zig/lib/std / mem.zig

Compile time known minimum page size. https://github.com/ziglang/zig/issues/4082

const std = @import("std.zig");
const builtin = @import("builtin");
const debug = std.debug;
const assert = debug.assert;
const math = std.math;
const mem = @This();
const meta = std.meta;
const trait = meta.trait;
const testing = std.testing;
const Endian = std.builtin.Endian;
const native_endian = builtin.cpu.arch.endian();

page_size

The standard library currently thoroughly depends on byte size being 8 bits. (see the use of u8 throughout allocation code as the "byte" type.) Code which depends on this can reference this declaration. If we ever try to port the standard library to a non-8-bit-byte platform, this will allow us to search for things which need to be updated.


/// Compile time known minimum page size.
/// https://github.com/ziglang/zig/issues/4082
pub const page_size = switch (builtin.cpu.arch) {
    .wasm32, .wasm64 => 64 * 1024,
    .aarch64 => switch (builtin.os.tag) {
        .macos, .ios, .watchos, .tvos => 16 * 1024,
        else => 4 * 1024,
    },
    .sparc64 => 8 * 1024,
    else => 4 * 1024,

DelimiterType

Detects and asserts if the std.mem.Allocator interface is violated by the caller or the allocator.

};

Allocator

mem/Allocator.zig

An allocator helper function. Adjusts an allocation length satisfy len_align. full_len should be the full capacity of the allocation which may be greater than the len that was requested. This function should only be used by allocators that are unaffected by len_align.


/// The standard library currently thoroughly depends on byte size
/// being 8 bits.  (see the use of u8 throughout allocation code as
/// the "byte" type.)  Code which depends on this can reference this
/// declaration.  If we ever try to port the standard library to a
/// non-8-bit-byte platform, this will allow us to search for things
/// which need to be updated.
pub const byte_size_in_bits = 8;

ValidationAllocator()

Deprecated: use @memcpy if the arguments do not overlap, or copyForwards if they do.


pub const Allocator = @import("mem/Allocator.zig");

init()

Copy all of source into dest at position 0. dest.len must be >= source.len. If the slices overlap, dest.ptr must be <= src.ptr.


/// Detects and asserts if the std.mem.Allocator interface is violated by the caller
/// or the allocator.
pub fn ValidationAllocator(comptime T: type) type {
    return struct {
        const Self = @This();

allocator()

Copy all of source into dest at position 0. dest.len must be >= source.len. If the slices overlap, dest.ptr must be >= src.ptr.


        underlying_allocator: T,

alloc()

Generally, Zig users are encouraged to explicitly initialize all fields of a struct explicitly rather than using this function. However, it is recognized that there are sometimes use cases for initializing all fields to a "zero" value. For example, when interfacing with a C API where this practice is more common and relied upon. If you are performing code review and see this function used, examine closely - it may be a code smell. Zero initializes the type. This can be used to zero-initialize any type for which it makes sense. Structs will be initialized recursively.


        pub fn init(underlying_allocator: T) @This() {
            return .{
                .underlying_allocator = underlying_allocator,
            };
        }

resize()

Initializes all fields of the struct with their default value, or zero values if no default value is present. If the field is present in the provided initial values, it will have that value instead. Structs are initialized recursively.


        pub fn allocator(self: *Self) Allocator {
            return .{
                .ptr = self,
                .vtable = &.{
                    .alloc = alloc,
                    .resize = resize,
                    .free = free,
                },
            };
        }

free()

TODO: currently this just calls insertionSortContext. The block sort implementation in this file needs to be adapted to use the sort context.


        fn getUnderlyingAllocatorPtr(self: *Self) Allocator {
            if (T == Allocator) return self.underlying_allocator;
            return self.underlying_allocator.allocator();
        }

reset()

Compares two slices of numbers lexicographically. O(n).


        pub fn alloc(
            ctx: *anyopaque,
            n: usize,
            log2_ptr_align: u8,
            ret_addr: usize,
        ) ?[*]u8 {
            assert(n > 0);
            const self: *Self = @ptrCast(@alignCast(ctx));
            const underlying = self.getUnderlyingAllocatorPtr();
            const result = underlying.rawAlloc(n, log2_ptr_align, ret_addr) orelse
                return null;
            assert(mem.isAlignedLog2(@intFromPtr(result), log2_ptr_align));
            return result;
        }

validationWrap()

