf[d.idx..][0..record_len]; var ptd = try d.sub(record_len); switch (ct) { .alert => { try ptd.ensure(2); const level = ptd.decode(tls.AlertLevel); const desc = ptd.decode(tls.AlertDescription); _ = level; // if this isn't a error alert, then it's a closure alert, which makes no sense in a handshake try desc.toError(); // TODO: handle server-side closures return error.TlsUnexpectedMessage; }, .handshake => { try ptd.ensure(4); const handshake_type = ptd.decode(tls.HandshakeType); if (handshake_type != .server_hello) return error.TlsUnexpectedMessage; const length = ptd.decode(u24); var hsd = try ptd.sub(length); try hsd.ensure(2 + 32 + 1 + 32 + 2 + 1 + 2); const legacy_version = hsd.decode(u16); const random = hsd.array(32); if (mem.eql(u8, random, &tls.hello_retry_request_sequence)) { // This is a HelloRetryRequest message. This client implementation // does not expect to get one. return error.TlsUnexpectedMessage; } const legacy_session_id_echo_len = hsd.decode(u8); if (legacy_session_id_echo_len != 32) return error.TlsIllegalParameter; const legacy_session_id_echo = hsd.array(32); if (!mem.eql(u8, legacy_session_id_echo, &legacy_session_id)) return error.TlsIllegalParameter; const cipher_suite_tag = hsd.decode(tls.CipherSuite); hsd.skip(1); // legacy_compression_method const extensions_size = hsd.decode(u16); var all_extd = try hsd.sub(extensions_size); var supported_version: u16 = 0; var shared_key: []const u8 = undefined; var have_shared_key = false; while (!all_extd.eof()) { try all_extd.ensure(2 + 2); const et = all_extd.decode(tls.ExtensionType); const ext_size = all_extd.decode(u16); var extd = try all_extd.sub(ext_size); switch (et) { .supported_versions => { if (supported_version != 0) return error.TlsIllegalParameter; try extd.ensure(2); supported_version = extd.decode(u16); }, .key_share => { if (have_shared_key) return error.TlsIllegalParameter; have_shared_key = true; try extd.ensure(4); const named_group = extd.decode(tls.NamedGroup); const key_size = extd.decode(u16); try extd.ensure(key_size); switch (named_group) { .x25519_kyber768d00 => { const xksl = crypto.dh.X25519.public_length; const hksl = xksl + crypto.kem.kyber_d00.Kyber768.ciphertext_length; if (key_size != hksl) return error.TlsIllegalParameter; const server_ks = extd.array(hksl); shared_key = &((crypto.dh.X25519.scalarmult( x25519_kp.secret_key, server_ks[0..xksl].*, ) catch return error.TlsDecryptFailure) ++ (kyber768_kp.secret_key.decaps( server_ks[xksl..hksl], ) catch return error.TlsDecryptFailure)); }, .x25519 => { const ksl = crypto.dh.X25519.public_length; if (key_size != ksl) return error.TlsIllegalParameter; const server_pub_key = extd.array(ksl); shared_key = &(crypto.dh.X25519.scalarmult( x25519_kp.secret_key, server_pub_key.*, ) catch return error.TlsDecryptFailure); }, .secp256r1 => { const server_pub_key = extd.slice(key_size); const PublicKey = crypto.sign.ecdsa.EcdsaP256Sha256.PublicKey; const pk = PublicKey.fromSec1(server_pub_key) catch { return error.TlsDecryptFailure; }; const mul = pk.p.mulPublic(secp256r1_kp.secret_key.bytes, .Big) catch { return error.TlsDecryptFailure; }; shared_key = &mul.affineCoordinates().x.toBytes(.Big); }, else => { return error.TlsIllegalParameter; }, } }, else => {}, } } if (!have_shared_key) return error.TlsIllegalParameter; const tls_version = if (supported_version == 0) legacy_version else supported_version; if (tls_version != @intFromEnum(tls.ProtocolVersion.tls_1_3)) return error.TlsIllegalParameter; switch (cipher_suite_tag) { inline .AES_128_GCM_SHA256, .AES_256_GCM_SHA384, .CHACHA20_POLY1305_SHA256, .AEGIS_256_SHA384, .AEGIS_128L_SHA256, => |tag| { const P = std.meta.TagPayloadByName(tls.HandshakeCipher, @tagName(tag)); handshake_cipher = @unionInit(tls.HandshakeCipher, @tagName(tag), .{ .handshake_secret = undefined, .master_secret = undefined, .client_handshake_key = undefined, .server_handshake_key = undefined, .client_finished_key = undefined, .server_finished_key = undefined, .client_handshake_iv = undefined, .server_handshake_iv = undefined, .transcript_hash = P.Hash.init(.{}), }); const p = &@field(handshake_cipher, @tagName(tag)); p.transcript_hash.update(client_hello_bytes1); // Client Hello part 1 p.transcript_hash.update(host); // Client Hello part 2 p.transcript_hash.update(server_hello_fragment); const hello_hash = p.transcript_hash.peek(); const zeroes = [1]u8{0} ** P.Hash.digest_length; const early_secret = P.Hkdf.extract(&[1]u8{0}, &zeroes); const empty_hash = tls.emptyHash(P.Hash); const hs_derived_secret = hkdfExpandLabel(P.Hkdf, early_secret, "derived", &empty_hash, P.Hash.digest_length); p.handshake_secret = P.Hkdf.extract(&hs_derived_secret, shared_key); const ap_derived_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "derived", &empty_hash, P.Hash.digest_length); p.master_secret = P.Hkdf.extract(&ap_derived_secret, &zeroes); const client_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "c hs traffic", &hello_hash, P.Hash.digest_length); const server_secret = hkdfExpandLabel(P.Hkdf, p.handshake_secret, "s hs traffic", &hello_hash, P.Hash.digest_length); p.client_finished_key = hkdfExpandLabel(P.Hkdf, client_secret, "finished", "", P.Hmac.key_length); p.server_finished_key = hkdfExpandLabel(P.Hkdf, server_secret, "finished", "", P.Hmac.key_length); p.client_handshake_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length); p.server_handshake_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length); p.client_handshake_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length); p.server_handshake_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length); }, else => { return error.TlsIllegalParameter; }, } }, else => return error.TlsUnexpectedMessage, } } // This is used for two purposes: // * Detect whether a certificate is the first one presented, in which case // we need to verify the host name. // * Flip back and forth between the two cleartext buffers in order to keep // the previous certificate in memory so that it can be verified by the // next one. var cert_index: usize = 0; var read_seq: u64 = 0; var prev_cert: Certificate.Parsed = undefined; // Set to true once a trust chain has been established from the first // certificate to a root CA. const HandshakeState = enum { /// In this state we expect only an encrypted_extensions message. encrypted_extensions, /// In this state we expect certificate messages. certificate, /// In this state we expect certificate or certificate_verify messages. /// certificate messages are ignored since the trust chain is already /// established. trust_chain_established, /// In this state, we expect only the finished message. finished, }; var handshake_state: HandshakeState = .encrypted_extensions; var cleartext_bufs: [2][8000]u8 = undefined; var main_cert_pub_key_algo: Certificate.AlgorithmCategory = undefined; var main_cert_pub_key_buf: [600]u8 = undefined; var main_cert_pub_key_len: u16 = undefined; const now_sec = std.time.timestamp(); while (true) { try d.readAtLeastOurAmt(stream, tls.record_header_len); const record_header = d.buf[d.idx..][0..5]; const ct = d.decode(tls.ContentType); d.skip(2); // legacy_version const record_len = d.decode(u16); try d.readAtLeast(stream, record_len); var record_decoder = try d.sub(record_len); switch (ct) { .change_cipher_spec => { try record_decoder.ensure(1); if (record_decoder.decode(u8) != 0x01) return error.TlsIllegalParameter; }, .application_data => { const cleartext_buf = &cleartext_bufs[cert_index % 2]; const cleartext = switch (handshake_cipher) { inline else => |*p| c: { const P = @TypeOf(p.*); const ciphertext_len = record_len - P.AEAD.tag_length; try record_decoder.ensure(ciphertext_len + P.AEAD.tag_length); const ciphertext = record_decoder.slice(ciphertext_len); if (ciphertext.len > cleartext_buf.len) return error.TlsRecordOverflow; const cleartext = cleartext_buf[0..ciphertext.len]; const auth_tag = record_decoder.array(P.AEAD.tag_length).*; const V = @Vector(P.AEAD.nonce_length, u8); const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8); const operand: V = pad ++ @as([8]u8, @bitCast(big(read_seq))); read_seq += 1; const nonce = @as(V, p.server_handshake_iv) ^ operand; P.AEAD.decrypt(cleartext, ciphertext, auth_tag, record_header, nonce, p.server_handshake_key) catch return error.TlsBadRecordMac; break :c cleartext; }, }; const inner_ct: tls.ContentType = @enumFromInt(cleartext[cleartext.len - 1]); if (inner_ct != .handshake) return error.TlsUnexpectedMessage; var ctd = tls.Decoder.fromTheirSlice(cleartext[0 .. cleartext.len - 1]); while (true) { try ctd.ensure(4); const handshake_type = ctd.decode(tls.HandshakeType); const handshake_len = ctd.decode(u24); var hsd = try ctd.sub(handshake_len); const wrapped_handshake = ctd.buf[ctd.idx - handshake_len - 4 .. ctd.idx]; const handshake = ctd.buf[ctd.idx - handshake_len .. ctd.idx]; switch (handshake_type) { .encrypted_extensions => { if (handshake_state != .encrypted_extensions) return error.TlsUnexpectedMessage; handshake_state = .certificate; switch (handshake_cipher) { inline else => |*p| p.transcript_hash.update(wrapped_handshake), } try hsd.ensure(2); const total_ext_size = hsd.decode(u16); var all_extd = try hsd.sub(total_ext_size); while (!all_extd.eof()) { try all_extd.ensure(4); const et = all_extd.decode(tls.ExtensionType); const ext_size = all_extd.decode(u16); var extd = try all_extd.sub(ext_size); _ = extd; switch (et) { .server_name => {}, else => {}, } } }, .certificate => cert: { switch (handshake_cipher) { inline else => |*p| p.transcript_hash.update(wrapped_handshake), } switch (handshake_state) { .certificate => {}, .trust_chain_established => break :cert, else => return error.TlsUnexpectedMessage, } try hsd.ensure(1 + 4); const cert_req_ctx_len = hsd.decode(u8); if (cert_req_ctx_len != 0) return error.TlsIllegalParameter; const certs_size = hsd.decode(u24); var certs_decoder = try hsd.sub(certs_size); while (!certs_decoder.eof()) { try certs_decoder.ensure(3); const cert_size = certs_decoder.decode(u24); var certd = try certs_decoder.sub(cert_size); const subject_cert: Certificate = .