zig/lib/std / elf.zig

Symbol is local

const std = @import("std.zig");
const io = std.io;
const os = std.os;
const math = std.math;
const mem = std.mem;
const assert = std.debug.assert;
const File = std.fs.File;
const native_endian = @import("builtin").target.cpu.arch.endian();

AT_NULL

Symbol is global


pub const AT_NULL = 0;

AT_IGNORE

Beginning of reserved entries

pub const AT_IGNORE = 1;

AT_EXECFD

Symbol is to be eliminated

pub const AT_EXECFD = 2;

AT_PHDR

Version definition of the file itself

pub const AT_PHDR = 3;

AT_PHENT

Weak version identifier

pub const AT_PHENT = 4;

AT_PHNUM

Program header table entry unused

pub const AT_PHNUM = 5;

AT_PAGESZ

Loadable program segment

pub const AT_PAGESZ = 6;

AT_BASE

Dynamic linking information

pub const AT_BASE = 7;

AT_FLAGS

Program interpreter

pub const AT_FLAGS = 8;

AT_ENTRY

Auxiliary information

pub const AT_ENTRY = 9;

AT_NOTELF

Reserved

pub const AT_NOTELF = 10;

AT_UID

Entry for header table itself

pub const AT_UID = 11;

AT_EUID

Thread-local storage segment

pub const AT_EUID = 12;

AT_GID

Number of defined types

pub const AT_GID = 13;

AT_EGID

Start of OS-specific

pub const AT_EGID = 14;

AT_CLKTCK

GCC .eh_frame_hdr segment

pub const AT_CLKTCK = 17;

AT_PLATFORM

Indicates stack executability

pub const AT_PLATFORM = 15;

AT_HWCAP

Read-only after relocation

pub const AT_HWCAP = 16;

AT_FPUCW

Sun specific segment

pub const AT_FPUCW = 18;

AT_DCACHEBSIZE

Stack segment

pub const AT_DCACHEBSIZE = 19;

AT_ICACHEBSIZE

End of OS-specific

pub const AT_ICACHEBSIZE = 20;

AT_UCACHEBSIZE

Start of processor-specific

pub const AT_UCACHEBSIZE = 21;

AT_IGNOREPPC

End of processor-specific

pub const AT_IGNOREPPC = 22;

AT_SECURE

Section header table entry unused

pub const AT_SECURE = 23;

AT_BASE_PLATFORM

Program data

pub const AT_BASE_PLATFORM = 24;

AT_RANDOM

Symbol table

pub const AT_RANDOM = 25;

AT_HWCAP2

String table

pub const AT_HWCAP2 = 26;

AT_EXECFN

Relocation entries with addends

pub const AT_EXECFN = 31;

AT_SYSINFO

Symbol hash table

pub const AT_SYSINFO = 32;

AT_SYSINFO_EHDR

Dynamic linking information

pub const AT_SYSINFO_EHDR = 33;

AT_L1I_CACHESHAPE

Notes

pub const AT_L1I_CACHESHAPE = 34;

AT_L1D_CACHESHAPE

Program space with no data (bss)

pub const AT_L1D_CACHESHAPE = 35;

AT_L2_CACHESHAPE

Relocation entries, no addends

pub const AT_L2_CACHESHAPE = 36;

AT_L3_CACHESHAPE

Reserved

pub const AT_L3_CACHESHAPE = 37;

AT_L1I_CACHESIZE

Dynamic linker symbol table

pub const AT_L1I_CACHESIZE = 40;

AT_L1I_CACHEGEOMETRY

Array of constructors

pub const AT_L1I_CACHEGEOMETRY = 41;

AT_L1D_CACHESIZE

Array of destructors

pub const AT_L1D_CACHESIZE = 42;

AT_L1D_CACHEGEOMETRY

Array of pre-constructors

pub const AT_L1D_CACHEGEOMETRY = 43;

AT_L2_CACHESIZE

Section group

pub const AT_L2_CACHESIZE = 44;

AT_L2_CACHEGEOMETRY

Extended section indices

pub const AT_L2_CACHEGEOMETRY = 45;

AT_L3_CACHESIZE

Start of OS-specific

pub const AT_L3_CACHESIZE = 46;

AT_L3_CACHEGEOMETRY

LLVM address-significance table

pub const AT_L3_CACHEGEOMETRY = 47;

DT_NULL

GNU hash table


pub const DT_NULL = 0;

DT_NEEDED

GNU version definition table

pub const DT_NEEDED = 1;

DT_PLTRELSZ

GNU needed versions table

pub const DT_PLTRELSZ = 2;

DT_PLTGOT

GNU symbol version table

pub const DT_PLTGOT = 3;

DT_HASH

End of OS-specific

pub const DT_HASH = 4;

DT_STRTAB

Start of processor-specific

pub const DT_STRTAB = 5;

DT_SYMTAB

Unwind information

pub const DT_SYMTAB = 6;

DT_RELA

End of processor-specific

pub const DT_RELA = 7;

DT_RELASZ

Start of application-specific

pub const DT_RELASZ = 8;

DT_RELAENT

End of application-specific

pub const DT_RELAENT = 9;

DT_STRSZ

Local symbol

pub const DT_STRSZ = 10;

DT_SYMENT

Global symbol

pub const DT_SYMENT = 11;

DT_INIT

Weak symbol

pub const DT_INIT = 12;

DT_FINI

Number of defined types

pub const DT_FINI = 13;

DT_SONAME

Start of OS-specific

pub const DT_SONAME = 14;

DT_RPATH

Unique symbol

pub const DT_RPATH = 15;

DT_SYMBOLIC

End of OS-specific

pub const DT_SYMBOLIC = 16;

DT_REL

Start of processor-specific

pub const DT_REL = 17;

DT_RELSZ

End of processor-specific

pub const DT_RELSZ = 18;

DT_RELENT

Symbol type is unspecified

pub const DT_RELENT = 19;

DT_PLTREL

Symbol is a data object

pub const DT_PLTREL = 20;

DT_DEBUG

Symbol is a code object

pub const DT_DEBUG = 21;

DT_TEXTREL

Symbol associated with a section

pub const DT_TEXTREL = 22;

DT_JMPREL

Symbol's name is file name

pub const DT_JMPREL = 23;

DT_BIND_NOW

Symbol is a common data object

pub const DT_BIND_NOW = 24;

DT_INIT_ARRAY

Symbol is thread-local data object

pub const DT_INIT_ARRAY = 25;

DT_FINI_ARRAY

Number of defined types

pub const DT_FINI_ARRAY = 26;

DT_INIT_ARRAYSZ

Start of OS-specific

pub const DT_INIT_ARRAYSZ = 27;

DT_FINI_ARRAYSZ

Symbol is indirect code object

pub const DT_FINI_ARRAYSZ = 28;

DT_RUNPATH

End of OS-specific

pub const DT_RUNPATH = 29;

DT_FLAGS

Start of processor-specific

pub const DT_FLAGS = 30;

DT_ENCODING

End of processor-specific

pub const DT_ENCODING = 32;

DT_PREINIT_ARRAY

File types

pub const DT_PREINIT_ARRAY = 32;

DT_PREINIT_ARRAYSZ

No file type

pub const DT_PREINIT_ARRAYSZ = 33;

DT_SYMTAB_SHNDX

Relocatable file

pub const DT_SYMTAB_SHNDX = 34;

DT_NUM

Executable file

pub const DT_NUM = 35;

DT_LOOS

Shared object file

pub const DT_LOOS = 0x6000000d;

DT_HIOS

Core file

pub const DT_HIOS = 0x6ffff000;

DT_LOPROC

Beginning of processor-specific codes

pub const DT_LOPROC = 0x70000000;

DT_HIPROC

Processor-specific

pub const DT_HIPROC = 0x7fffffff;

DT_PROCNUM

All integers are native endian.

pub const DT_PROCNUM = DT_MIPS_NUM;

DT_VALRNGLO

Machine architectures. See current registered ELF machine architectures at: http://www.sco.com/developers/gabi/latest/ch4.eheader.html


pub const DT_VALRNGLO = 0x6ffffd00;

DT_GNU_PRELINKED

No machine

pub const DT_GNU_PRELINKED = 0x6ffffdf5;

DT_GNU_CONFLICTSZ

AT&T WE 32100

pub const DT_GNU_CONFLICTSZ = 0x6ffffdf6;

DT_GNU_LIBLISTSZ

SPARC

pub const DT_GNU_LIBLISTSZ = 0x6ffffdf7;

DT_CHECKSUM

Intel 386

pub const DT_CHECKSUM = 0x6ffffdf8;

DT_PLTPADSZ

Motorola 68000

pub const DT_PLTPADSZ = 0x6ffffdf9;

DT_MOVEENT

Motorola 88000

pub const DT_MOVEENT = 0x6ffffdfa;

DT_MOVESZ

Intel MCU

pub const DT_MOVESZ = 0x6ffffdfb;

DT_FEATURE_1

Intel 80860

pub const DT_FEATURE_1 = 0x6ffffdfc;

DT_POSFLAG_1

MIPS R3000

pub const DT_POSFLAG_1 = 0x6ffffdfd;

DT_SYMINSZ

IBM System/370


pub const DT_SYMINSZ = 0x6ffffdfe;

DT_SYMINENT

MIPS RS3000 Little-endian

pub const DT_SYMINENT = 0x6ffffdff;

DT_VALRNGHI

SPU Mark II

pub const DT_VALRNGHI = 0x6ffffdff;

DT_VALNUM

Hewlett-Packard PA-RISC

pub const DT_VALNUM = 12;

DT_ADDRRNGLO

Fujitsu VPP500


pub const DT_ADDRRNGLO = 0x6ffffe00;

DT_GNU_HASH

Enhanced instruction set SPARC

pub const DT_GNU_HASH = 0x6ffffef5;

DT_TLSDESC_PLT

Intel 80960

pub const DT_TLSDESC_PLT = 0x6ffffef6;

DT_TLSDESC_GOT

PowerPC

pub const DT_TLSDESC_GOT = 0x6ffffef7;

DT_GNU_CONFLICT

PowerPC64

pub const DT_GNU_CONFLICT = 0x6ffffef8;

DT_GNU_LIBLIST

IBM System/390

pub const DT_GNU_LIBLIST = 0x6ffffef9;

DT_CONFIG

IBM SPU/SPC

pub const DT_CONFIG = 0x6ffffefa;

DT_DEPAUDIT

NEC V800

pub const DT_DEPAUDIT = 0x6ffffefb;

DT_AUDIT

Fujitsu FR20

pub const DT_AUDIT = 0x6ffffefc;

DT_PLTPAD

TRW RH-32

pub const DT_PLTPAD = 0x6ffffefd;

DT_MOVETAB

Motorola RCE

pub const DT_MOVETAB = 0x6ffffefe;

DT_SYMINFO

ARM

pub const DT_SYMINFO = 0x6ffffeff;

DT_ADDRRNGHI

DEC Alpha

pub const DT_ADDRRNGHI = 0x6ffffeff;

DT_ADDRNUM

Hitachi SH

pub const DT_ADDRNUM = 11;

DT_VERSYM

SPARC V9


pub const DT_VERSYM = 0x6ffffff0;