Compares two many-item pointers with NUL-termination lexicographically.


        pub fn resize(
            ctx: *anyopaque,
            buf: []u8,
            log2_buf_align: u8,
            new_len: usize,
            ret_addr: usize,
        ) bool {
            const self: *Self = @ptrCast(@alignCast(ctx));
            assert(buf.len > 0);
            const underlying = self.getUnderlyingAllocatorPtr();
            return underlying.rawResize(buf, log2_buf_align, new_len, ret_addr);
        }

alignAllocLen()

Returns true if lhs < rhs, false otherwise


        pub fn free(
            ctx: *anyopaque,
            buf: []u8,
            log2_buf_align: u8,
            ret_addr: usize,
        ) void {
            const self: *Self = @ptrCast(@alignCast(ctx));
            assert(buf.len > 0);
            const underlying = self.getUnderlyingAllocatorPtr();
            underlying.rawFree(buf, log2_buf_align, ret_addr);
        }

Test:

Allocator basics

Compares two slices and returns whether they are equal.


reset()

Compares two slices and returns the index of the first inequality. Returns null if the slices are equal.

        pub fn reset(self: *Self) void {
            self.underlying_allocator.reset();
        }
    };

DelimiterType

Takes a sentinel-terminated pointer and returns a slice preserving pointer attributes. [*c] pointers are assumed to be 0-terminated and assumed to not be allowzero.

}

copyForwards()

Takes a sentinel-terminated pointer and returns a slice, iterating over the memory to find the sentinel and determine the length. Pointer attributes such as const are preserved. [*c] pointers are assumed to be non-null and 0-terminated.


pub fn validationWrap(allocator: anytype) ValidationAllocator(@TypeOf(allocator)) {
    return ValidationAllocator(@TypeOf(allocator)).init(allocator);

DelimiterType

Helper for the return type of sliceTo()

}

set

Takes an array, a pointer to an array, a sentinel-terminated pointer, or a slice and iterates searching for the first occurrence of end, returning the scanned slice. If end is not found, the full length of the array/slice/sentinel terminated pointer is returned. If the pointer type is sentinel terminated and end matches that terminator, the resulting slice is also sentinel terminated. Pointer properties such as mutability and alignment are preserved. C pointers are assumed to be non-null.


/// An allocator helper function.  Adjusts an allocation length satisfy `len_align`.
/// `full_len` should be the full capacity of the allocation which may be greater
/// than the `len` that was requested.  This function should only be used by allocators
/// that are unaffected by `len_align`.
pub fn alignAllocLen(full_len: usize, alloc_len: usize, len_align: u29) usize {
    assert(alloc_len > 0);
    assert(alloc_len >= len_align);
    assert(full_len >= alloc_len);
    if (len_align == 0)
        return alloc_len;
    const adjusted = alignBackwardAnyAlign(full_len, len_align);
    assert(adjusted >= alloc_len);
    return adjusted;

DelimiterType

Private helper for sliceTo(). If you want the length, use sliceTo(foo, x).len

}

Test:

zeroes

Takes a sentinel-terminated pointer and iterates over the memory to find the sentinel and determine the length. [*c] pointers are assumed to be non-null and 0-terminated.


const fail_allocator = Allocator{
    .ptr = undefined,
    .vtable = &failAllocator_vtable,

DelimiterType

Returns true if all elements in a slice are equal to the scalar value provided

};

Test:

zeroInit

Remove a set of values from the beginning of a slice.


const failAllocator_vtable = Allocator.VTable{
    .alloc = failAllocatorAlloc,
    .resize = Allocator.noResize,
    .free = Allocator.noFree,

DelimiterType

Remove a set of values from the end of a slice.

};

sortUnstable()

Remove a set of values from the beginning and end of a slice.


fn failAllocatorAlloc(_: *anyopaque, n: usize, log2_alignment: u8, ra: usize) ?[*]u8 {
    _ = n;
    _ = log2_alignment;
    _ = ra;
    return null;

DelimiterType

Linear search for the index of a scalar value inside a slice.

}

sortUnstableContext()

Linear search for the last index of a scalar value inside a slice.


test "Allocator basics" {
    try testing.expectError(error.OutOfMemory, fail_allocator.alloc(u8, 1));
    try testing.expectError(error.OutOfMemory, fail_allocator.allocSentinel(u8, 1, 0));

DelimiterType

Find the first item in slice which is not contained in values. Comparable to strspn in the C standard library.