{ .buffer = certd.buf, .index = @intCast(certd.idx), }; const subject = try subject_cert.parse(); if (cert_index == 0) { // Verify the host on the first certificate. try subject.verifyHostName(host); // Keep track of the public key for the // certificate_verify message later. main_cert_pub_key_algo = subject.pub_key_algo; const pub_key = subject.pubKey(); if (pub_key.len > main_cert_pub_key_buf.len) return error.CertificatePublicKeyInvalid; @memcpy(main_cert_pub_key_buf[0..pub_key.len], pub_key); main_cert_pub_key_len = @intCast(pub_key.len); } else { try prev_cert.verify(subject, now_sec); } if (ca_bundle.verify(subject, now_sec)) |_| { handshake_state = .trust_chain_established; break :cert; } else |err| switch (err) { error.CertificateIssuerNotFound => {}, else => |e| return e, } prev_cert = subject; cert_index += 1; try certs_decoder.ensure(2); const total_ext_size = certs_decoder.decode(u16); var all_extd = try certs_decoder.sub(total_ext_size); _ = all_extd; } }, .certificate_verify => { switch (handshake_state) { .trust_chain_established => handshake_state = .finished, .certificate => return error.TlsCertificateNotVerified, else => return error.TlsUnexpectedMessage, } try hsd.ensure(4); const scheme = hsd.decode(tls.SignatureScheme); const sig_len = hsd.decode(u16); try hsd.ensure(sig_len); const encoded_sig = hsd.slice(sig_len); const max_digest_len = 64; var verify_buffer = ([1]u8{0x20} ** 64) ++ "TLS 1.3, server CertificateVerify\x00".* ++ @as([max_digest_len]u8, undefined); const verify_bytes = switch (handshake_cipher) { inline else => |*p| v: { const transcript_digest = p.transcript_hash.peek(); verify_buffer[verify_buffer.len - max_digest_len ..][0..transcript_digest.len].* = transcript_digest; p.transcript_hash.update(wrapped_handshake); break :v verify_buffer[0 .. verify_buffer.len - max_digest_len + transcript_digest.len]; }, }; const main_cert_pub_key = main_cert_pub_key_buf[0..main_cert_pub_key_len]; switch (scheme) { inline .ecdsa_secp256r1_sha256, .ecdsa_secp384r1_sha384, => |comptime_scheme| { if (main_cert_pub_key_algo != .X9_62_id_ecPublicKey) return error.TlsBadSignatureScheme; const Ecdsa = SchemeEcdsa(comptime_scheme); const sig = try Ecdsa.Signature.fromDer(encoded_sig); const key = try Ecdsa.PublicKey.fromSec1(main_cert_pub_key); try sig.verify(verify_bytes, key); }, inline .rsa_pss_rsae_sha256, .rsa_pss_rsae_sha384, .rsa_pss_rsae_sha512, => |comptime_scheme| { if (main_cert_pub_key_algo != .rsaEncryption) return error.TlsBadSignatureScheme; const Hash = SchemeHash(comptime_scheme); const rsa = Certificate.rsa; const components = try rsa.PublicKey.parseDer(main_cert_pub_key); const exponent = components.exponent; const modulus = components.modulus; switch (modulus.len) { inline 128, 256, 512 => |modulus_len| { const key = try rsa.PublicKey.fromBytes(exponent, modulus); const sig = rsa.PSSSignature.fromBytes(modulus_len, encoded_sig); try rsa.PSSSignature.verify(modulus_len, sig, verify_bytes, key, Hash); }, else => { return error.TlsBadRsaSignatureBitCount; }, } }, else => { return error.TlsBadSignatureScheme; }, } }, .finished => { if (handshake_state != .finished) return error.TlsUnexpectedMessage; // This message is to trick buggy proxies into behaving correctly. const client_change_cipher_spec_msg = [_]u8{ @intFromEnum(tls.ContentType.change_cipher_spec), 0x03, 0x03, // legacy protocol version 0x00, 0x01, // length 0x01, }; const app_cipher = switch (handshake_cipher) { inline else => |*p, tag| c: { const P = @TypeOf(p.*); const finished_digest = p.transcript_hash.peek(); p.transcript_hash.update(wrapped_handshake); const expected_server_verify_data = tls.hmac(P.Hmac, &finished_digest, p.server_finished_key); if (!mem.eql(u8, &expected_server_verify_data, handshake)) return error.TlsDecryptError; const handshake_hash = p.transcript_hash.finalResult(); const verify_data = tls.hmac(P.Hmac, &handshake_hash, p.client_finished_key); const out_cleartext = [_]u8{ @intFromEnum(tls.HandshakeType.finished), 0, 0, verify_data.len, // length } ++ verify_data ++ [1]u8{@intFromEnum(tls.ContentType.handshake)}; const wrapped_len = out_cleartext.len + P.AEAD.tag_length; var finished_msg = [_]u8{ @intFromEnum(tls.ContentType.application_data), 0x03, 0x03, // legacy protocol version 0, wrapped_len, // byte length of encrypted record } ++ @as([wrapped_len]u8, undefined); const ad = finished_msg[0..5]; const ciphertext = finished_msg[5..][0..out_cleartext.len]; const auth_tag = finished_msg[finished_msg.len - P.AEAD.tag_length ..]; const nonce = p.client_handshake_iv; P.AEAD.encrypt(ciphertext, auth_tag, &out_cleartext, ad, nonce, p.client_handshake_key); const both_msgs = client_change_cipher_spec_msg ++ finished_msg; try stream.writeAll(&both_msgs); const client_secret = hkdfExpandLabel(P.Hkdf, p.master_secret, "c ap traffic", &handshake_hash, P.Hash.digest_length); const server_secret = hkdfExpandLabel(P.Hkdf, p.master_secret, "s ap traffic", &handshake_hash, P.Hash.digest_length); break :c @unionInit(tls.ApplicationCipher, @tagName(tag), .