DT_RELACOUNT

Siemens TriCore


pub const DT_RELACOUNT = 0x6ffffff9;

DT_RELCOUNT

Argonaut RISC Core

pub const DT_RELCOUNT = 0x6ffffffa;

DT_FLAGS_1

Hitachi H8/300


pub const DT_FLAGS_1 = 0x6ffffffb;

DT_VERDEF

Hitachi H8/300H

pub const DT_VERDEF = 0x6ffffffc;

DT_VERDEFNUM

Hitachi H8S


pub const DT_VERDEFNUM = 0x6ffffffd;

DT_VERNEED

Hitachi H8/500

pub const DT_VERNEED = 0x6ffffffe;

DT_VERNEEDNUM

Intel IA-64 processor architecture


pub const DT_VERNEEDNUM = 0x6fffffff;

DT_VERSIONTAGNUM

Stanford MIPS-X

pub const DT_VERSIONTAGNUM = 16;

DT_AUXILIARY

Motorola ColdFire


pub const DT_AUXILIARY = 0x7ffffffd;

DT_FILTER

Motorola M68HC12

pub const DT_FILTER = 0x7fffffff;

DT_EXTRANUM

Fujitsu MMA Multimedia Accelerator

pub const DT_EXTRANUM = 3;

DT_SPARC_REGISTER

Siemens PCP


pub const DT_SPARC_REGISTER = 0x70000001;

DT_SPARC_NUM

Sony nCPU embedded RISC processor

pub const DT_SPARC_NUM = 2;

DT_MIPS_RLD_VERSION

Denso NDR1 microprocessor


pub const DT_MIPS_RLD_VERSION = 0x70000001;

DT_MIPS_TIME_STAMP

Motorola Star*Core processor

pub const DT_MIPS_TIME_STAMP = 0x70000002;

DT_MIPS_ICHECKSUM

Toyota ME16 processor

pub const DT_MIPS_ICHECKSUM = 0x70000003;

DT_MIPS_IVERSION

STMicroelectronics ST100 processor

pub const DT_MIPS_IVERSION = 0x70000004;

DT_MIPS_FLAGS

Advanced Logic Corp. TinyJ embedded processor family

pub const DT_MIPS_FLAGS = 0x70000005;

DT_MIPS_BASE_ADDRESS

AMD x86-64 architecture

pub const DT_MIPS_BASE_ADDRESS = 0x70000006;

DT_MIPS_MSYM

Sony DSP Processor

pub const DT_MIPS_MSYM = 0x70000007;

DT_MIPS_CONFLICT

Digital Equipment Corp. PDP-10

pub const DT_MIPS_CONFLICT = 0x70000008;

DT_MIPS_LIBLIST

Digital Equipment Corp. PDP-11

pub const DT_MIPS_LIBLIST = 0x70000009;

DT_MIPS_LOCAL_GOTNO

Siemens FX66 microcontroller

pub const DT_MIPS_LOCAL_GOTNO = 0x7000000a;

DT_MIPS_CONFLICTNO

STMicroelectronics ST9+ 8/16 bit microcontroller

pub const DT_MIPS_CONFLICTNO = 0x7000000b;

DT_MIPS_LIBLISTNO

STMicroelectronics ST7 8-bit microcontroller

pub const DT_MIPS_LIBLISTNO = 0x70000010;

DT_MIPS_SYMTABNO

Motorola MC68HC16 Microcontroller

pub const DT_MIPS_SYMTABNO = 0x70000011;

DT_MIPS_UNREFEXTNO

Motorola MC68HC11 Microcontroller

pub const DT_MIPS_UNREFEXTNO = 0x70000012;

DT_MIPS_GOTSYM

Motorola MC68HC08 Microcontroller

pub const DT_MIPS_GOTSYM = 0x70000013;

DT_MIPS_HIPAGENO

Motorola MC68HC05 Microcontroller

pub const DT_MIPS_HIPAGENO = 0x70000014;

DT_MIPS_RLD_MAP

Silicon Graphics SVx

pub const DT_MIPS_RLD_MAP = 0x70000016;

DT_MIPS_DELTA_CLASS

STMicroelectronics ST19 8-bit microcontroller

pub const DT_MIPS_DELTA_CLASS = 0x70000017;

DT_MIPS_DELTA_CLASS_NO

Digital VAX

pub const DT_MIPS_DELTA_CLASS_NO = 0x70000018;

DT_MIPS_DELTA_INSTANCE

Axis Communications 32-bit embedded processor


pub const DT_MIPS_DELTA_INSTANCE = 0x70000019;

DT_MIPS_DELTA_INSTANCE_NO

Infineon Technologies 32-bit embedded processor

pub const DT_MIPS_DELTA_INSTANCE_NO = 0x7000001a;

DT_MIPS_DELTA_RELOC

Element 14 64-bit DSP Processor


pub const DT_MIPS_DELTA_RELOC = 0x7000001b;

DT_MIPS_DELTA_RELOC_NO

LSI Logic 16-bit DSP Processor

pub const DT_MIPS_DELTA_RELOC_NO = 0x7000001c;

DT_MIPS_DELTA_SYM

Donald Knuth's educational 64-bit processor


pub const DT_MIPS_DELTA_SYM = 0x7000001d;

DT_MIPS_DELTA_SYM_NO

Harvard University machine-independent object files


pub const DT_MIPS_DELTA_SYM_NO = 0x7000001e;

DT_MIPS_DELTA_CLASSSYM

SiTera Prism


pub const DT_MIPS_DELTA_CLASSSYM = 0x70000020;

DT_MIPS_DELTA_CLASSSYM_NO

Atmel AVR 8-bit microcontroller


pub const DT_MIPS_DELTA_CLASSSYM_NO = 0x70000021;

DT_MIPS_CXX_FLAGS

Fujitsu FR30


pub const DT_MIPS_CXX_FLAGS = 0x70000022;

DT_MIPS_PIXIE_INIT

Mitsubishi D10V

pub const DT_MIPS_PIXIE_INIT = 0x70000023;

DT_MIPS_SYMBOL_LIB

Mitsubishi D30V

pub const DT_MIPS_SYMBOL_LIB = 0x70000024;

DT_MIPS_LOCALPAGE_GOTIDX

NEC v850

pub const DT_MIPS_LOCALPAGE_GOTIDX = 0x70000025;

DT_MIPS_LOCAL_GOTIDX

Mitsubishi M32R

pub const DT_MIPS_LOCAL_GOTIDX = 0x70000026;

DT_MIPS_HIDDEN_GOTIDX

Matsushita MN10300

pub const DT_MIPS_HIDDEN_GOTIDX = 0x70000027;

DT_MIPS_PROTECTED_GOTIDX

Matsushita MN10200

pub const DT_MIPS_PROTECTED_GOTIDX = 0x70000028;

DT_MIPS_OPTIONS

picoJava

pub const DT_MIPS_OPTIONS = 0x70000029;

DT_MIPS_INTERFACE

OpenRISC 32-bit embedded processor

pub const DT_MIPS_INTERFACE = 0x7000002a;

DT_MIPS_DYNSTR_ALIGN

ARC International ARCompact processor (old spelling/synonym: EM_ARC_A5)

pub const DT_MIPS_DYNSTR_ALIGN = 0x7000002b;

DT_MIPS_INTERFACE_SIZE

Tensilica Xtensa Architecture

pub const DT_MIPS_INTERFACE_SIZE = 0x7000002c;

DT_MIPS_RLD_TEXT_RESOLVE_ADDR

Alphamosaic VideoCore processor

pub const DT_MIPS_RLD_TEXT_RESOLVE_ADDR = 0x7000002d;

DT_MIPS_PERF_SUFFIX

Thompson Multimedia General Purpose Processor


pub const DT_MIPS_PERF_SUFFIX = 0x7000002e;

DT_MIPS_COMPACT_SIZE

National Semiconductor 32000 series


pub const DT_MIPS_COMPACT_SIZE = 0x7000002f;

DT_MIPS_GP_VALUE

Tenor Network TPC processor

pub const DT_MIPS_GP_VALUE = 0x70000030;

DT_MIPS_AUX_DYNAMIC

Trebia SNP 1000 processor

pub const DT_MIPS_AUX_DYNAMIC = 0x70000031;

DT_MIPS_PLTGOT

STMicroelectronics (www.st.com) ST200


pub const DT_MIPS_PLTGOT = 0x70000032;

DT_MIPS_RWPLT

Ubicom IP2xxx microcontroller family


pub const DT_MIPS_RWPLT = 0x70000034;

DT_MIPS_RLD_MAP_REL

MAX Processor

pub const DT_MIPS_RLD_MAP_REL = 0x70000035;

DT_MIPS_NUM

National Semiconductor CompactRISC microprocessor

pub const DT_MIPS_NUM = 0x36;

DT_ALPHA_PLTRO

Fujitsu F2MC16


pub const DT_ALPHA_PLTRO = (DT_LOPROC + 0);

DT_ALPHA_NUM

Texas Instruments embedded microcontroller msp430

pub const DT_ALPHA_NUM = 1;

DT_PPC_GOT

Analog Devices Blackfin (DSP) processor


pub const DT_PPC_GOT = (DT_LOPROC + 0);

DT_PPC_OPT

S1C33 Family of Seiko Epson processors

pub const DT_PPC_OPT = (DT_LOPROC + 1);

DT_PPC_NUM

Sharp embedded microprocessor

pub const DT_PPC_NUM = 2;

DT_PPC64_GLINK

Arca RISC Microprocessor


pub const DT_PPC64_GLINK = (DT_LOPROC + 0);

DT_PPC64_OPD

Microprocessor series from PKU-Unity Ltd. and MPRC of Peking University

pub const DT_PPC64_OPD = (DT_LOPROC + 1);

DT_PPC64_OPDSZ

eXcess: 16/32/64-bit configurable embedded CPU

pub const DT_PPC64_OPDSZ = (DT_LOPROC + 2);

DT_PPC64_OPT

Icera Semiconductor Inc. Deep Execution Processor

pub const DT_PPC64_OPT = (DT_LOPROC + 3);

DT_PPC64_NUM

Altera Nios II soft-core processor

pub const DT_PPC64_NUM = 4;

DT_IA_64_PLT_RESERVE

National Semiconductor CompactRISC CRX


pub const DT_IA_64_PLT_RESERVE = (DT_LOPROC + 0);

DT_IA_64_NUM

Motorola XGATE embedded processor

pub const DT_IA_64_NUM = 1;

DT_NIOS2_GP

Infineon C16x/XC16x processor


pub const DT_NIOS2_GP = 0x70000002;

DF_ORIGIN

Renesas M16C series microprocessors


pub const DF_ORIGIN = 0x00000001;

DF_SYMBOLIC

Microchip Technology dsPIC30F Digital Signal Controller

pub const DF_SYMBOLIC = 0x00000002;

DF_TEXTREL

Freescale Communication Engine RISC core

pub const DF_TEXTREL = 0x00000004;

DF_BIND_NOW

Renesas M32C series microprocessors

pub const DF_BIND_NOW = 0x00000008;

DF_STATIC_TLS

Altium TSK3000 core

pub const DF_STATIC_TLS = 0x00000010;