}

orderZ()

Find the last item in slice which is not contained in values. Like strspn in the C standard library, but searches from the end.


test "Allocator.resize" {
    const primitiveIntTypes = .{
        i8,
        u8,
        i16,
        u16,
        i32,
        u32,
        i64,
        u64,
        i128,
        u128,
        isize,
        usize,
    };
    inline for (primitiveIntTypes) |T| {
        var values = try testing.allocator.alloc(T, 100);
        defer testing.allocator.free(values);

Test:

order and orderZ

Find the first item in slice[start_index..] which is not contained in values. The returned index will be relative to the start of slice, and never less than start_index. Comparable to strspn in the C standard library.


        for (values, 0..) |*v, i| v.* = @as(T, @intCast(i));
        if (!testing.allocator.resize(values, values.len + 10)) return error.OutOfMemory;
        values = values.ptr[0 .. values.len + 10];
        try testing.expect(values.len == 110);
    }

lessThan()

Find the index in a slice of a sub-slice, searching from the end backwards. To start looking at a different index, slice the haystack first. Consider using lastIndexOf instead of this, which will automatically use a more sophisticated algorithm on larger inputs.


    const primitiveFloatTypes = .{
        f16,
        f32,
        f64,
        f128,
    };
    inline for (primitiveFloatTypes) |T| {
        var values = try testing.allocator.alloc(T, 100);
        defer testing.allocator.free(values);

Test:

lessThan

Consider using indexOfPos instead of this, which will automatically use a more sophisticated algorithm on larger inputs.


        for (values, 0..) |*v, i| v.* = @as(T, @floatFromInt(i));
        if (!testing.allocator.resize(values, values.len + 10)) return error.OutOfMemory;
        values = values.ptr[0 .. values.len + 10];
        try testing.expect(values.len == 110);
    }

DelimiterType

Find the index in a slice of a sub-slice, searching from the end backwards. To start looking at a different index, slice the haystack first. Uses the Reverse Boyer-Moore-Horspool algorithm on large inputs; lastIndexOfLinear on small inputs.

}

indexOfDiff()

Uses Boyer-Moore-Horspool algorithm on large inputs; indexOfPosLinear on small inputs.


/// Deprecated: use `@memcpy` if the arguments do not overlap, or
/// `copyForwards` if they do.
pub const copy = copyForwards;

Test:

indexOfDiff

Returns the number of needles inside the haystack needle.len must be > 0 does not count overlapping needles


/// Copy all of source into dest at position 0.
/// dest.len must be >= source.len.
/// If the slices overlap, dest.ptr must be <= src.ptr.
pub fn copyForwards(comptime T: type, dest: []T, source: []const T) void {
    for (dest[0..source.len], source) |*d, s| d.* = s;

DelimiterType

Returns true if the haystack contains expected_count or more needles needle.len must be > 0 does not count overlapping needles

}

span()

Reads an integer from memory with size equal to bytes.len. T specifies the return type, which must be large enough to store the result.


/// Copy all of source into dest at position 0.
/// dest.len must be >= source.len.
/// If the slices overlap, dest.ptr must be >= src.ptr.
pub fn copyBackwards(comptime T: type, dest: []T, source: []const T) void {
    // TODO instead of manually doing this check for the whole array
    // and turning off runtime safety, the compiler should detect loops like
    // this and automatically omit safety checks for loops
    @setRuntimeSafety(false);
    assert(dest.len >= source.len);
    var i = source.len;
    while (i > 0) {
        i -= 1;
        dest[i] = source[i];
    }

DelimiterType

Loads an integer from packed memory with provided bit_count, bit_offset, and signedness. Asserts that T is large enough to store the read value. Example: const T = packed struct(u16){ a: u3, b: u7, c: u6 }; var st = T{ .a = 1, .b = 2, .c = 4 }; const b_field = readVarPackedInt(u64, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 7, builtin.cpu.arch.endian(), .unsigned);

}

sliceTo()

Reads an integer from memory with bit count specified by T. The bit count of T must be evenly divisible by 8. This function cannot fail and cannot cause undefined behavior. Assumes the endianness of memory is native. This means the function can simply pointer cast memory.


pub const set = @compileError("deprecated; use @memset instead");

Test:

sliceTo

Reads an integer from memory with bit count specified by T. The bit count of T must be evenly divisible by 8. This function cannot fail and cannot cause undefined behavior. Assumes the endianness of memory is foreign, so it must byte-swap.