{ .client_secret = client_secret, .server_secret = server_secret, .client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length), .server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length), .client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length), .server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length), }); }, }; const leftover = d.rest(); var client: Client = .{ .read_seq = 0, .write_seq = 0, .partial_cleartext_idx = 0, .partial_ciphertext_idx = 0, .partial_ciphertext_end = @intCast(leftover.len), .received_close_notify = false, .application_cipher = app_cipher, .partially_read_buffer = undefined, }; @memcpy(client.partially_read_buffer[0..leftover.len], leftover); return client; }, else => { return error.TlsUnexpectedMessage; }, } if (ctd.eof()) break; } }, else => { return error.TlsUnexpectedMessage; }, } } } /// Sends TLS-encrypted data to `stream`, which must conform to `StreamInterface`. /// Returns the number of plaintext bytes sent, which may be fewer than `bytes.len`. pub fn write(c: *Client, stream: anytype, bytes: []const u8) !usize { return writeEnd(c, stream, bytes, false); } /// Sends TLS-encrypted data to `stream`, which must conform to `StreamInterface`. pub fn writeAll(c: *Client, stream: anytype, bytes: []const u8) !void { var index: usize = 0; while (index < bytes.len) { index += try c.write(stream, bytes[index..]); } } /// Sends TLS-encrypted data to `stream`, which must conform to `StreamInterface`. /// If `end` is true, then this function additionally sends a `close_notify` alert, /// which is necessary for the server to distinguish between a properly finished /// TLS session, or a truncation attack. pub fn writeAllEnd(c: *Client, stream: anytype, bytes: []const u8, end: bool) !void { var index: usize = 0; while (index < bytes.len) { index += try c.writeEnd(stream, bytes[index..], end); } } /// Sends TLS-encrypted data to `stream`, which must conform to `StreamInterface`. /// Returns the number of plaintext bytes sent, which may be fewer than `bytes.len`. /// If `end` is true, then this function additionally sends a `close_notify` alert, /// which is necessary for the server to distinguish between a properly finished /// TLS session, or a truncation attack. pub fn writeEnd(c: *Client, stream: anytype, bytes: []const u8, end: bool) !usize { var ciphertext_buf: [tls.max_ciphertext_record_len * 4]u8 = undefined; var iovecs_buf: [6]std.os.iovec_const = undefined; var prepared = prepareCiphertextRecord(c, &iovecs_buf, &ciphertext_buf, bytes, .application_data); if (end) { prepared.iovec_end += prepareCiphertextRecord( c, iovecs_buf[prepared.iovec_end..], ciphertext_buf[prepared.ciphertext_end..], &tls.close_notify_alert, .alert, ).iovec_end; } const iovec_end = prepared.iovec_end; const overhead_len = prepared.overhead_len; // Ideally we would call writev exactly once here, however, we must ensure // that we don't return with a record partially written. var i: usize = 0; var total_amt: usize = 0; while (true) { var amt = try stream.writev(iovecs_buf[i..iovec_end]); while (amt >= iovecs_buf[i].iov_len) { const encrypted_amt = iovecs_buf[i].iov_len; total_amt += encrypted_amt - overhead_len; amt -= encrypted_amt; i += 1; // Rely on the property that iovecs delineate records, meaning that // if amt equals zero here, we have fortunately found ourselves // with a short read that aligns at the record boundary. if (i >= iovec_end) return total_amt; // We also cannot return on a vector boundary if the final close_notify is // not sent; otherwise the caller would not know to retry the call. if (amt == 0 and (!end or i < iovec_end - 1)) return total_amt; } iovecs_buf[i].iov_base += amt; iovecs_buf[i].iov_len -= amt; } } fn prepareCiphertextRecord( c: *Client, iovecs: []std.os.iovec_const, ciphertext_buf: []u8, bytes: []const u8, inner_content_type: tls.ContentType, ) struct { iovec_end: usize, ciphertext_end: usize, /// How many bytes are taken up by overhead per record. overhead_len: usize, } { // Due to the trailing inner content type byte in the ciphertext, we need // an additional buffer for storing the cleartext into before encrypting. var cleartext_buf: [max_ciphertext_len]u8 = undefined; var ciphertext_end: usize = 0; var iovec_end: usize = 0; var bytes_i: usize = 0; switch (c.application_cipher) { inline else => |*p| { const P = @TypeOf(p.*); const V = @Vector(P.AEAD.nonce_length, u8); const overhead_len = tls.record_header_len + P.AEAD.tag_length + 1; const close_notify_alert_reserved = tls.close_notify_alert.len + overhead_len; while (true) { const encrypted_content_len: u16 = @intCast(@min( @min(bytes.len - bytes_i, max_ciphertext_len - 1), ciphertext_buf.len - close_notify_alert_reserved - overhead_len - ciphertext_end, )); if (encrypted_content_len == 0) return .{ .iovec_end = iovec_end, .ciphertext_end = ciphertext_end, .overhead_len = overhead_len, }; @memcpy(cleartext_buf[0..encrypted_content_len], bytes[bytes_i..][0..encrypted_content_len]); cleartext_buf[encrypted_content_len] = @intFromEnum(inner_content_type); bytes_i += encrypted_content_len; const ciphertext_len = encrypted_content_len + 1; const cleartext = cleartext_buf[0..ciphertext_len]; const record_start = ciphertext_end; const ad = ciphertext_buf[ciphertext_end..][0..5]; ad.