DF_1_NOW

Freescale RS08 embedded processor


pub const DF_1_NOW = 0x00000001;

DF_1_GLOBAL

Analog Devices SHARC family of 32-bit DSP processors

pub const DF_1_GLOBAL = 0x00000002;

DF_1_GROUP

Cyan Technology eCOG2 microprocessor

pub const DF_1_GROUP = 0x00000004;

DF_1_NODELETE

Sunplus S+core7 RISC processor

pub const DF_1_NODELETE = 0x00000008;

DF_1_LOADFLTR

New Japan Radio (NJR) 24-bit DSP Processor

pub const DF_1_LOADFLTR = 0x00000010;

DF_1_INITFIRST

Broadcom VideoCore III processor

pub const DF_1_INITFIRST = 0x00000020;

DF_1_NOOPEN

RISC processor for Lattice FPGA architecture

pub const DF_1_NOOPEN = 0x00000040;

DF_1_ORIGIN

Seiko Epson C17 family

pub const DF_1_ORIGIN = 0x00000080;

DF_1_DIRECT

The Texas Instruments TMS320C6000 DSP family

pub const DF_1_DIRECT = 0x00000100;

DF_1_TRANS

The Texas Instruments TMS320C2000 DSP family

pub const DF_1_TRANS = 0x00000200;

DF_1_INTERPOSE

The Texas Instruments TMS320C55x DSP family

pub const DF_1_INTERPOSE = 0x00000400;

DF_1_NODEFLIB

STMicroelectronics 64bit VLIW Data Signal Processor

pub const DF_1_NODEFLIB = 0x00000800;

DF_1_NODUMP

Cypress M8C microprocessor

pub const DF_1_NODUMP = 0x00001000;

DF_1_CONFALT

Renesas R32C series microprocessors

pub const DF_1_CONFALT = 0x00002000;

DF_1_ENDFILTEE

NXP Semiconductors TriMedia architecture family

pub const DF_1_ENDFILTEE = 0x00004000;

DF_1_DISPRELDNE

Qualcomm Hexagon processor

pub const DF_1_DISPRELDNE = 0x00008000;

DF_1_DISPRELPND

Intel 8051 and variants

pub const DF_1_DISPRELPND = 0x00010000;

DF_1_NODIRECT

STMicroelectronics STxP7x family of configurable and extensible RISC processors

pub const DF_1_NODIRECT = 0x00020000;

DF_1_IGNMULDEF

Andes Technology compact code size embedded RISC processor family

pub const DF_1_IGNMULDEF = 0x00040000;

DF_1_NOKSYMS

Cyan Technology eCOG1X family

pub const DF_1_NOKSYMS = 0x00080000;

DF_1_NOHDR

Dallas Semiconductor MAXQ30 Core Micro-controllers

pub const DF_1_NOHDR = 0x00100000;

DF_1_EDITED

New Japan Radio (NJR) 16-bit DSP Processor

pub const DF_1_EDITED = 0x00200000;

DF_1_NORELOC

M2000 Reconfigurable RISC Microprocessor

pub const DF_1_NORELOC = 0x00400000;

DF_1_SYMINTPOSE

Cray Inc. NV2 vector architecture

pub const DF_1_SYMINTPOSE = 0x00800000;

DF_1_GLOBAUDIT

Renesas RX family

pub const DF_1_GLOBAUDIT = 0x01000000;

DF_1_SINGLETON

Imagination Technologies META processor architecture

pub const DF_1_SINGLETON = 0x02000000;

DF_1_STUB

MCST Elbrus general purpose hardware architecture

pub const DF_1_STUB = 0x04000000;

DF_1_PIE

Cyan Technology eCOG16 family

pub const DF_1_PIE = 0x08000000;

VERSYM_HIDDEN

National Semiconductor CompactRISC CR16 16-bit microprocessor


pub const VERSYM_HIDDEN = 0x8000;

VERSYM_VERSION

Freescale Extended Time Processing Unit

pub const VERSYM_VERSION = 0x7fff;

VER_NDX_LOCAL

Infineon Technologies SLE9X core


/// Symbol is local
pub const VER_NDX_LOCAL = 0;
/// Symbol is global

VER_NDX_GLOBAL

Intel L10M

pub const VER_NDX_GLOBAL = 1;
/// Beginning of reserved entries

VER_NDX_LORESERVE

Intel K10M

pub const VER_NDX_LORESERVE = 0xff00;
/// Symbol is to be eliminated

VER_NDX_ELIMINATE

ARM AArch64

pub const VER_NDX_ELIMINATE = 0xff01;

VER_FLG_BASE

Atmel Corporation 32-bit microprocessor family


/// Version definition of the file itself
pub const VER_FLG_BASE = 1;
/// Weak version identifier

VER_FLG_WEAK

STMicroeletronics STM8 8-bit microcontroller

pub const VER_FLG_WEAK = 2;

PT_NULL

Tilera TILE64 multicore architecture family


/// Program header table entry unused
pub const PT_NULL = 0;
/// Loadable program segment

PT_LOAD

Tilera TILEPro multicore architecture family

pub const PT_LOAD = 1;
/// Dynamic linking information

PT_DYNAMIC

NVIDIA CUDA architecture

pub const PT_DYNAMIC = 2;
/// Program interpreter

PT_INTERP

Tilera TILE-Gx multicore architecture family

pub const PT_INTERP = 3;
/// Auxiliary information

PT_NOTE

CloudShield architecture family

pub const PT_NOTE = 4;
/// Reserved

PT_SHLIB

KIPO-KAIST Core-A 1st generation processor family

pub const PT_SHLIB = 5;
/// Entry for header table itself

PT_PHDR

KIPO-KAIST Core-A 2nd generation processor family

pub const PT_PHDR = 6;
/// Thread-local storage segment

PT_TLS

Synopsys ARCompact V2

pub const PT_TLS = 7;
/// Number of defined types

PT_NUM

Open8 8-bit RISC soft processor core

pub const PT_NUM = 8;
/// Start of OS-specific

PT_LOOS

Renesas RL78 family

pub const PT_LOOS = 0x60000000;
/// GCC .eh_frame_hdr segment

PT_GNU_EH_FRAME

Broadcom VideoCore V processor

pub const PT_GNU_EH_FRAME = 0x6474e550;
/// Indicates stack executability

PT_GNU_STACK

Renesas 78KOR family

pub const PT_GNU_STACK = 0x6474e551;
/// Read-only after relocation

PT_GNU_RELRO

Freescale 56800EX Digital Signal Controller (DSC)

pub const PT_GNU_RELRO = 0x6474e552;

PT_LOSUNW

Beyond BA1 CPU architecture

pub const PT_LOSUNW = 0x6ffffffa;
/// Sun specific segment

PT_SUNWBSS

Beyond BA2 CPU architecture

pub const PT_SUNWBSS = 0x6ffffffa;
/// Stack segment

PT_SUNWSTACK

XMOS xCORE processor family

pub const PT_SUNWSTACK = 0x6ffffffb;

PT_HISUNW

Microchip 8-bit PIC(r) family

pub const PT_HISUNW = 0x6fffffff;
/// End of OS-specific

PT_HIOS

Reserved by Intel

pub const PT_HIOS = 0x6fffffff;
/// Start of processor-specific

PT_LOPROC

Reserved by Intel

pub const PT_LOPROC = 0x70000000;
/// End of processor-specific

PT_HIPROC

Reserved by Intel

pub const PT_HIPROC = 0x7fffffff;

SHT_NULL

Reserved by Intel


/// Section header table entry unused
pub const SHT_NULL = 0;
/// Program data

SHT_PROGBITS

Reserved by Intel

pub const SHT_PROGBITS = 1;
/// Symbol table

SHT_SYMTAB

KM211 KM32 32-bit processor

pub const SHT_SYMTAB = 2;
/// String table

SHT_STRTAB

KM211 KMX32 32-bit processor

pub const SHT_STRTAB = 3;
/// Relocation entries with addends

SHT_RELA

KM211 KMX16 16-bit processor

pub const SHT_RELA = 4;
/// Symbol hash table

SHT_HASH

KM211 KMX8 8-bit processor

pub const SHT_HASH = 5;
/// Dynamic linking information

SHT_DYNAMIC

KM211 KVARC processor

pub const SHT_DYNAMIC = 6;
/// Notes

SHT_NOTE

Paneve CDP architecture family

pub const SHT_NOTE = 7;
/// Program space with no data (bss)

SHT_NOBITS

Cognitive Smart Memory Processor

pub const SHT_NOBITS = 8;
/// Relocation entries, no addends

SHT_REL

iCelero CoolEngine

pub const SHT_REL = 9;
/// Reserved

SHT_SHLIB

Nanoradio Optimized RISC

pub const SHT_SHLIB = 10;
/// Dynamic linker symbol table

SHT_DYNSYM

CSR Kalimba architecture family

pub const SHT_DYNSYM = 11;
/// Array of constructors

SHT_INIT_ARRAY

AMD GPU architecture

pub const SHT_INIT_ARRAY = 14;
/// Array of destructors

SHT_FINI_ARRAY

RISC-V

pub const SHT_FINI_ARRAY = 15;
/// Array of pre-constructors

SHT_PREINIT_ARRAY

Lanai 32-bit processor

pub const SHT_PREINIT_ARRAY = 16;
/// Section group

SHT_GROUP

Linux kernel bpf virtual machine

pub const SHT_GROUP = 17;
/// Extended section indices

SHT_SYMTAB_SHNDX

C-SKY

pub const SHT_SYMTAB_SHNDX = 18;
/// Start of OS-specific

SHT_LOOS

Fujitsu FR-V

pub const SHT_LOOS = 0x60000000;
/// LLVM address-significance table

SHT_LLVM_ADDRSIG

Section data should be writable during execution.

pub const SHT_LLVM_ADDRSIG = 0x6fff4c03;
/// GNU hash table

SHT_GNU_HASH

Section occupies memory during program execution.

pub const SHT_GNU_HASH = 0x6ffffff6;
/// GNU version definition table

SHT_GNU_VERDEF

Section contains executable machine instructions.

pub const SHT_GNU_VERDEF = 0x6ffffffd;
/// GNU needed versions table

SHT_GNU_VERNEED

The data in this section may be merged.

pub const SHT_GNU_VERNEED = 0x6ffffffe;
/// GNU symbol version table

SHT_GNU_VERSYM

The data in this section is null-terminated strings.

pub const SHT_GNU_VERSYM = 0x6fffffff;
/// End of OS-specific

SHT_HIOS

A field in this section holds a section header table index.

pub const SHT_HIOS = 0x6fffffff;
/// Start of processor-specific

SHT_LOPROC

Adds special ordering requirements for link editors.

pub const SHT_LOPROC = 0x70000000;
/// Unwind information

SHT_X86_64_UNWIND

This section requires special OS-specific processing to avoid incorrect behavior.

pub const SHT_X86_64_UNWIND = 0x70000001;
/// End of processor-specific

SHT_HIPROC

This section is a member of a section group.

pub const SHT_HIPROC = 0x7fffffff;
/// Start of application-specific

SHT_LOUSER

This section holds Thread-Local Storage.

pub const SHT_LOUSER = 0x80000000;
/// End of application-specific

SHT_HIUSER

Identifies a section containing compressed data.

pub const SHT_HIUSER = 0xffffffff;

NT_GNU_BUILD_ID

Not to be GCed by the linker


// Note type for .note.gnu.build_id
pub const NT_GNU_BUILD_ID = 3;

STB_LOCAL

This section is excluded from the final executable or shared library.