/// Generally, Zig users are encouraged to explicitly initialize all fields of a struct explicitly rather than using this function.
/// However, it is recognized that there are sometimes use cases for initializing all fields to a "zero" value. For example, when
/// interfacing with a C API where this practice is more common and relied upon. If you are performing code review and see this
/// function used, examine closely - it may be a code smell.
/// Zero initializes the type.
/// This can be used to zero-initialize any type for which it makes sense. Structs will be initialized recursively.
pub fn zeroes(comptime T: type) T {
    switch (@typeInfo(T)) {
        .ComptimeInt, .Int, .ComptimeFloat, .Float => {
            return @as(T, 0);
        },
        .Enum, .EnumLiteral => {
            return @as(T, @enumFromInt(0));
        },
        .Void => {
            return {};
        },
        .Bool => {
            return false;
        },
        .Optional, .Null => {
            return null;
        },
        .Struct => |struct_info| {
            if (@sizeOf(T) == 0) return undefined;
            if (struct_info.layout == .Extern) {
                var item: T = undefined;
                @memset(asBytes(&item), 0);
                return item;
            } else {
                var structure: T = undefined;
                inline for (struct_info.fields) |field| {
                    if (!field.is_comptime) {
                        @field(structure, field.name) = zeroes(@TypeOf(@field(structure, field.name)));
                    }
                }
                return structure;
            }
        },
        .Pointer => |ptr_info| {
            switch (ptr_info.size) {
                .Slice => {
                    if (ptr_info.sentinel) |sentinel| {
                        if (ptr_info.child == u8 and @as(*const u8, @ptrCast(sentinel)).* == 0) {
                            return ""; // A special case for the most common use-case: null-terminated strings.
                        }
                        @compileError("Can't set a sentinel slice to zero. This would require allocating memory.");
                    } else {
                        return &[_]ptr_info.child{};
                    }
                },
                .C => {
                    return null;
                },
                .One, .Many => {
                    if (ptr_info.is_allowzero) return @ptrFromInt(0);
                    @compileError("Only nullable and allowzero pointers can be set to zero.");
                },
            }
        },
        .Array => |info| {
            if (info.sentinel) |sentinel_ptr| {
                const sentinel = @as(*align(1) const info.child, @ptrCast(sentinel_ptr)).*;
                return [_:sentinel]info.child{zeroes(info.child)} ** info.len;
            }
            return [_]info.child{zeroes(info.child)} ** info.len;
        },
        .Vector => |info| {
            return @splat(zeroes(info.child));
        },
        .Union => |info| {
            if (comptime meta.containerLayout(T) == .Extern) {
                // The C language specification states that (global) unions
                // should be zero initialized to the first named member.
                return @unionInit(T, info.fields[0].name, zeroes(info.fields[0].type));
            }

Test:

lenSliceTo

Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0 and ignores extra bytes. The bit count of T must be evenly divisible by 8. Assumes the endianness of memory is native. This means the function can simply pointer cast memory.


            @compileError("Can't set a " ++ @typeName(T) ++ " to zero.");
        },
        .ErrorUnion,
        .ErrorSet,
        .Fn,
        .Type,
        .NoReturn,
        .Undefined,
        .Opaque,
        .Frame,
        .AnyFrame,
        => {
            @compileError("Can't set a " ++ @typeName(T) ++ " to zero.");
        },
    }

DelimiterType

Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0 and ignores extra bytes. The bit count of T must be evenly divisible by 8. Assumes the endianness of memory is foreign, so it must byte-swap.

}

Test:

len

Reads an integer from memory with bit count specified by T. The bit count of T must be evenly divisible by 8. This function cannot fail and cannot cause undefined behavior.


test "zeroes" {
    if (builtin.zig_backend == .stage2_llvm) {
        // Regressed in LLVM 14:
        // https://github.com/llvm/llvm-project/issues/55522
        return error.SkipZigTest;
    }

indexOfSentinel()

Loads an integer from packed memory. Asserts that buffer contains at least bit_offset + @bitSizeOf(T) bits. Example: const T = packed struct(u16){ a: u3, b: u7, c: u6 }; var st = T{ .a = 1, .b = 2, .c = 4 }; const b_field = readPackedInt(u7, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), builtin.cpu.arch.endian());


    const C_struct = extern struct {
        x: u32,
        y: u32,
    };

allEqual()

Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0 and ignores extra bytes. The bit count of T must be evenly divisible by 8.


    var a = zeroes(C_struct);
    a.y += 10;

trimLeft()

Writes an integer to memory, storing it in twos-complement. This function always succeeds, has defined behavior for all inputs, and accepts any integer bit width. This function stores in native endian, which means it is implemented as a simple memory store.


    try testing.expect(a.x == 0);
    try testing.expect(a.y == 10);

trimRight()

Writes an integer to memory, storing it in twos-complement. This function always succeeds, has defined behavior for all inputs, but the integer bit width must be divisible by 8. This function stores in foreign endian, which means it does a @byteSwap first.


    const ZigStruct = struct {
        comptime comptime_field: u8 = 5,

trim()

Writes an integer to memory, storing it in twos-complement. This function always succeeds, has defined behavior for all inputs, but the integer bit width must be divisible by 8.


        integral_types: struct {
            integer_0: i0,
            integer_8: i8,
            integer_16: i16,
            integer_32: i32,
            integer_64: i64,
            integer_128: i128,
            unsigned_0: u0,
            unsigned_8: u8,
            unsigned_16: u16,
            unsigned_32: u32,
            unsigned_64: u64,
            unsigned_128: u128,

Test:

trim

Stores an integer to packed memory. Asserts that buffer contains at least bit_offset + @bitSizeOf(T) bits. Example: const T = packed struct(u16){ a: u3, b: u7, c: u6 }; var st = T{ .a = 1, .b = 2, .c = 4 }; // st.b = 0x7f; writePackedInt(u7, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 0x7f, builtin.cpu.arch.endian());


            float_32: f32,
            float_64: f64,
        },

indexOfScalar()

Writes a twos-complement little-endian integer to memory. Asserts that buf.len >= @typeInfo(T).Int.bits / 8. The bit count of T must be divisible by 8. Any extra bytes in buffer after writing the integer are set to zero. To avoid the branch to check for extra buffer bytes, use writeIntLittle instead.


        pointers: struct {
            optional: ?*u8,
            c_pointer: [*c]u8,
            slice: []u8,
            nullTerminatedString: [:0]const u8,
        },

lastIndexOfScalar()

Writes a twos-complement big-endian integer to memory. Asserts that buffer.len >= @typeInfo(T).Int.bits / 8. The bit count of T must be divisible by 8. Any extra bytes in buffer before writing the integer are set to zero. To avoid the branch to check for extra buffer bytes, use writeIntBig instead.


        array: [2]u32,
        vector_u32: @Vector(2, u32),
        vector_f32: @Vector(2, f32),
        vector_bool: @Vector(2, bool),
        optional_int: ?u8,
        empty: void,
        sentinel: [3:0]u8,
    };

indexOfScalarPos()

Writes a twos-complement integer to memory, with the specified endianness. Asserts that buf.len >= @typeInfo(T).Int.bits / 8. The bit count of T must be evenly divisible by 8. Any extra bytes in buffer not part of the integer are set to zero, with respect to endianness. To avoid the branch to check for extra buffer bytes, use writeInt instead.


    const b = zeroes(ZigStruct);
    try testing.expectEqual(@as(u8, 5), b.comptime_field);
    try testing.expectEqual(@as(i8, 0), b.integral_types.integer_0);
    try testing.expectEqual(@as(i8, 0), b.integral_types.integer_8);
    try testing.expectEqual(@as(i16, 0), b.integral_types.integer_16);
    try testing.expectEqual(@as(i32, 0), b.integral_types.integer_32);
    try testing.expectEqual(@as(i64, 0), b.integral_types.integer_64);
    try testing.expectEqual(@as(i128, 0), b.integral_types.integer_128);
    try testing.expectEqual(@as(u8, 0), b.integral_types.unsigned_0);
    try testing.expectEqual(@as(u8, 0), b.integral_types.unsigned_8);
    try testing.expectEqual(@as(u16, 0), b.integral_types.unsigned_16);
    try testing.expectEqual(@as(u32, 0), b.integral_types.unsigned_32);
    try testing.expectEqual(@as(u64, 0), b.integral_types.unsigned_64);
    try testing.expectEqual(@as(u128, 0), b.integral_types.unsigned_128);
    try testing.expectEqual(@as(f32, 0), b.integral_types.float_32);
    try testing.expectEqual(@as(f64, 0), b.integral_types.float_64);
    try testing.expectEqual(@as(?*u8, null), b.pointers.optional);
    try testing.expectEqual(@as([*c]u8, null), b.pointers.c_pointer);
    try testing.expectEqual(@as([]u8, &[_]u8{}), b.pointers.slice);
    try testing.expectEqual(@as([:0]const u8, ""), b.pointers.nullTerminatedString);
    for (b.array) |e| {
        try testing.expectEqual(@as(u32, 0), e);
    }
    try testing.expectEqual(@as(@TypeOf(b.vector_u32), @splat(0)), b.vector_u32);
    try testing.expectEqual(@as(@TypeOf(b.vector_f32), @splat(0.0)), b.vector_f32);
    try testing.expectEqual(@as(@TypeOf(b.vector_bool), @splat(false)), b.vector_bool);
    try testing.expectEqual(@as(?u8, null), b.optional_int);
    for (b.sentinel) |e| {
        try testing.expectEqual(@as(u8, 0), e);
    }