* = [_]u8{@intFromEnum(tls.ContentType.application_data)} ++ int2(@intFromEnum(tls.ProtocolVersion.tls_1_2)) ++ int2(ciphertext_len + P.AEAD.tag_length); ciphertext_end += ad.len; const ciphertext = ciphertext_buf[ciphertext_end..][0..ciphertext_len]; ciphertext_end += ciphertext_len; const auth_tag = ciphertext_buf[ciphertext_end..][0..P.AEAD.tag_length]; ciphertext_end += auth_tag.len; const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8); const operand: V = pad ++ @as([8]u8, @bitCast(big(c.write_seq))); c.write_seq += 1; // TODO send key_update on overflow const nonce = @as(V, p.client_iv) ^ operand; P.AEAD.encrypt(ciphertext, auth_tag, cleartext, ad, nonce, p.client_key); const record = ciphertext_buf[record_start..ciphertext_end]; iovecs[iovec_end] = .{ .iov_base = record.ptr, .iov_len = record.len, }; iovec_end += 1; } }, } } pub fn eof(c: Client) bool { return c.received_close_notify and c.partial_cleartext_idx >= c.partial_ciphertext_idx and c.partial_ciphertext_idx >= c.partial_ciphertext_end; } /// Receives TLS-encrypted data from `stream`, which must conform to `StreamInterface`. /// Returns the number of bytes read, calling the underlying read function the /// minimal number of times until the buffer has at least `len` bytes filled. /// If the number read is less than `len` it means the stream reached the end. /// Reaching the end of the stream is not an error condition. pub fn readAtLeast(c: *Client, stream: anytype, buffer: []u8, len: usize) !usize { var iovecs = [1]std.os.iovec{.{ .iov_base = buffer.ptr, .iov_len = buffer.len }}; return readvAtLeast(c, stream, &iovecs, len); } /// Receives TLS-encrypted data from `stream`, which must conform to `StreamInterface`. pub fn read(c: *Client, stream: anytype, buffer: []u8) !usize { return readAtLeast(c, stream, buffer, 1); } /// Receives TLS-encrypted data from `stream`, which must conform to `StreamInterface`. /// Returns the number of bytes read. If the number read is smaller than /// `buffer.len`, it means the stream reached the end. Reaching the end of the /// stream is not an error condition. pub fn readAll(c: *Client, stream: anytype, buffer: []u8) !usize { return readAtLeast(c, stream, buffer, buffer.len); } /// Receives TLS-encrypted data from `stream`, which must conform to `StreamInterface`. /// Returns the number of bytes read. If the number read is less than the space /// provided it means the stream reached the end. Reaching the end of the /// stream is not an error condition. /// The `iovecs` parameter is mutable because this function needs to mutate the fields in /// order to handle partial reads from the underlying stream layer. pub fn readv(c: *Client, stream: anytype, iovecs: []std.os.iovec) !usize { return readvAtLeast(c, stream, iovecs); } /// Receives TLS-encrypted data from `stream`, which must conform to `StreamInterface`. /// Returns the number of bytes read, calling the underlying read function the /// minimal number of times until the iovecs have at least `len` bytes filled. /// If the number read is less than `len` it means the stream reached the end. /// Reaching the end of the stream is not an error condition. /// The `iovecs` parameter is mutable because this function needs to mutate the fields in /// order to handle partial reads from the underlying stream layer. pub fn readvAtLeast(c: *Client, stream: anytype, iovecs: []std.os.iovec, len: usize) !usize { if (c.eof()) return 0; var off_i: usize = 0; var vec_i: usize = 0; while (true) { var amt = try c.readvAdvanced(stream, iovecs[vec_i..]); off_i += amt; if (c.eof() or off_i >= len) return off_i; while (amt >= iovecs[vec_i].iov_len) { amt -= iovecs[vec_i].iov_len; vec_i += 1; } iovecs[vec_i].iov_base += amt; iovecs[vec_i].iov_len -= amt; } } /// Receives TLS-encrypted data from `stream`, which must conform to `StreamInterface`. /// Returns number of bytes that have been read, populated inside `iovecs`. A /// return value of zero bytes does not mean end of stream. Instead, check the `eof()` /// for the end of stream. The `eof()` may be true after any call to /// `read`, including when greater than zero bytes are returned, and this /// function asserts that `eof()` is `false`. /// See `readv` for a higher level function that has the same, familiar API as /// other read functions, such as `std.fs.File.read`. pub fn readvAdvanced(c: *Client, stream: anytype, iovecs: []const std.os.iovec) !usize { var vp: VecPut = .