/// Local symbol
pub const STB_LOCAL = 0;
/// Global symbol

STB_GLOBAL

Start of target-specific flags.

pub const STB_GLOBAL = 1;
/// Weak symbol

STB_WEAK

Bits indicating processor-specific flags.

pub const STB_WEAK = 2;
/// Number of defined types

STB_NUM

All sections with the "d" flag are grouped together by the linker to form the data section and the dp register is set to the start of the section by the boot code.

pub const STB_NUM = 3;
/// Start of OS-specific

STB_LOOS

All sections with the "c" flag are grouped together by the linker to form the constant pool and the cp register is set to the start of the constant pool by the boot code.

pub const STB_LOOS = 10;
/// Unique symbol

STB_GNU_UNIQUE

If an object file section does not have this flag set, then it may not hold more than 2GB and can be freely referred to in objects using smaller code models. Otherwise, only objects using larger code models can refer to them. For example, a medium code model object can refer to data in a section that sets this flag besides being able to refer to data in a section that does not set it; likewise, a small code model object can refer only to code in a section that does not set this flag.

pub const STB_GNU_UNIQUE = 10;
/// End of OS-specific

STB_HIOS

All sections with the GPREL flag are grouped into a global data area for faster accesses

pub const STB_HIOS = 12;
/// Start of processor-specific

STB_LOPROC

Section contains text/data which may be replicated in other sections. Linker must retain only one copy.

pub const STB_LOPROC = 13;
/// End of processor-specific

STB_HIPROC

Linker must generate implicit hidden weak names.

pub const STB_HIPROC = 15;

STB_MIPS_SPLIT_COMMON

Section data local to process.


pub const STB_MIPS_SPLIT_COMMON = 13;

STT_NOTYPE

Do not strip this section.


/// Symbol type is unspecified
pub const STT_NOTYPE = 0;
/// Symbol is a data object

STT_OBJECT

Section must be part of global data area.

pub const STT_OBJECT = 1;
/// Symbol is a code object

STT_FUNC

This section should be merged.

pub const STT_FUNC = 2;
/// Symbol associated with a section

STT_SECTION

Address size to be inferred from section entry size.

pub const STT_SECTION = 3;
/// Symbol's name is file name

STT_FILE

Section data is string data by default.

pub const STT_FILE = 4;
/// Symbol is a common data object

STT_COMMON

Make code section unreadable when in execute-only mode

pub const STT_COMMON = 5;
/// Symbol is thread-local data object

STT_TLS

Execute

pub const STT_TLS = 6;
/// Number of defined types

STT_NUM

Write

pub const STT_NUM = 7;
/// Start of OS-specific

STT_LOOS

Read

pub const STT_LOOS = 10;
/// Symbol is indirect code object

STT_GNU_IFUNC

Bits for operating system-specific semantics.

pub const STT_GNU_IFUNC = 10;
/// End of OS-specific

STT_HIOS

Bits for processor-specific semantics.

pub const STT_HIOS = 12;
/// Start of processor-specific

STT_LOPROC

Undefined section

pub const STT_LOPROC = 13;
/// End of processor-specific

STT_HIPROC

Start of reserved indices

pub const STT_HIPROC = 15;

STT_SPARC_REGISTER

Start of processor-specific


pub const STT_SPARC_REGISTER = 13;

STT_PARISC_MILLICODE

End of processor-specific


pub const STT_PARISC_MILLICODE = 13;

STT_HP_OPAQUE

Associated symbol is absolute


pub const STT_HP_OPAQUE = (STT_LOOS + 0x1);

STT_HP_STUB

Associated symbol is common

pub const STT_HP_STUB = (STT_LOOS + 0x2);

STT_ARM_TFUNC

End of reserved indices


pub const STT_ARM_TFUNC = STT_LOPROC;

STT_ARM_16BIT

AMD x86-64 relocations. No reloc

pub const STT_ARM_16BIT = STT_HIPROC;

MAGIC

Direct 64 bit


pub const MAGIC = "\x7fELF";

ET

PC relative 32 bit signed


/// File types
pub const ET = enum(u16) {
    /// No file type
    NONE = 0,

LOPROC

32 bit GOT entry


    /// Relocatable file
    REL = 1,

HIPROC

32 bit PLT address


    /// Executable file
    EXEC = 2,

Header

Copy symbol at runtime


    /// Shared object file
    DYN = 3,

program_header_iterator()

Create GOT entry


    /// Core file
    CORE = 4,

section_header_iterator()

Create PLT entry


    /// Beginning of processor-specific codes
    pub const LOPROC = 0xff00;

read()

Adjust by program base


    /// Processor-specific
    pub const HIPROC = 0xffff;
};

parse()

32 bit signed PC relative offset to GOT


/// All integers are native endian.
pub const Header = struct {
    endian: std.builtin.Endian,
    machine: EM,
    is_64: bool,
    entry: u64,
    phoff: u64,
    shoff: u64,
    phentsize: u16,
    phnum: u16,
    shentsize: u16,
    shnum: u16,
    shstrndx: u16,

ProgramHeaderIterator()

Direct 32 bit zero extended


    pub fn program_header_iterator(self: Header, parse_source: anytype) ProgramHeaderIterator(@TypeOf(parse_source)) {
        return ProgramHeaderIterator(@TypeOf(parse_source)){
            .elf_header = self,
            .parse_source = parse_source,
        };
    }

next()

Direct 32 bit sign extended


    pub fn section_header_iterator(self: Header, parse_source: anytype) SectionHeaderIterator(@TypeOf(parse_source)) {
        return SectionHeaderIterator(@TypeOf(parse_source)){
            .elf_header = self,
            .parse_source = parse_source,
        };
    }

SectionHeaderIterator()

Direct 16 bit zero extended


    pub fn read(parse_source: anytype) !Header {
        var hdr_buf: [@sizeOf(Elf64_Ehdr)]u8 align(@alignOf(Elf64_Ehdr)) = undefined;
        try parse_source.seekableStream().seekTo(0);
        try parse_source.reader().readNoEof(&hdr_buf);
        return Header.parse(&hdr_buf);
    }

next()

16 bit sign extended pc relative


    pub fn parse(hdr_buf: *align(@alignOf(Elf64_Ehdr)) const [@sizeOf(Elf64_Ehdr)]u8) !Header {
        const hdr32 = @as(*const Elf32_Ehdr, @ptrCast(hdr_buf));
        const hdr64 = @as(*const Elf64_Ehdr, @ptrCast(hdr_buf));
        if (!mem.eql(u8, hdr32.e_ident[0..4], MAGIC)) return error.InvalidElfMagic;
        if (hdr32.e_ident[EI_VERSION] != 1) return error.InvalidElfVersion;

int()

Direct 8 bit sign extended


        const endian: std.builtin.Endian = switch (hdr32.e_ident[EI_DATA]) {
            ELFDATA2LSB => .Little,
            ELFDATA2MSB => .Big,
            else => return error.InvalidElfEndian,
        };
        const need_bswap = endian != native_endian;

int32()

8 bit sign extended pc relative


        const is_64 = switch (hdr32.e_ident[EI_CLASS]) {
            ELFCLASS32 => false,
            ELFCLASS64 => true,
            else => return error.InvalidElfClass,
        };

EI_NIDENT

ID of module containing symbol


        const machine = if (need_bswap) blk: {
            const value = @intFromEnum(hdr32.e_machine);
            break :blk @as(EM, @enumFromInt(@byteSwap(value)));
        } else hdr32.e_machine;

EI_CLASS

Offset in module's TLS block


        return @as(Header, .{
            .endian = endian,
            .machine = machine,
            .is_64 = is_64,
            .entry = int(is_64, need_bswap, hdr32.e_entry, hdr64.e_entry),
            .phoff = int(is_64, need_bswap, hdr32.e_phoff, hdr64.e_phoff),
            .shoff = int(is_64, need_bswap, hdr32.e_shoff, hdr64.e_shoff),
            .phentsize = int(is_64, need_bswap, hdr32.e_phentsize, hdr64.e_phentsize),
            .phnum = int(is_64, need_bswap, hdr32.e_phnum, hdr64.e_phnum),
            .shentsize = int(is_64, need_bswap, hdr32.e_shentsize, hdr64.e_shentsize),
            .shnum = int(is_64, need_bswap, hdr32.e_shnum, hdr64.e_shnum),
            .shstrndx = int(is_64, need_bswap, hdr32.e_shstrndx, hdr64.e_shstrndx),
        });
    }
};

ELFCLASSNONE

Offset in initial TLS block


pub fn ProgramHeaderIterator(comptime ParseSource: anytype) type {
    return struct {
        elf_header: Header,
        parse_source: ParseSource,
        index: usize = 0,

ELFCLASS32

32 bit signed PC relative offset to two GOT entries for GD symbol


        pub fn next(self: *@This()) !?Elf64_Phdr {
            if (self.index >= self.elf_header.phnum) return null;
            defer self.index += 1;

ELFCLASS64

32 bit signed PC relative offset to two GOT entries for LD symbol


            if (self.elf_header.is_64) {
                var phdr: Elf64_Phdr = undefined;
                const offset = self.elf_header.phoff + @sizeOf(@TypeOf(phdr)) * self.index;
                try self.parse_source.seekableStream().seekTo(offset);
                try self.parse_source.reader().readNoEof(mem.asBytes(&phdr));

ELFCLASSNUM

Offset in TLS block


                // ELF endianness matches native endianness.
                if (self.elf_header.endian == native_endian) return phdr;

EI_DATA

32 bit signed PC relative offset to GOT entry for IE symbol


                // Convert fields to native endianness.
                mem.byteSwapAllFields(Elf64_Phdr, &phdr);
                return phdr;
            }

ELFDATANONE

Offset in initial TLS block


            var phdr: Elf32_Phdr = undefined;
            const offset = self.elf_header.phoff + @sizeOf(@TypeOf(phdr)) * self.index;
            try self.parse_source.seekableStream().seekTo(offset);
            try self.parse_source.reader().readNoEof(mem.asBytes(&phdr));

ELFDATA2LSB

PC relative 64 bit


            // ELF endianness does NOT match native endianness.
            if (self.elf_header.endian != native_endian) {
                // Convert fields to native endianness.
                mem.byteSwapAllFields(Elf32_Phdr, &phdr);
            }

ELFDATA2MSB

64 bit offset to GOT


            // Convert 32-bit header to 64-bit.
            return Elf64_Phdr{
                .p_type = phdr.p_type,
                .p_offset = phdr.p_offset,
                .p_vaddr = phdr.p_vaddr,
                .p_paddr = phdr.p_paddr,
                .p_filesz = phdr.p_filesz,
                .p_memsz = phdr.p_memsz,
                .p_flags = phdr.p_flags,
                .p_align = phdr.p_align,
            };
        }
    };
}

ELFDATANUM

32 bit signed pc relative offset to GOT


pub fn SectionHeaderIterator(comptime ParseSource: anytype) type {
    return struct {
        elf_header: Header,
        parse_source: ParseSource,
        index: usize = 0,