indexOfAny()

Stores an integer to packed memory with provided bit_count, bit_offset, and signedness. If negative, the written value is sign-extended. Example: const T = packed struct(u16){ a: u3, b: u7, c: u6 }; var st = T{ .a = 1, .b = 2, .c = 4 }; // st.b = 0x7f; var value: u64 = 0x7f; writeVarPackedInt(std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 7, value, builtin.cpu.arch.endian());


    const C_union = extern union {
        a: u8,
        b: u32,
    };

lastIndexOfAny()

Swap the byte order of all the members of the fields of a struct (Changing their endianness)


    var c = zeroes(C_union);
    try testing.expectEqual(@as(u8, 0), c.a);

indexOfAnyPos()

Deprecated: use tokenizeAny, tokenizeSequence, or tokenizeScalar


    comptime var comptime_union = zeroes(C_union);
    try testing.expectEqual(@as(u8, 0), comptime_union.a);

indexOfNone()

Returns an iterator that iterates over the slices of buffer that are not any of the items in delimiters. tokenizeAny(u8, " abc|def || ghi ", " |") will return slices for "abc", "def", "ghi", null, in that order. If buffer is empty, the iterator will return null. If none of delimiters exist in buffer, the iterator will return buffer, null, in that order. See also: tokenizeSequence, tokenizeScalar, splitSequence,splitAny, splitScalar, splitBackwardsSequence, splitBackwardsAny, and splitBackwardsScalar


    // Ensure zero sized struct with fields is initialized correctly.
    _ = zeroes(struct { handle: void });

DelimiterType

Returns an iterator that iterates over the slices of buffer that are not the sequence in delimiter. tokenizeSequence(u8, "<>abc><>ghi", "<>") will return slices for "abc>buffer is empty, the iterator will return null. If delimiter does not exist in buffer, the iterator will return buffer, null, in that order. The delimiter length must not be zero. See also: tokenizeAny, tokenizeScalar, splitSequence,splitAny, and splitScalar splitBackwardsSequence, splitBackwardsAny, and splitBackwardsScalar

}

indexOfNonePos()

Returns an iterator that iterates over the slices of buffer that are not delimiter. tokenizeScalar(u8, " abc def ghi ", ' ') will return slices for "abc", "def", "ghi", null, in that order. If buffer is empty, the iterator will return null. If delimiter does not exist in buffer, the iterator will return buffer, null, in that order. See also: tokenizeAny, tokenizeSequence, splitSequence,splitAny, and splitScalar splitBackwardsSequence, splitBackwardsAny, and splitBackwardsScalar


/// Initializes all fields of the struct with their default value, or zero values if no default value is present.
/// If the field is present in the provided initial values, it will have that value instead.
/// Structs are initialized recursively.
pub fn zeroInit(comptime T: type, init: anytype) T {
    const Init = @TypeOf(init);

Test:

indexOfNone

Deprecated: use splitSequence, splitAny, or splitScalar


    switch (@typeInfo(T)) {
        .Struct => |struct_info| {
            switch (@typeInfo(Init)) {
                .Struct => |init_info| {
                    if (init_info.is_tuple) {
                        if (init_info.fields.len > struct_info.fields.len) {
                            @compileError("Tuple initializer has more elements than there are fields in `" ++ @typeName(T) ++ "`");
                        }
                    } else {
                        inline for (init_info.fields) |field| {
                            if (!@hasField(T, field.name)) {
                                @compileError("Encountered an initializer for `" ++ field.name ++ "`, but it is not a field of " ++ @typeName(T));
                            }
                        }
                    }

indexOf()