{ .iovecs = iovecs }; // Give away the buffered cleartext we have, if any. const partial_cleartext = c.partially_read_buffer[c.partial_cleartext_idx..c.partial_ciphertext_idx]; if (partial_cleartext.len > 0) { const amt: u15 = @intCast(vp.put(partial_cleartext)); c.partial_cleartext_idx += amt; if (c.partial_cleartext_idx == c.partial_ciphertext_idx and c.partial_ciphertext_end == c.partial_ciphertext_idx) { // The buffer is now empty. c.partial_cleartext_idx = 0; c.partial_ciphertext_idx = 0; c.partial_ciphertext_end = 0; } if (c.received_close_notify) { c.partial_ciphertext_end = 0; assert(vp.total == amt); return amt; } else if (amt > 0) { // We don't need more data, so don't call read. assert(vp.total == amt); return amt; } } assert(!c.received_close_notify); // Ideally, this buffer would never be used. It is needed when `iovecs` are // too small to fit the cleartext, which may be as large as `max_ciphertext_len`. var cleartext_stack_buffer: [max_ciphertext_len]u8 = undefined; // Temporarily stores ciphertext before decrypting it and giving it to `iovecs`. var in_stack_buffer: [max_ciphertext_len * 4]u8 = undefined; // How many bytes left in the user's buffer. const free_size = vp.freeSize(); // The amount of the user's buffer that we need to repurpose for storing // ciphertext. The end of the buffer will be used for such purposes. const ciphertext_buf_len = (free_size / 2) -| in_stack_buffer.len; // The amount of the user's buffer that will be used to give cleartext. The // beginning of the buffer will be used for such purposes. const cleartext_buf_len = free_size - ciphertext_buf_len; // Recoup `partially_read_buffer space`. This is necessary because it is assumed // below that `frag0` is big enough to hold at least one record. limitedOverlapCopy(c.partially_read_buffer[0..c.partial_ciphertext_end], c.partial_ciphertext_idx); c.partial_ciphertext_end -= c.partial_ciphertext_idx; c.partial_ciphertext_idx = 0; c.partial_cleartext_idx = 0; const first_iov = c.partially_read_buffer[c.partial_ciphertext_end..]; var ask_iovecs_buf: [2]std.os.iovec = .{ .{ .iov_base = first_iov.ptr, .iov_len = first_iov.len, }, .{ .iov_base = &in_stack_buffer, .iov_len = in_stack_buffer.len, }, }; // Cleartext capacity of output buffer, in records. Minimum one full record. const buf_cap = @max(cleartext_buf_len / max_ciphertext_len, 1); const wanted_read_len = buf_cap * (max_ciphertext_len + tls.record_header_len); const ask_len = @max(wanted_read_len, cleartext_stack_buffer.len); const ask_iovecs = limitVecs(&ask_iovecs_buf, ask_len); const actual_read_len = try stream.readv(ask_iovecs); if (actual_read_len == 0) { // This is either a truncation attack, a bug in the server, or an // intentional omission of the close_notify message due to truncation // detection handled above the TLS layer. if (c.allow_truncation_attacks) { c.received_close_notify = true; } else { return error.TlsConnectionTruncated; } } // There might be more bytes inside `in_stack_buffer` that need to be processed, // but at least frag0 will have one complete ciphertext record. const frag0_end = @min(c.partially_read_buffer.len, c.partial_ciphertext_end + actual_read_len); const frag0 = c.partially_read_buffer[c.partial_ciphertext_idx..frag0_end]; var frag1 = in_stack_buffer[0..actual_read_len -| first_iov.len]; // We need to decipher frag0 and frag1 but there may be a ciphertext record // straddling the boundary. We can handle this with two memcpy() calls to // assemble the straddling record in between handling the two sides. var frag = frag0; var in: usize = 0; while (true) { if (in == frag.len) { // Perfect split. if (frag.ptr == frag1.ptr) { c.partial_ciphertext_end = c.partial_ciphertext_idx; return vp.total; } frag = frag1; in = 0; continue; } if (in + tls.record_header_len > frag.len) { if (frag.ptr == frag1.ptr) return finishRead(c, frag, in, vp.total); const first = frag[in..]; if (frag1.len < tls.record_header_len) return finishRead2(c, first, frag1, vp.total); // A record straddles the two fragments. Copy into the now-empty first fragment. const record_len_byte_0: u16 = straddleByte(frag, frag1, in + 3); const record_len_byte_1: u16 = straddleByte(frag, frag1, in + 4); const record_len = (record_len_byte_0 << 8) | record_len_byte_1; if (record_len > max_ciphertext_len) return error.TlsRecordOverflow; const full_record_len = record_len + tls.record_header_len; const second_len = full_record_len - first.len; if (frag1.len < second_len) return finishRead2(c, first, frag1, vp.total); limitedOverlapCopy(frag, in); @memcpy(frag[first.len..][0..second_len], frag1[0..second_len]); frag = frag[0..full_record_len]; frag1 = frag1[second_len..]; in = 0; continue; } const ct: tls.ContentType = @enumFromInt(frag[in]); in += 1; const legacy_version = mem.readIntBig(u16, frag[in..][0..2]); in += 2; _ = legacy_version; const record_len = mem.readIntBig(u16, frag[in..][0..2]); if (record_len > max_ciphertext_len) return error.TlsRecordOverflow; in += 2; const end = in + record_len; if (end > frag.len) { // We need the record header on the next iteration of the loop. in -= tls.record_header_len; if (frag.ptr == frag1.ptr) return finishRead(c, frag, in, vp.total); // A record straddles the two fragments. Copy into the now-empty first fragment. const first = frag[in..]; const full_record_len = record_len + tls.record_header_len; const second_len = full_record_len - first.len; if (frag1.len < second_len) return finishRead2(c, first, frag1, vp.total); limitedOverlapCopy(frag, in); @memcpy(frag[first.len..][0..second_len], frag1[0..second_len]); frag = frag[0..full_record_len]; frag1 = frag1[second_len..]; in = 0; continue; } switch (ct) { .alert => { if (in + 2 > frag.len) return error.TlsDecodeError; const level: tls.AlertLevel = @enumFromInt(frag[in]); const desc: tls.AlertDescription = @enumFromInt(frag[in + 1]); _ = level; try desc.toError(); // TODO: handle server-side closures return error.TlsUnexpectedMessage; }, .application_data => { const cleartext = switch (c.application_cipher) { inline else => |*p| c: { const P = @TypeOf(p.