EI_VERSION

64 bit GOT entry offset


        pub fn next(self: *@This()) !?Elf64_Shdr {
            if (self.index >= self.elf_header.shnum) return null;
            defer self.index += 1;

Elf32_Half

64 bit PC relative offset to GOT entry


            if (self.elf_header.is_64) {
                var shdr: Elf64_Shdr = undefined;
                const offset = self.elf_header.shoff + @sizeOf(@TypeOf(shdr)) * self.index;
                try self.parse_source.seekableStream().seekTo(offset);
                try self.parse_source.reader().readNoEof(mem.asBytes(&shdr));

Elf64_Half

64 bit PC relative offset to GOT


                // ELF endianness matches native endianness.
                if (self.elf_header.endian == native_endian) return shdr;

Elf32_Word

Like GOT64, says PLT entry needed


                // Convert fields to native endianness.
                mem.byteSwapAllFields(Elf64_Shdr, &shdr);
                return shdr;
            }

Elf32_Sword

64-bit GOT relative offset to PLT entry


            var shdr: Elf32_Shdr = undefined;
            const offset = self.elf_header.shoff + @sizeOf(@TypeOf(shdr)) * self.index;
            try self.parse_source.seekableStream().seekTo(offset);
            try self.parse_source.reader().readNoEof(mem.asBytes(&shdr));

Elf64_Word

Size of symbol plus 32-bit addend


            // ELF endianness does NOT match native endianness.
            if (self.elf_header.endian != native_endian) {
                // Convert fields to native endianness.
                mem.byteSwapAllFields(Elf32_Shdr, &shdr);
            }

Elf64_Sword

Size of symbol plus 64-bit addend


            // Convert 32-bit header to 64-bit.
            return Elf64_Shdr{
                .sh_name = shdr.sh_name,
                .sh_type = shdr.sh_type,
                .sh_flags = shdr.sh_flags,
                .sh_addr = shdr.sh_addr,
                .sh_offset = shdr.sh_offset,
                .sh_size = shdr.sh_size,
                .sh_link = shdr.sh_link,
                .sh_info = shdr.sh_info,
                .sh_addralign = shdr.sh_addralign,
                .sh_entsize = shdr.sh_entsize,
            };
        }
    };
}

Elf32_Xword

GOT offset for TLS descriptor


pub fn int(is_64: bool, need_bswap: bool, int_32: anytype, int_64: anytype) @TypeOf(int_64) {
    if (is_64) {
        if (need_bswap) {
            return @byteSwap(int_64);
        } else {
            return int_64;
        }
    } else {
        return int32(need_bswap, int_32, @TypeOf(int_64));
    }
}

Elf32_Sxword

Marker for call through TLS descriptor


pub fn int32(need_bswap: bool, int_32: anytype, comptime Int64: anytype) Int64 {
    if (need_bswap) {
        return @byteSwap(int_32);
    } else {
        return int_32;
    }
}

Elf64_Xword

TLS descriptor


pub const EI_NIDENT = 16;

Elf64_Sxword

Adjust indirectly by program base


pub const EI_CLASS = 4;
pub const ELFCLASSNONE = 0;
pub const ELFCLASS32 = 1;
pub const ELFCLASS64 = 2;
pub const ELFCLASSNUM = 3;

Elf32_Addr

64-bit adjust by program base


pub const EI_DATA = 5;
pub const ELFDATANONE = 0;
pub const ELFDATA2LSB = 1;
pub const ELFDATA2MSB = 2;
pub const ELFDATANUM = 3;

Elf64_Addr

39 Reserved was R_X86_64_PC32_BND 40 Reserved was R_X86_64_PLT32_BND Load from 32 bit signed pc relative offset to GOT entry without REX prefix, relaxable


pub const EI_VERSION = 6;

Elf32_Off

Load from 32 bit signed PC relative offset to GOT entry with REX prefix, relaxable


pub const Elf32_Half = u16;
pub const Elf64_Half = u16;
pub const Elf32_Word = u32;
pub const Elf32_Sword = i32;
pub const Elf64_Word = u32;
pub const Elf64_Sword = i32;
pub const Elf32_Xword = u64;
pub const Elf32_Sxword = i64;
pub const Elf64_Xword = u64;
pub const Elf64_Sxword = i64;
pub const Elf32_Addr = u32;
pub const Elf64_Addr = u64;
pub const Elf32_Off = u32;

Elf64_Off

pub const Elf64_Off = u64;

Elf32_Section

pub const Elf32_Section = u16;

Elf64_Section

pub const Elf64_Section = u16;

Elf32_Versym

pub const Elf32_Versym = Elf32_Half;

Elf64_Versym

pub const Elf64_Versym = Elf64_Half;

Elf32_Ehdr

pub const Elf32_Ehdr = extern struct {
    e_ident: [EI_NIDENT]u8,
    e_type: ET,
    e_machine: EM,
    e_version: Elf32_Word,
    e_entry: Elf32_Addr,
    e_phoff: Elf32_Off,
    e_shoff: Elf32_Off,
    e_flags: Elf32_Word,
    e_ehsize: Elf32_Half,
    e_phentsize: Elf32_Half,
    e_phnum: Elf32_Half,
    e_shentsize: Elf32_Half,
    e_shnum: Elf32_Half,
    e_shstrndx: Elf32_Half,
};

Elf64_Ehdr

pub const Elf64_Ehdr = extern struct {
    e_ident: [EI_NIDENT]u8,
    e_type: ET,
    e_machine: EM,
    e_version: Elf64_Word,
    e_entry: Elf64_Addr,
    e_phoff: Elf64_Off,
    e_shoff: Elf64_Off,
    e_flags: Elf64_Word,
    e_ehsize: Elf64_Half,
    e_phentsize: Elf64_Half,
    e_phnum: Elf64_Half,
    e_shentsize: Elf64_Half,
    e_shnum: Elf64_Half,
    e_shstrndx: Elf64_Half,
};

Elf32_Phdr

pub const Elf32_Phdr = extern struct {
    p_type: Elf32_Word,
    p_offset: Elf32_Off,
    p_vaddr: Elf32_Addr,
    p_paddr: Elf32_Addr,
    p_filesz: Elf32_Word,
    p_memsz: Elf32_Word,
    p_flags: Elf32_Word,
    p_align: Elf32_Word,
};

Elf64_Phdr

pub const Elf64_Phdr = extern struct {
    p_type: Elf64_Word,
    p_flags: Elf64_Word,
    p_offset: Elf64_Off,
    p_vaddr: Elf64_Addr,
    p_paddr: Elf64_Addr,
    p_filesz: Elf64_Xword,
    p_memsz: Elf64_Xword,
    p_align: Elf64_Xword,
};

Elf32_Shdr

pub const Elf32_Shdr = extern struct {
    sh_name: Elf32_Word,
    sh_type: Elf32_Word,
    sh_flags: Elf32_Word,
    sh_addr: Elf32_Addr,
    sh_offset: Elf32_Off,
    sh_size: Elf32_Word,
    sh_link: Elf32_Word,
    sh_info: Elf32_Word,
    sh_addralign: Elf32_Word,
    sh_entsize: Elf32_Word,
};

Elf64_Shdr

pub const Elf64_Shdr = extern struct {
    sh_name: Elf64_Word,
    sh_type: Elf64_Word,
    sh_flags: Elf64_Xword,
    sh_addr: Elf64_Addr,
    sh_offset: Elf64_Off,
    sh_size: Elf64_Xword,
    sh_link: Elf64_Word,
    sh_info: Elf64_Word,
    sh_addralign: Elf64_Xword,
    sh_entsize: Elf64_Xword,
};

Elf32_Chdr

pub const Elf32_Chdr = extern struct {
    ch_type: COMPRESS,
    ch_size: Elf32_Word,
    ch_addralign: Elf32_Word,
};

Elf64_Chdr

pub const Elf64_Chdr = extern struct {
    ch_type: COMPRESS,
    ch_reserved: Elf64_Word = 0,
    ch_size: Elf64_Xword,
    ch_addralign: Elf64_Xword,
};

Elf32_Sym

pub const Elf32_Sym = extern struct {
    st_name: Elf32_Word,
    st_value: Elf32_Addr,
    st_size: Elf32_Word,
    st_info: u8,
    st_other: u8,
    st_shndx: Elf32_Section,

st_type()


st_type()

    pub inline fn st_type(self: @This()) u4 {
        return @as(u4, @truncate(self.st_info));
    }

st_bind()

    pub inline fn st_bind(self: @This()) u4 {
        return @as(u4, @truncate(self.st_info >> 4));
    }
};
pub const Elf64_Sym = extern struct {
    st_name: Elf64_Word,
    st_info: u8,
    st_other: u8,
    st_shndx: Elf64_Section,
    st_value: Elf64_Addr,
    st_size: Elf64_Xword,

st_type()


    pub inline fn st_type(self: @This()) u4 {
        return @as(u4, @truncate(self.st_info));
    }

st_bind()

    pub inline fn st_bind(self: @This()) u4 {
        return @as(u4, @truncate(self.st_info >> 4));
    }
};

Elf32_Syminfo

pub const Elf32_Syminfo = extern struct {
    si_boundto: Elf32_Half,
    si_flags: Elf32_Half,
};

Elf64_Syminfo

pub const Elf64_Syminfo = extern struct {
    si_boundto: Elf64_Half,
    si_flags: Elf64_Half,
};

Elf32_Rel

pub const Elf32_Rel = extern struct {
    r_offset: Elf32_Addr,
    r_info: Elf32_Word,

r_sym()


r_sym()

    pub inline fn r_sym(self: @This()) u24 {
        return @as(u24, @truncate(self.r_info >> 8));
    }

r_type()

    pub inline fn r_type(self: @This()) u8 {
        return @as(u8, @truncate(self.r_info));
    }
};
pub const Elf64_Rel = extern struct {
    r_offset: Elf64_Addr,
    r_info: Elf64_Xword,

r_sym()


r_sym()

    pub inline fn r_sym(self: @This()) u32 {
        return @as(u32, @truncate(self.r_info >> 32));
    }

r_type()

    pub inline fn r_type(self: @This()) u32 {
        return @as(u32, @truncate(self.r_info));
    }
};
pub const Elf32_Rela = extern struct {
    r_offset: Elf32_Addr,
    r_info: Elf32_Word,
    r_addend: Elf32_Sword,

r_sym()


    pub inline fn r_sym(self: @This()) u24 {
        return @as(u24, @truncate(self.r_info >> 8));
    }

r_type()

    pub inline fn r_type(self: @This()) u8 {
        return @as(u8, @truncate(self.r_info));
    }
};

Elf64_Rela

pub const Elf64_Rela = extern struct {
    r_offset: Elf64_Addr,
    r_info: Elf64_Xword,
    r_addend: Elf64_Sxword,

r_sym()


    pub inline fn r_sym(self: @This()) u32 {
        return @as(u32, @truncate(self.r_info >> 32));
    }

r_type()

    pub inline fn r_type(self: @This()) u32 {
        return @as(u32, @truncate(self.r_info));
    }
};

