Test:math.log1p_64.special
|
if (k != 0) {
const uf = 1 + x;
var iu = @as(u32, @bitCast(uf));
iu += 0x3F800000 - 0x3F3504F3;
k = @as(i32, @intCast(iu >> 23)) - 0x7F;
// correction to avoid underflow in c / u
if (k < 25) {
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
c /= uf;
} else {
c = 0;
}
// u into [sqrt(2)/2, sqrt(2)]
iu = (iu & 0x007FFFFF) + 0x3F3504F3;
f = @as(f32, @bitCast(iu)) - 1;
}
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
const dk = @as(f32, @floatFromInt(k));
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
}
fn log1p_64(x: f64) f64 {
const ln2_hi: f64 = 6.93147180369123816490e-01;
const ln2_lo: f64 = 1.90821492927058770002e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var ix = @as(u64, @bitCast(x));
var hx = @as(u32, @intCast(ix >> 32));
var k: i32 = 1;
var c: f64 = undefined;
var f: f64 = undefined;
// 1 + x < sqrt(2)
if (hx < 0x3FDA827A or hx >> 31 != 0) {
// x <= -1.0
if (hx >= 0xBFF00000) {
// log1p(-1) = -inf
if (x == -1.0) {
return -math.inf(f64);
}
// log1p(x < -1) = nan
else {
return math.nan(f64);
}
}
// |x| < 2^(-53)
if ((hx << 1) < (0x3CA00000 << 1)) {
if ((hx & 0x7FF00000) == 0) {
math.raiseUnderflow();
}
return x;
}
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
if (hx <= 0xBFD2BEC4) {
k = 0;
c = 0;
f = x;
}
} else if (hx >= 0x7FF00000) {
return x;
}
if (k != 0) {
const uf = 1 + x;
const hu = @as(u64, @bitCast(uf));
var iu = @as(u32, @intCast(hu >> 32));
iu += 0x3FF00000 - 0x3FE6A09E;
k = @as(i32, @intCast(iu >> 20)) - 0x3FF;
// correction to avoid underflow in c / u
if (k < 54) {
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
c /= uf;
} else {
c = 0;
}
// u into [sqrt(2)/2, sqrt(2)]
iu = (iu & 0x000FFFFF) + 0x3FE6A09E;
const iq = (@as(u64, iu) << 32) | (hu & 0xFFFFFFFF);
f = @as(f64, @bitCast(iq)) - 1;
}
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
const dk = @as(f64, @floatFromInt(k));
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
}
test "math.log1p" {
try expect(log1p(@as(f32, 0.0)) == log1p_32(0.0));
try expect(log1p(@as(f64, 0.0)) == log1p_64(0.0));
}
test "math.log1p_32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, log1p_32(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(0.2), 0.182322, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(0.8923), 0.637793, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(1.5), 0.916291, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(37.45), 3.649359, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(89.123), 4.501175, epsilon));
try expect(math.approxEqAbs(f32, log1p_32(123123.234375), 11.720949, epsilon));
}
test "math.log1p_64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, log1p_64(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(0.2), 0.182322, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(0.8923), 0.637793, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(1.5), 0.916291, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(37.45), 3.649359, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(89.123), 4.501175, epsilon));
try expect(math.approxEqAbs(f64, log1p_64(123123.234375), 11.720949, epsilon));
}
test "math.log1p_32.special" {
try expect(math.isPositiveInf(log1p_32(math.inf(f32))));
try expect(log1p_32(0.0) == 0.0);
try expect(log1p_32(-0.0) == -0.0);
try expect(math.isNegativeInf(log1p_32(-1.0)));
try expect(math.isNan(log1p_32(-2.0)));
try expect(math.isNan(log1p_32(math.nan(f32))));
}
test "math.log1p_64.special" {
try expect(math.isPositiveInf(log1p_64(math.inf(f64))));
try expect(log1p_64(0.0) == 0.0);
try expect(log1p_64(-0.0) == -0.0);
try expect(math.isNegativeInf(log1p_64(-1.0)));
try expect(math.isNan(log1p_64(-2.0)));
try expect(math.isNan(log1p_64(math.nan(f64))));
}
|