*); const V = @Vector(P.AEAD.nonce_length, u8); const ad = frag[in - 5 ..][0..5]; const ciphertext_len = record_len - P.AEAD.tag_length; const ciphertext = frag[in..][0..ciphertext_len]; in += ciphertext_len; const auth_tag = frag[in..][0..P.AEAD.tag_length].*; const pad = [1]u8{0} ** (P.AEAD.nonce_length - 8); const operand: V = pad ++ @as([8]u8, @bitCast(big(c.read_seq))); const nonce: [P.AEAD.nonce_length]u8 = @as(V, p.server_iv) ^ operand; const out_buf = vp.peek(); const cleartext_buf = if (ciphertext.len <= out_buf.len) out_buf else &cleartext_stack_buffer; const cleartext = cleartext_buf[0..ciphertext.len]; P.AEAD.decrypt(cleartext, ciphertext, auth_tag, ad, nonce, p.server_key) catch return error.TlsBadRecordMac; break :c cleartext; }, }; c.read_seq = try std.math.add(u64, c.read_seq, 1); const inner_ct: tls.ContentType = @enumFromInt(cleartext[cleartext.len - 1]); switch (inner_ct) { .alert => { const level: tls.AlertLevel = @enumFromInt(cleartext[0]); const desc: tls.AlertDescription = @enumFromInt(cleartext[1]); if (desc == .close_notify) { c.received_close_notify = true; c.partial_ciphertext_end = c.partial_ciphertext_idx; return vp.total; } _ = level; try desc.toError(); // TODO: handle server-side closures return error.TlsUnexpectedMessage; }, .handshake => { var ct_i: usize = 0; while (true) { const handshake_type: tls.HandshakeType = @enumFromInt(cleartext[ct_i]); ct_i += 1; const handshake_len = mem.readIntBig(u24, cleartext[ct_i..][0..3]); ct_i += 3; const next_handshake_i = ct_i + handshake_len; if (next_handshake_i > cleartext.len - 1) return error.TlsBadLength; const handshake = cleartext[ct_i..next_handshake_i]; switch (handshake_type) { .new_session_ticket => { // This client implementation ignores new session tickets. }, .key_update => { switch (c.application_cipher) { inline else => |*p| { const P = @TypeOf(p.*); const server_secret = hkdfExpandLabel(P.Hkdf, p.server_secret, "traffic upd", "", P.Hash.digest_length); p.server_secret = server_secret; p.server_key = hkdfExpandLabel(P.Hkdf, server_secret, "key", "", P.AEAD.key_length); p.server_iv = hkdfExpandLabel(P.Hkdf, server_secret, "iv", "", P.AEAD.nonce_length); }, } c.read_seq = 0; switch (@as(tls.KeyUpdateRequest, @enumFromInt(handshake[0]))) { .update_requested => { switch (c.application_cipher) { inline else => |*p| { const P = @TypeOf(p.*); const client_secret = hkdfExpandLabel(P.Hkdf, p.client_secret, "traffic upd", "", P.Hash.digest_length); p.client_secret = client_secret; p.client_key = hkdfExpandLabel(P.Hkdf, client_secret, "key", "", P.AEAD.key_length); p.client_iv = hkdfExpandLabel(P.Hkdf, client_secret, "iv", "", P.AEAD.nonce_length); }, } c.write_seq = 0; }, .update_not_requested => {}, _ => return error.TlsIllegalParameter, } }, else => { return error.TlsUnexpectedMessage; }, } ct_i = next_handshake_i; if (ct_i >= cleartext.len - 1) break; } }, .application_data => { // Determine whether the output buffer or a stack // buffer was used for storing the cleartext. if (cleartext.ptr == &cleartext_stack_buffer) { // Stack buffer was used, so we must copy to the output buffer. const msg = cleartext[0 .. cleartext.len - 1]; if (c.partial_ciphertext_idx > c.partial_cleartext_idx) { // We have already run out of room in iovecs. Continue // appending to `partially_read_buffer`. @memcpy( c.partially_read_buffer[c.partial_ciphertext_idx..][0..msg.len], msg, ); c.partial_ciphertext_idx = @intCast(c.partial_ciphertext_idx + msg.len); } else { const amt = vp.put(msg); if (amt < msg.len) { const rest = msg[amt..]; c.partial_cleartext_idx = 0; c.partial_ciphertext_idx = @intCast(rest.len); @memcpy(c.partially_read_buffer[0..rest.len], rest); } } } else { // Output buffer was used directly which means no // memory copying needs to occur, and we can move // on to the next ciphertext record. vp.next(cleartext.len - 1); } }, else => { return error.TlsUnexpectedMessage; }, } }, else => { return error.TlsUnexpectedMessage; }, } in = end; } } fn finishRead(c: *Client, frag: []const u8, in: usize, out: usize) usize { const saved_buf = frag[in..]; if (c.partial_ciphertext_idx > c.partial_cleartext_idx) { // There is cleartext at the beginning already which we need to preserve. c.partial_ciphertext_end = @intCast(c.partial_ciphertext_idx + saved_buf.len); @memcpy(c.partially_read_buffer[c.partial_ciphertext_idx..][0..saved_buf.len], saved_buf); } else { c.partial_cleartext_idx = 0; c.partial_ciphertext_idx = 0; c.partial_ciphertext_end = @intCast(saved_buf.len); @memcpy(c.partially_read_buffer[0..saved_buf.len], saved_buf); } return out; } /// Note that `first` usually overlaps with `c.partially_read_buffer`. fn finishRead2(c: *Client, first: []const u8, frag1: []const u8, out: usize) usize { if (c.partial_ciphertext_idx > c.partial_cleartext_idx) { // There