Elf32_Dyn

pub const Elf32_Dyn = extern struct {
    d_tag: Elf32_Sword,
    d_val: Elf32_Addr,
};

Elf64_Dyn

pub const Elf64_Dyn = extern struct {
    d_tag: Elf64_Sxword,
    d_val: Elf64_Addr,
};

Elf32_Verdef

pub const Elf32_Verdef = extern struct {
    vd_version: Elf32_Half,
    vd_flags: Elf32_Half,
    vd_ndx: Elf32_Half,
    vd_cnt: Elf32_Half,
    vd_hash: Elf32_Word,
    vd_aux: Elf32_Word,
    vd_next: Elf32_Word,
};

Elf64_Verdef

pub const Elf64_Verdef = extern struct {
    vd_version: Elf64_Half,
    vd_flags: Elf64_Half,
    vd_ndx: Elf64_Half,
    vd_cnt: Elf64_Half,
    vd_hash: Elf64_Word,
    vd_aux: Elf64_Word,
    vd_next: Elf64_Word,
};

Elf32_Verdaux

pub const Elf32_Verdaux = extern struct {
    vda_name: Elf32_Word,
    vda_next: Elf32_Word,
};

Elf64_Verdaux

pub const Elf64_Verdaux = extern struct {
    vda_name: Elf64_Word,
    vda_next: Elf64_Word,
};

Elf32_Verneed

pub const Elf32_Verneed = extern struct {
    vn_version: Elf32_Half,
    vn_cnt: Elf32_Half,
    vn_file: Elf32_Word,
    vn_aux: Elf32_Word,
    vn_next: Elf32_Word,
};

Elf64_Verneed

pub const Elf64_Verneed = extern struct {
    vn_version: Elf64_Half,
    vn_cnt: Elf64_Half,
    vn_file: Elf64_Word,
    vn_aux: Elf64_Word,
    vn_next: Elf64_Word,
};

Elf32_Vernaux

pub const Elf32_Vernaux = extern struct {
    vna_hash: Elf32_Word,
    vna_flags: Elf32_Half,
    vna_other: Elf32_Half,
    vna_name: Elf32_Word,
    vna_next: Elf32_Word,
};

Elf64_Vernaux

pub const Elf64_Vernaux = extern struct {
    vna_hash: Elf64_Word,
    vna_flags: Elf64_Half,
    vna_other: Elf64_Half,
    vna_name: Elf64_Word,
    vna_next: Elf64_Word,
};

Elf32_auxv_t

pub const Elf32_auxv_t = extern struct {
    a_type: u32,
    a_un: extern union {
        a_val: u32,
    },
};

Elf64_auxv_t

pub const Elf64_auxv_t = extern struct {
    a_type: u64,
    a_un: extern union {
        a_val: u64,
    },
};

Elf32_Nhdr

pub const Elf32_Nhdr = extern struct {
    n_namesz: Elf32_Word,
    n_descsz: Elf32_Word,
    n_type: Elf32_Word,
};

Elf64_Nhdr

pub const Elf64_Nhdr = extern struct {
    n_namesz: Elf64_Word,
    n_descsz: Elf64_Word,
    n_type: Elf64_Word,
};

Elf32_Move

pub const Elf32_Move = extern struct {
    m_value: Elf32_Xword,
    m_info: Elf32_Word,
    m_poffset: Elf32_Word,
    m_repeat: Elf32_Half,
    m_stride: Elf32_Half,
};

Elf64_Move

pub const Elf64_Move = extern struct {
    m_value: Elf64_Xword,
    m_info: Elf64_Xword,
    m_poffset: Elf64_Xword,
    m_repeat: Elf64_Half,
    m_stride: Elf64_Half,
};

Elf32_gptab

pub const Elf32_gptab = extern union {
    gt_header: extern struct {
        gt_current_g_value: Elf32_Word,
        gt_unused: Elf32_Word,
    },
    gt_entry: extern struct {
        gt_g_value: Elf32_Word,
        gt_bytes: Elf32_Word,
    },
};

Elf32_RegInfo

pub const Elf32_RegInfo = extern struct {
    ri_gprmask: Elf32_Word,
    ri_cprmask: [4]Elf32_Word,
    ri_gp_value: Elf32_Sword,
};

Elf_Options

pub const Elf_Options = extern struct {
    kind: u8,
    size: u8,
    section: Elf32_Section,
    info: Elf32_Word,
};

Elf_Options_Hw

pub const Elf_Options_Hw = extern struct {
    hwp_flags1: Elf32_Word,
    hwp_flags2: Elf32_Word,
};

Elf32_Lib

pub const Elf32_Lib = extern struct {
    l_name: Elf32_Word,
    l_time_stamp: Elf32_Word,
    l_checksum: Elf32_Word,
    l_version: Elf32_Word,
    l_flags: Elf32_Word,
};

Elf64_Lib

pub const Elf64_Lib = extern struct {
    l_name: Elf64_Word,
    l_time_stamp: Elf64_Word,
    l_checksum: Elf64_Word,
    l_version: Elf64_Word,
    l_flags: Elf64_Word,
};

Elf32_Conflict

pub const Elf32_Conflict = Elf32_Addr;

Elf_MIPS_ABIFlags_v0

pub const Elf_MIPS_ABIFlags_v0 = extern struct {
    version: Elf32_Half,
    isa_level: u8,
    isa_rev: u8,
    gpr_size: u8,
    cpr1_size: u8,
    cpr2_size: u8,
    fp_abi: u8,
    isa_ext: Elf32_Word,
    ases: Elf32_Word,
    flags1: Elf32_Word,
    flags2: Elf32_Word,
};

Auxv


comptime {
    assert(@sizeOf(Elf32_Ehdr) == 52);
    assert(@sizeOf(Elf64_Ehdr) == 64);

Ehdr


    assert(@sizeOf(Elf32_Phdr) == 32);
    assert(@sizeOf(Elf64_Phdr) == 56);

Phdr


    assert(@sizeOf(Elf32_Shdr) == 40);
    assert(@sizeOf(Elf64_Shdr) == 64);
}

Dyn


pub const Auxv = switch (@sizeOf(usize)) {
    4 => Elf32_auxv_t,
    8 => Elf64_auxv_t,
    else => @compileError("expected pointer size of 32 or 64"),
};
pub const Ehdr = switch (@sizeOf(usize)) {
    4 => Elf32_Ehdr,
    8 => Elf64_Ehdr,
    else => @compileError("expected pointer size of 32 or 64"),
};
pub const Phdr = switch (@sizeOf(usize)) {
    4 => Elf32_Phdr,
    8 => Elf64_Phdr,
    else => @compileError("expected pointer size of 32 or 64"),
};
pub const Dyn = switch (@sizeOf(usize)) {
    4 => Elf32_Dyn,
    8 => Elf64_Dyn,
    else => @compileError("expected pointer size of 32 or 64"),
};

Rel

pub const Rel = switch (@sizeOf(usize)) {
    4 => Elf32_Rel,
    8 => Elf64_Rel,
    else => @compileError("expected pointer size of 32 or 64"),
};

Rela

pub const Rela = switch (@sizeOf(usize)) {
    4 => Elf32_Rela,
    8 => Elf64_Rela,
    else => @compileError("expected pointer size of 32 or 64"),
};

Shdr

pub const Shdr = switch (@sizeOf(usize)) {
    4 => Elf32_Shdr,
    8 => Elf64_Shdr,
    else => @compileError("expected pointer size of 32 or 64"),
};

Chdr

pub const Chdr = switch (@sizeOf(usize)) {
    4 => Elf32_Chdr,
    8 => Elf64_Chdr,
    else => @compileError("expected pointer size of 32 or 64"),
};

Sym

pub const Sym = switch (@sizeOf(usize)) {
    4 => Elf32_Sym,
    8 => Elf64_Sym,
    else => @compileError("expected pointer size of 32 or 64"),
};

Verdef

pub const Verdef = switch (@sizeOf(usize)) {
    4 => Elf32_Verdef,
    8 => Elf64_Verdef,
    else => @compileError("expected pointer size of 32 or 64"),
};

Verdaux

pub const Verdaux = switch (@sizeOf(usize)) {
    4 => Elf32_Verdaux,
    8 => Elf64_Verdaux,
    else => @compileError("expected pointer size of 32 or 64"),
};

Addr

pub const Addr = switch (@sizeOf(usize)) {
    4 => Elf32_Addr,
    8 => Elf64_Addr,
    else => @compileError("expected pointer size of 32 or 64"),
};

Half

pub const Half = switch (@sizeOf(usize)) {
    4 => Elf32_Half,
    8 => Elf64_Half,
    else => @compileError("expected pointer size of 32 or 64"),
};

EM


/// Machine architectures.
///
/// See current registered ELF machine architectures at:
/// http://www.sco.com/developers/gabi/latest/ch4.eheader.html
pub const EM = enum(u16) {
    /// No machine
    NONE = 0,

toTargetCpuArch()