Returns an iterator that iterates over the slices of buffer that are separated by the byte sequence in delimiter. splitSequence(u8, "abc||def||||ghi", "||") will return slices for "abc", "def", "", "ghi", null, in that order. If delimiter does not exist in buffer, the iterator will return buffer, null, in that order. The delimiter length must not be zero. See also: splitAny, splitScalar, splitBackwardsSequence, splitBackwardsAny,splitBackwardsScalar, tokenizeAny, tokenizeSequence, and tokenizeScalar.


                    var value: T = if (struct_info.layout == .Extern) zeroes(T) else undefined;

lastIndexOfLinear()

Returns an iterator that iterates over the slices of buffer that are separated by any item in delimiters. splitAny(u8, "abc,def||ghi", "|,") will return slices for "abc", "def", "", "ghi", null, in that order. If none of delimiters exist in buffer, the iterator will return buffer, null, in that order. See also: splitSequence, splitScalar, splitBackwardsSequence, splitBackwardsAny,splitBackwardsScalar, tokenizeAny, tokenizeSequence, and tokenizeScalar.


                    inline for (struct_info.fields, 0..) |field, i| {
                        if (field.is_comptime) {
                            continue;
                        }

indexOfPosLinear()

Returns an iterator that iterates over the slices of buffer that are separated by delimiter. splitScalar(u8, "abc|def||ghi", '|') will return slices for "abc", "def", "", "ghi", null, in that order. If delimiter does not exist in buffer, the iterator will return buffer, null, in that order. See also: splitSequence, splitAny, splitBackwardsSequence, splitBackwardsAny,splitBackwardsScalar, tokenizeAny, tokenizeSequence, and tokenizeScalar.


                        if (init_info.is_tuple and init_info.fields.len > i) {
                            @field(value, field.name) = @field(init, init_info.fields[i].name);
                        } else if (@hasField(@TypeOf(init), field.name)) {
                            switch (@typeInfo(field.type)) {
                                .Struct => {
                                    @field(value, field.name) = zeroInit(field.type, @field(init, field.name));
                                },
                                else => {
                                    @field(value, field.name) = @field(init, field.name);
                                },
                            }
                        } else if (field.default_value) |default_value_ptr| {
                            const default_value = @as(*align(1) const field.type, @ptrCast(default_value_ptr)).*;
                            @field(value, field.name) = default_value;
                        } else {
                            switch (@typeInfo(field.type)) {
                                .Struct => {
                                    @field(value, field.name) = std.mem.zeroInit(field.type, .{});
                                },
                                else => {
                                    @field(value, field.name) = std.mem.zeroes(@TypeOf(@field(value, field.name)));
                                },
                            }
                        }
                    }

lastIndexOf()

Deprecated: use splitBackwardsSequence, splitBackwardsAny, or splitBackwardsScalar


                    return value;
                },
                else => {
                    @compileError("The initializer must be a struct");
                },
            }
        },
        else => {
            @compileError("Can't default init a " ++ @typeName(T));
        },
    }

DelimiterType

Returns an iterator that iterates backwards over the slices of buffer that are separated by the sequence in delimiter. splitBackwardsSequence(u8, "abc||def||||ghi", "||") will return slices for "ghi", "", "def", "abc", null, in that order. If delimiter does not exist in buffer, the iterator will return buffer, null, in that order. The delimiter length must not be zero. See also: splitBackwardsAny, splitBackwardsScalar, splitSequence, splitAny,splitScalar, tokenizeAny, tokenizeSequence, and tokenizeScalar.

}

Test:

indexOf

Returns an iterator that iterates backwards over the slices of buffer that are separated by any item in delimiters. splitBackwardsAny(u8, "abc,def||ghi", "|,") will return slices for "ghi", "", "def", "abc", null, in that order. If none of delimiters exist in buffer, the iterator will return buffer, null, in that order. See also: splitBackwardsSequence, splitBackwardsScalar, splitSequence, splitAny,splitScalar, tokenizeAny, tokenizeSequence, and tokenizeScalar.


test "zeroInit" {
    const I = struct {
        d: f64,
    };