is cleartext at the beginning already which we need to preserve. c.partial_ciphertext_end = @intCast(c.partial_ciphertext_idx + first.len + frag1.len); // TODO: eliminate this call to copyForwards std.mem.copyForwards(u8, c.partially_read_buffer[c.partial_ciphertext_idx..][0..first.len], first); @memcpy(c.partially_read_buffer[c.partial_ciphertext_idx + first.len ..][0..frag1.len], frag1); } else { c.partial_cleartext_idx = 0; c.partial_ciphertext_idx = 0; c.partial_ciphertext_end = @intCast(first.len + frag1.len); // TODO: eliminate this call to copyForwards std.mem.copyForwards(u8, c.partially_read_buffer[0..first.len], first); @memcpy(c.partially_read_buffer[first.len..][0..frag1.len], frag1); } return out; } fn limitedOverlapCopy(frag: []u8, in: usize) void { const first = frag[in..]; if (first.len <= in) { // A single, non-overlapping memcpy suffices. @memcpy(frag[0..first.len], first); } else { // One memcpy call would overlap, so just do this instead. std.mem.copyForwards(u8, frag, first); } } fn straddleByte(s1: []const u8, s2: []const u8, index: usize) u8 { if (index < s1.len) { return s1[index]; } else { return s2[index - s1.len]; } } const builtin = @import("builtin"); const native_endian = builtin.cpu.arch.endian(); inline fn big(x: anytype) @TypeOf(x) { return switch (native_endian) { .Big => x, .Little => @byteSwap(x), }; } fn SchemeEcdsa(comptime scheme: tls.SignatureScheme) type { return switch (scheme) { .ecdsa_secp256r1_sha256 => crypto.sign.ecdsa.EcdsaP256Sha256, .ecdsa_secp384r1_sha384 => crypto.sign.ecdsa.EcdsaP384Sha384, .ecdsa_secp521r1_sha512 => crypto.sign.ecdsa.EcdsaP512Sha512, else => @compileError("bad scheme"), }; } fn SchemeHash(comptime scheme: tls.SignatureScheme) type { return switch (scheme) { .rsa_pss_rsae_sha256 => crypto.hash.sha2.Sha256, .rsa_pss_rsae_sha384 => crypto.hash.sha2.Sha384, .rsa_pss_rsae_sha512 => crypto.hash.sha2.Sha512, else => @compileError("bad scheme"), }; } /// Abstraction for sending multiple byte buffers to a slice of iovecs. const VecPut = struct { iovecs: []const std.os.iovec, idx: usize = 0, off: usize = 0, total: usize = 0, /// Returns the amount actually put which is always equal to bytes.len /// unless the vectors ran out of space. fn put(vp: *VecPut, bytes: []const u8) usize { if (vp.idx >= vp.iovecs.len) return 0; var bytes_i: usize = 0; while (true) { const v = vp.iovecs[vp.idx]; const dest = v.iov_base[vp.off..v.iov_len]; const src = bytes[bytes_i..][0..@min(dest.len, bytes.len - bytes_i)]; @memcpy(dest[0..src.len], src); bytes_i += src.len; vp.off += src.len; if (vp.off >= v.iov_len) { vp.off = 0; vp.idx += 1; if (vp.idx >= vp.iovecs.len) { vp.total += bytes_i; return bytes_i; } } if (bytes_i >= bytes.len) { vp.total += bytes_i; return bytes_i; } } } /// Returns the next buffer that consecutive bytes can go into. fn peek(vp: VecPut) []u8 { if (vp.idx >= vp.iovecs.len) return &.{}; const v = vp.iovecs[vp.idx]; return v.iov_base[vp.off..v.iov_len]; } // After writing to the result of peek(), one can call next() to // advance the cursor. fn next(vp: *VecPut, len: usize) void { vp.total += len; vp.off += len; if (vp.off >= vp.iovecs[vp.idx].iov_len) { vp.off = 0; vp.idx += 1; } } fn freeSize(vp: VecPut) usize { if (vp.idx >= vp.iovecs.len) return 0; var total: usize = 0; total += vp.iovecs[vp.idx].iov_len - vp.off; if (vp.idx + 1 >= vp.iovecs.len) return total; for (vp.iovecs[vp.idx + 1 ..]) |v| total += v.iov_len; return total; } }; /// Limit iovecs to a specific byte size. fn limitVecs(iovecs: []std.os.iovec, len: usize) []std.os.iovec { var bytes_left: usize = len; for (iovecs, 0..) |*iovec, vec_i| { if (bytes_left <= iovec.iov_len) { iovec.iov_len = bytes_left; return iovecs[0 .. vec_i + 1]; } bytes_left -= iovec.iov_len; } return iovecs; } /// The priority order here is chosen based on what crypto algorithms Zig has /// available in the standard library as well as what is faster. Following are /// a few data points on the relative performance of these algorithms. /// /// Measurement taken with 0.11.0-dev.810+c2f5848fe /// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz: /// zig run .lib/std/crypto/benchmark.zig -OReleaseFast /// aegis-128l: 15382 MiB/s /// aegis-256: 9553 MiB/s /// aes128-gcm: 3721 MiB/s /// aes256-gcm: 3010 MiB/s /// chacha20Poly1305: 597 MiB/s /// /// Measurement taken with 0.11.0-dev.810+c2f5848fe /// on x86_64-linux Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz: /// zig run .lib/std/crypto/benchmark.zig -OReleaseFast -mcpu=baseline /// aegis-128l: 629 MiB/s /// chacha20Poly1305: 529 MiB/s /// aegis-256: 461 MiB/s /// aes128-gcm: 138 MiB/s /// aes256-gcm: 120 MiB/s const cipher_suites = if (crypto.core.aes.has_hardware_support) enum_array(tls.CipherSuite, &.{ .AEGIS_128L_SHA256, .AEGIS_256_SHA384, .AES_128_GCM_SHA256, .AES_256_GCM_SHA384, .CHACHA20_POLY1305_SHA256, }) else enum_array(tls.CipherSuite, &.{ .CHACHA20_POLY1305_SHA256, .AEGIS_128L_SHA256, .AEGIS_256_SHA384, .AES_128_GCM_SHA256, .AES_256_GCM_SHA384, }); test { _ = StreamInterface; } |
Generated by zstd-live on 2025-08-13 02:35:14 UTC. |