    /// AT&T WE 32100
    M32 = 1,

SHF_WRITE


    /// SPARC
    SPARC = 2,

SHF_ALLOC


    /// Intel 386
    @"386" = 3,

SHF_EXECINSTR


    /// Motorola 68000
    @"68K" = 4,

SHF_MERGE


    /// Motorola 88000
    @"88K" = 5,

SHF_STRINGS


    /// Intel MCU
    IAMCU = 6,

SHF_INFO_LINK


    /// Intel 80860
    @"860" = 7,

SHF_LINK_ORDER


    /// MIPS R3000
    MIPS = 8,

SHF_OS_NONCONFORMING


    /// IBM System/370
    S370 = 9,

SHF_GROUP


    /// MIPS RS3000 Little-endian
    MIPS_RS3_LE = 10,

SHF_TLS


    /// SPU Mark II
    SPU_2 = 13,

SHF_COMPRESSED


    /// Hewlett-Packard PA-RISC
    PARISC = 15,

SHF_GNU_RETAIN


    /// Fujitsu VPP500
    VPP500 = 17,

SHF_EXCLUDE


    /// Enhanced instruction set SPARC
    SPARC32PLUS = 18,

SHF_MASKOS


    /// Intel 80960
    @"960" = 19,

SHF_MASKPROC


    /// PowerPC
    PPC = 20,

XCORE_SHF_DP_SECTION


    /// PowerPC64
    PPC64 = 21,

XCORE_SHF_CP_SECTION


    /// IBM System/390
    S390 = 22,

SHF_X86_64_LARGE


    /// IBM SPU/SPC
    SPU = 23,

SHF_HEX_GPREL


    /// NEC V800
    V800 = 36,

SHF_MIPS_NODUPES


    /// Fujitsu FR20
    FR20 = 37,

SHF_MIPS_NAMES


    /// TRW RH-32
    RH32 = 38,

SHF_MIPS_LOCAL


    /// Motorola RCE
    RCE = 39,

SHF_MIPS_NOSTRIP


    /// ARM
    ARM = 40,

SHF_MIPS_GPREL


    /// DEC Alpha
    ALPHA = 41,

SHF_MIPS_MERGE


    /// Hitachi SH
    SH = 42,

SHF_MIPS_ADDR


    /// SPARC V9
    SPARCV9 = 43,

SHF_MIPS_STRING


    /// Siemens TriCore
    TRICORE = 44,

SHF_ARM_PURECODE


    /// Argonaut RISC Core
    ARC = 45,

PF_X


    /// Hitachi H8/300
    H8_300 = 46,

PF_W


    /// Hitachi H8/300H
    H8_300H = 47,

PF_R


    /// Hitachi H8S
    H8S = 48,

PF_MASKOS


    /// Hitachi H8/500
    H8_500 = 49,

PF_MASKPROC


    /// Intel IA-64 processor architecture
    IA_64 = 50,

SHN_UNDEF


    /// Stanford MIPS-X
    MIPS_X = 51,

SHN_LORESERVE


    /// Motorola ColdFire
    COLDFIRE = 52,

SHN_LOPROC


    /// Motorola M68HC12
    @"68HC12" = 53,

SHN_HIPROC


    /// Fujitsu MMA Multimedia Accelerator
    MMA = 54,

SHN_LIVEPATCH


    /// Siemens PCP
    PCP = 55,

SHN_ABS


    /// Sony nCPU embedded RISC processor
    NCPU = 56,

SHN_COMMON


    /// Denso NDR1 microprocessor
    NDR1 = 57,

SHN_HIRESERVE


    /// Motorola Star*Core processor
    STARCORE = 58,

COMPRESS


    /// Toyota ME16 processor
    ME16 = 59,

R_X86_64_NONE


    /// STMicroelectronics ST100 processor
    ST100 = 60,

R_X86_64_64


    /// Advanced Logic Corp. TinyJ embedded processor family
    TINYJ = 61,

R_X86_64_PC32


    /// AMD x86-64 architecture
    X86_64 = 62,

R_X86_64_GOT32


    /// Sony DSP Processor
    PDSP = 63,

R_X86_64_PLT32


    /// Digital Equipment Corp. PDP-10
    PDP10 = 64,

R_X86_64_COPY


    /// Digital Equipment Corp. PDP-11
    PDP11 = 65,

R_X86_64_GLOB_DAT


    /// Siemens FX66 microcontroller
    FX66 = 66,

R_X86_64_JUMP_SLOT


    /// STMicroelectronics ST9+ 8/16 bit microcontroller
    ST9PLUS = 67,

R_X86_64_RELATIVE


    /// STMicroelectronics ST7 8-bit microcontroller
    ST7 = 68,

R_X86_64_GOTPCREL


    /// Motorola MC68HC16 Microcontroller
    @"68HC16" = 69,

R_X86_64_32


    /// Motorola MC68HC11 Microcontroller
    @"68HC11" = 70,

R_X86_64_32S


    /// Motorola MC68HC08 Microcontroller
    @"68HC08" = 71,

R_X86_64_16


    /// Motorola MC68HC05 Microcontroller
    @"68HC05" = 72,

R_X86_64_PC16


    /// Silicon Graphics SVx
    SVX = 73,

R_X86_64_8


    /// STMicroelectronics ST19 8-bit microcontroller
    ST19 = 74,

R_X86_64_PC8


    /// Digital VAX
    VAX = 75,

R_X86_64_DTPMOD64


    /// Axis Communications 32-bit embedded processor
    CRIS = 76,

R_X86_64_DTPOFF64


    /// Infineon Technologies 32-bit embedded processor
    JAVELIN = 77,

R_X86_64_TPOFF64


    /// Element 14 64-bit DSP Processor
    FIREPATH = 78,

R_X86_64_TLSGD


    /// LSI Logic 16-bit DSP Processor
    ZSP = 79,

R_X86_64_TLSLD


    /// Donald Knuth's educational 64-bit processor
    MMIX = 80,

R_X86_64_DTPOFF32


    /// Harvard University machine-independent object files
    HUANY = 81,

R_X86_64_GOTTPOFF


    /// SiTera Prism
    PRISM = 82,

R_X86_64_TPOFF32


    /// Atmel AVR 8-bit microcontroller
    AVR = 83,

R_X86_64_PC64


    /// Fujitsu FR30
    FR30 = 84,

R_X86_64_GOTOFF64


    /// Mitsubishi D10V
    D10V = 85,

R_X86_64_GOTPC32


    /// Mitsubishi D30V
    D30V = 86,

R_X86_64_GOT64


    /// NEC v850
    V850 = 87,

R_X86_64_GOTPCREL64


    /// Mitsubishi M32R
    M32R = 88,

R_X86_64_GOTPC64


    /// Matsushita MN10300
    MN10300 = 89,

R_X86_64_GOTPLT64


    /// Matsushita MN10200
    MN10200 = 90,

R_X86_64_PLTOFF64


    /// picoJava
    PJ = 91,

R_X86_64_SIZE32


    /// OpenRISC 32-bit embedded processor
    OPENRISC = 92,

R_X86_64_SIZE64


    /// ARC International ARCompact processor (old spelling/synonym: EM_ARC_A5)
    ARC_COMPACT = 93,

R_X86_64_GOTPC32_TLSDESC


    /// Tensilica Xtensa Architecture
    XTENSA = 94,

R_X86_64_TLSDESC_CALL


    /// Alphamosaic VideoCore processor
    VIDEOCORE = 95,

R_X86_64_TLSDESC


    /// Thompson Multimedia General Purpose Processor
    TMM_GPP = 96,

R_X86_64_IRELATIVE


    /// National Semiconductor 32000 series
    NS32K = 97,

R_X86_64_RELATIVE64


    /// Tenor Network TPC processor
    TPC = 98,

R_X86_64_GOTPCRELX


    /// Trebia SNP 1000 processor
    SNP1K = 99,

R_X86_64_REX_GOTPCRELX


    /// STMicroelectronics (www.st.com) ST200
    ST200 = 100,

R_X86_64_NUM


    /// Ubicom IP2xxx microcontroller family
    IP2K = 101,

STV


    /// MAX Processor
    MAX = 102,

    /// National Semiconductor CompactRISC microprocessor
    CR = 103,

    /// Fujitsu F2MC16
    F2MC16 = 104,

    /// Texas Instruments embedded microcontroller msp430
    MSP430 = 105,

    /// Analog Devices Blackfin (DSP) processor
    BLACKFIN = 106,

    /// S1C33 Family of Seiko Epson processors
    SE_C33 = 107,

    /// Sharp embedded microprocessor
    SEP = 108,

    /// Arca RISC Microprocessor
    ARCA = 109,

    /// Microprocessor series from PKU-Unity Ltd. and MPRC of Peking University
    UNICORE = 110,

    /// eXcess: 16/32/64-bit configurable embedded CPU
    EXCESS = 111,

    /// Icera Semiconductor Inc. Deep Execution Processor
    DXP = 112,

    /// Altera Nios II soft-core processor
    ALTERA_NIOS2 = 113,

    /// National Semiconductor CompactRISC CRX
    CRX = 114,

    /// Motorola XGATE embedded processor
    XGATE = 115,

    /// Infineon C16x/XC16x processor
    C166 = 116,

    /// Renesas M16C series microprocessors
    M16C = 117,

    /// Microchip Technology dsPIC30F Digital Signal Controller
    DSPIC30F = 118,

    /// Freescale Communication Engine RISC core
    CE = 119,

    /// Renesas M32C series microprocessors
    M32C = 120,

    /// Altium TSK3000 core
    TSK3000 = 131,

    /// Freescale RS08 embedded processor
    RS08 = 132,

    /// Analog Devices SHARC family of 32-bit DSP processors
    SHARC = 133,

    /// Cyan Technology eCOG2 microprocessor
    ECOG2 = 134,

    /// Sunplus S+core7 RISC processor
    SCORE7 = 135,

    /// New Japan Radio (NJR) 24-bit DSP Processor
    DSP24 = 136,

    /// Broadcom VideoCore III processor
    VIDEOCORE3 = 137,

    /// RISC processor for Lattice FPGA architecture
    LATTICEMICO32 = 138,

    /// Seiko Epson C17 family
    SE_C17 = 139,

    /// The Texas Instruments TMS320C6000 DSP family
    TI_C6000 = 140,

    /// The Texas Instruments TMS320C2000 DSP family
    TI_C2000 = 141,

    /// The Texas Instruments TMS320C55x DSP family
    TI_C5500 = 142,

    /// STMicroelectronics 64bit VLIW Data Signal Processor
    MMDSP_PLUS = 160,

    /// Cypress M8C microprocessor
    CYPRESS_M8C = 161,

    /// Renesas R32C series microprocessors
    R32C = 162,

    /// NXP Semiconductors TriMedia architecture family
    TRIMEDIA = 163,

    /// Qualcomm Hexagon processor
    HEXAGON = 164,

    /// Intel 8051 and variants
    @"8051" = 165,

    /// STMicroelectronics STxP7x family of configurable and extensible RISC processors
    STXP7X = 166,

    /// Andes Technology compact code size embedded RISC processor family
    NDS32 = 167,

    /// Cyan Technology eCOG1X family
    ECOG1X = 168,

    /// Dallas Semiconductor MAXQ30 Core Micro-controllers
    MAXQ30 = 169,

    /// New Japan Radio (NJR) 16-bit DSP Processor
    XIMO16 = 170,

    /// M2000 Reconfigurable RISC Microprocessor
    MANIK = 171,

    /// Cray Inc. NV2 vector architecture
    CRAYNV2 = 172,

    /// Renesas RX family
    RX = 173,

    /// Imagination Technologies META processor architecture
    METAG = 174,

    /// MCST Elbrus general purpose hardware architecture
    MCST_ELBRUS = 175,

    /// Cyan Technology eCOG16 family
    ECOG16 = 176,

    /// National Semiconductor CompactRISC CR16 16-bit microprocessor
    CR16 = 177,

    /// Freescale Extended Time Processing Unit
    ETPU = 178,

    /// Infineon Technologies SLE9X core
    SLE9X = 179,

    /// Intel L10M
    L10M = 180,

    /// Intel K10M
    K10M = 181,

    /// ARM AArch64
    AARCH64 = 183,

    /// Atmel Corporation 32-bit microprocessor family
    AVR32 = 185,

    /// STMicroeletronics STM8 8-bit microcontroller
    STM8 = 186,

    /// Tilera TILE64 multicore architecture family
    TILE64 = 187,

    /// Tilera TILEPro multicore architecture family
    TILEPRO = 188,

    /// NVIDIA CUDA architecture
    CUDA = 190,

    /// Tilera TILE-Gx multicore architecture family
    TILEGX = 191,

    /// CloudShield architecture family
    CLOUDSHIELD = 192,

    /// KIPO-KAIST Core-A 1st generation processor family
    COREA_1ST = 193,

    /// KIPO-KAIST Core-A 2nd generation processor family
    COREA_2ND = 194,

    /// Synopsys ARCompact V2
    ARC_COMPACT2 = 195,

    /// Open8 8-bit RISC soft processor core
    OPEN8 = 196,

    /// Renesas RL78 family
    RL78 = 197,

    /// Broadcom VideoCore V processor
    VIDEOCORE5 = 198,

    /// Renesas 78KOR family
    @"78KOR" = 199,

    /// Freescale 56800EX Digital Signal Controller (DSC)
    @"56800EX" = 200,

    /// Beyond BA1 CPU architecture
    BA1 = 201,

    /// Beyond BA2 CPU architecture
    BA2 = 202,

    /// XMOS xCORE processor family
    XCORE = 203,

    /// Microchip 8-bit PIC(r) family
    MCHP_PIC = 204,

    /// Reserved by Intel
    INTEL205 = 205,

    /// Reserved by Intel
    INTEL206 = 206,

    /// Reserved by Intel
    INTEL207 = 207,

    /// Reserved by Intel
    INTEL208 = 208,

    /// Reserved by Intel
    INTEL209 = 209,

    /// KM211 KM32 32-bit processor
    KM32 = 210,

    /// KM211 KMX32 32-bit processor
    KMX32 = 211,

    /// KM211 KMX16 16-bit processor
    KMX16 = 212,

    /// KM211 KMX8 8-bit processor
    KMX8 = 213,

    /// KM211 KVARC processor
    KVARC = 214,

    /// Paneve CDP architecture family
    CDP = 215,

    /// Cognitive Smart Memory Processor
    COGE = 216,

    /// iCelero CoolEngine
    COOL = 217,

    /// Nanoradio Optimized RISC
    NORC = 218,

    /// CSR Kalimba architecture family
    CSR_KALIMBA = 219,

    /// AMD GPU architecture
    AMDGPU = 224,

    /// RISC-V
    RISCV = 243,

    /// Lanai 32-bit processor
    LANAI = 244,

    /// Linux kernel bpf virtual machine
    BPF = 247,

    /// C-SKY
    CSKY = 252,

    /// Fujitsu FR-V
    FRV = 0x5441,

    _,

    pub fn toTargetCpuArch(em: EM) ?std.Target.Cpu.Arch {
        return switch (em) {
            .AVR => .avr,
            .MSP430 => .msp430,
            .ARC => .arc,
            .ARM => .arm,
            .HEXAGON => .hexagon,
            .@"68K" => .m68k,
            .MIPS => .mips,
            .MIPS_RS3_LE => .mipsel,
            .PPC => .powerpc,
            .SPARC => .sparc,
            .@"386" => .x86,
            .XCORE => .xcore,
            .CSR_KALIMBA => .kalimba,
            .LANAI => .lanai,
            .AARCH64 => .aarch64,
            .PPC64 => .powerpc64,
            .RISCV => .riscv64,
            .X86_64 => .x86_64,
            .BPF => .bpfel,
            .SPARCV9 => .sparc64,
            .S390 => .s390x,
            .SPU_2 => .spu_2,
            // there's many cases we don't (yet) handle, or will never have a
            // zig target cpu arch equivalent (such as null).
            else => null,
        };
    }
};

/// Section data should be writable during execution.
pub const SHF_WRITE = 0x1;

/// Section occupies memory during program execution.
pub const SHF_ALLOC = 0x2;

/// Section contains executable machine instructions.
pub const SHF_EXECINSTR = 0x4;

/// The data in this section may be merged.
pub const SHF_MERGE = 0x10;

/// The data in this section is null-terminated strings.
pub const SHF_STRINGS = 0x20;

/// A field in this section holds a section header table index.
pub const SHF_INFO_LINK = 0x40;

/// Adds special ordering requirements for link editors.
pub const SHF_LINK_ORDER = 0x80;

/// This section requires special OS-specific processing to avoid incorrect
/// behavior.
pub const SHF_OS_NONCONFORMING = 0x100;

/// This section is a member of a section group.
pub const SHF_GROUP = 0x200;

/// This section holds Thread-Local Storage.
pub const SHF_TLS = 0x400;

/// Identifies a section containing compressed data.
pub const SHF_COMPRESSED = 0x800;

/// Not to be GCed by the linker
pub const SHF_GNU_RETAIN = 0x200000;

/// This section is excluded from the final executable or shared library.
pub const SHF_EXCLUDE = 0x80000000;

/// Start of target-specific flags.
pub const SHF_MASKOS = 0x0ff00000;

/// Bits indicating processor-specific flags.
pub const SHF_MASKPROC = 0xf0000000;

/// All sections with the "d" flag are grouped together by the linker to form
/// the data section and the dp register is set to the start of the section by
/// the boot code.
pub const XCORE_SHF_DP_SECTION = 0x10000000;

/// All sections with the "c" flag are grouped together by the linker to form
/// the constant pool and the cp register is set to the start of the constant
/// pool by the boot code.
pub const XCORE_SHF_CP_SECTION = 0x20000000;

/// If an object file section does not have this flag set, then it may not hold
/// more than 2GB and can be freely referred to in objects using smaller code
/// models. Otherwise, only objects using larger code models can refer to them.
/// For example, a medium code model object can refer to data in a section that
/// sets this flag besides being able to refer to data in a section that does
/// not set it; likewise, a small code model object can refer only to code in a
/// section that does not set this flag.
pub const SHF_X86_64_LARGE = 0x10000000;

/// All sections with the GPREL flag are grouped into a global data area
/// for faster accesses
pub const SHF_HEX_GPREL = 0x10000000;

/// Section contains text/data which may be replicated in other sections.
/// Linker must retain only one copy.
pub const SHF_MIPS_NODUPES = 0x01000000;

/// Linker must generate implicit hidden weak names.
pub const SHF_MIPS_NAMES = 0x02000000;

/// Section data local to process.
pub const SHF_MIPS_LOCAL = 0x04000000;

/// Do not strip this section.
pub const SHF_MIPS_NOSTRIP = 0x08000000;

/// Section must be part of global data area.
pub const SHF_MIPS_GPREL = 0x10000000;

/// This section should be merged.
pub const SHF_MIPS_MERGE = 0x20000000;

/// Address size to be inferred from section entry size.
pub const SHF_MIPS_ADDR = 0x40000000;

/// Section data is string data by default.
pub const SHF_MIPS_STRING = 0x80000000;

/// Make code section unreadable when in execute-only mode
pub const SHF_ARM_PURECODE = 0x2000000;

/// Execute
pub const PF_X = 1;

/// Write
pub const PF_W = 2;

/// Read
pub const PF_R = 4;

/// Bits for operating system-specific semantics.
pub const PF_MASKOS = 0x0ff00000;

/// Bits for processor-specific semantics.
pub const PF_MASKPROC = 0xf0000000;

/// Undefined section
pub const SHN_UNDEF = 0;
/// Start of reserved indices
pub const SHN_LORESERVE = 0xff00;
/// Start of processor-specific
pub const SHN_LOPROC = 0xff00;
/// End of processor-specific
pub const SHN_HIPROC = 0xff1f;
pub const SHN_LIVEPATCH = 0xff20;
/// Associated symbol is absolute
pub const SHN_ABS = 0xfff1;
/// Associated symbol is common
pub const SHN_COMMON = 0xfff2;
/// End of reserved indices
pub const SHN_HIRESERVE = 0xffff;

// Legal values for ch_type (compression algorithm).
pub const COMPRESS = enum(u32) {
    ZLIB = 1,
    ZSTD = 2,
    LOOS = 0x60000000,
    HIOS = 0x6fffffff,
    LOPROC = 0x70000000,
    HIPROC = 0x7fffffff,
    _,
};

/// AMD x86-64 relocations.
/// No reloc
pub const R_X86_64_NONE = 0;
/// Direct 64 bit
pub const R_X86_64_64 = 1;
/// PC relative 32 bit signed
pub const R_X86_64_PC32 = 2;
/// 32 bit GOT entry
pub const R_X86_64_GOT32 = 3;
/// 32 bit PLT address
pub const R_X86_64_PLT32 = 4;
/// Copy symbol at runtime
pub const R_X86_64_COPY = 5;
/// Create GOT entry
pub const R_X86_64_GLOB_DAT = 6;
/// Create PLT entry
pub const R_X86_64_JUMP_SLOT = 7;
/// Adjust by program base
pub const R_X86_64_RELATIVE = 8;
/// 32 bit signed PC relative offset to GOT
pub const R_X86_64_GOTPCREL = 9;
/// Direct 32 bit zero extended
pub const R_X86_64_32 = 10;
/// Direct 32 bit sign extended
pub const R_X86_64_32S = 11;
/// Direct 16 bit zero extended
pub const R_X86_64_16 = 12;
/// 16 bit sign extended pc relative
pub const R_X86_64_PC16 = 13;
/// Direct 8 bit sign extended
pub const R_X86_64_8 = 14;
/// 8 bit sign extended pc relative
pub const R_X86_64_PC8 = 15;
/// ID of module containing symbol
pub const R_X86_64_DTPMOD64 = 16;
/// Offset in module's TLS block
pub const R_X86_64_DTPOFF64 = 17;
/// Offset in initial TLS block
pub const R_X86_64_TPOFF64 = 18;
/// 32 bit signed PC relative offset to two GOT entries for GD symbol
pub const R_X86_64_TLSGD = 19;
/// 32 bit signed PC relative offset to two GOT entries for LD symbol
pub const R_X86_64_TLSLD = 20;
/// Offset in TLS block
pub const R_X86_64_DTPOFF32 = 21;
/// 32 bit signed PC relative offset to GOT entry for IE symbol
pub const R_X86_64_GOTTPOFF = 22;
/// Offset in initial TLS block
pub const R_X86_64_TPOFF32 = 23;
/// PC relative 64 bit
pub const R_X86_64_PC64 = 24;
/// 64 bit offset to GOT
pub const R_X86_64_GOTOFF64 = 25;
/// 32 bit signed pc relative offset to GOT
pub const R_X86_64_GOTPC32 = 26;
/// 64 bit GOT entry offset
pub const R_X86_64_GOT64 = 27;
/// 64 bit PC relative offset to GOT entry
pub const R_X86_64_GOTPCREL64 = 28;
/// 64 bit PC relative offset to GOT
pub const R_X86_64_GOTPC64 = 29;
/// Like GOT64, says PLT entry needed
pub const R_X86_64_GOTPLT64 = 30;
/// 64-bit GOT relative offset to PLT entry
pub const R_X86_64_PLTOFF64 = 31;
/// Size of symbol plus 32-bit addend
pub const R_X86_64_SIZE32 = 32;
/// Size of symbol plus 64-bit addend
pub const R_X86_64_SIZE64 = 33;
/// GOT offset for TLS descriptor
pub const R_X86_64_GOTPC32_TLSDESC = 34;
/// Marker for call through TLS descriptor
pub const R_X86_64_TLSDESC_CALL = 35;
/// TLS descriptor
pub const R_X86_64_TLSDESC = 36;
/// Adjust indirectly by program base
pub const R_X86_64_IRELATIVE = 37;
/// 64-bit adjust by program base
pub const R_X86_64_RELATIVE64 = 38;
/// 39 Reserved was R_X86_64_PC32_BND
/// 40 Reserved was R_X86_64_PLT32_BND
/// Load from 32 bit signed pc relative offset to GOT entry without REX prefix, relaxable
pub const R_X86_64_GOTPCRELX = 41;
/// Load from 32 bit signed PC relative offset to GOT entry with REX prefix, relaxable
pub const R_X86_64_REX_GOTPCRELX = 42;
pub const R_X86_64_NUM = 43;

pub const STV = enum(u2) {
    DEFAULT = 0,
    INTERNAL = 1,
    HIDDEN = 2,
    PROTECTED = 3,
};