Test:

indexOf multibyte

Returns an iterator that iterates backwards over the slices of buffer that are separated by delimiter. splitBackwardsScalar(u8, "abc|def||ghi", '|') will return slices for "ghi", "", "def", "abc", null, in that order. If delimiter does not exist in buffer, the iterator will return buffer, null, in that order. See also: splitBackwardsSequence, splitBackwardsAny, splitSequence, splitAny,splitScalar, tokenizeAny, tokenizeSequence, and tokenizeScalar.


    const S = struct {
        a: u32,
        b: ?bool,
        c: I,
        e: [3]u8,
        f: i64 = -1,
    };

Test:

indexOfPos empty needle

Returns an iterator with a sliding window of slices for buffer. The sliding window has length size and on every iteration moves forward by advance. Extract data for moving average with: window(u8, "abcdefg", 3, 1) will return slices "abc", "bcd", "cde", "def", "efg", null, in that order. Chunk or split every N items with: window(u8, "abcdefg", 3, 3) will return slices "abc", "def", "g", null, in that order. Pick every even index with: window(u8, "abcdefg", 1, 2) will return slices "a", "c", "e", "g" null, in that order. The size and advance must be not be zero.


    const s = zeroInit(S, .{
        .a = 42,
    });

count()

Returns a slice of the first window. This never fails. Call this only to get the first window and then use next to get all subsequent windows.


    try testing.expectEqual(S{
        .a = 42,
        .b = null,
        .c = .{
            .d = 0,
        },
        .e = [3]u8{ 0, 0, 0 },
        .f = -1,
    }, s);

Test:

count

Returns a slice of the next window, or null if window is at end.


    const Color = struct {
        r: u8,
        g: u8,
        b: u8,
        a: u8,
    };

containsAtLeast()

Resets the iterator to the initial window.


    const c = zeroInit(Color, .{ 255, 255 });
    try testing.expectEqual(Color{
        .r = 255,
        .g = 255,
        .b = 0,
        .a = 0,
    }, c);

Test:

containsAtLeast

Returns a slice of the current token, or null if tokenization is complete, and advances to the next token.


    const Foo = struct {
        foo: u8 = 69,
        bar: u8,
    };

readVarInt()

Returns a slice of the current token, or null if tokenization is complete. Does not advance to the next token.


    const f = zeroInit(Foo, .{});
    try testing.expectEqual(Foo{
        .foo = 69,
        .bar = 0,
    }, f);

readVarPackedInt()

Returns a slice of the remaining bytes. Does not affect iterator state.


    const Bar = struct {
        foo: u32 = 666,
        bar: u32 = 420,
    };

readIntNative()

Resets the iterator to the initial token.


    const b = zeroInit(Bar, .{69});
    try testing.expectEqual(Bar{
        .foo = 69,
        .bar = 420,
    }, b);

readIntForeign()

Returns a slice of the first field. This never fails. Call this only to get the first field and then use next to get all subsequent fields.


    const Baz = struct {
        foo: [:0]const u8 = "bar",
    };

readIntLittle

Returns a slice of the next field, or null if splitting is complete.


    const baz1 = zeroInit(Baz, .{});
    try testing.expectEqual(Baz{}, baz1);

readIntBig

Returns a slice of the next field, or null if splitting is complete. This method does not alter self.index.


    const baz2 = zeroInit(Baz, .{ .foo = "zab" });
    try testing.expectEqualSlices(u8, "zab", baz2.foo);

readIntSliceNative()

Returns a slice of the remaining bytes. Does not affect iterator state.


    const NestedBaz = struct {
        bbb: Baz,
    };
    const nested_baz = zeroInit(NestedBaz, .{});
    try testing.expectEqual(NestedBaz{
        .bbb = Baz{},
    }, nested_baz);

DelimiterType

Resets the iterator to the initial slice.

}

readIntSliceLittle

Returns a slice of the first field. This never fails. Call this only to get the first field and then use next to get all subsequent fields.


pub fn sort(
    comptime T: type,
    items: []T,
    context: anytype,
    comptime lessThanFn: fn (@TypeOf(context), lhs: T, rhs: T) bool,

writeIntNative()

Returns a slice of the next field, or null if splitting is complete.

) void {
    std.sort.block(T, items, context, lessThanFn);

DelimiterType

Returns a slice of the remaining bytes. Does not affect iterator state.

}

readPackedIntNative

Resets the iterator to the initial slice.


pub fn sortUnstable(
    comptime T: type,
    items: []T,
    context: anytype,
    comptime lessThanFn: fn (@TypeOf(context), lhs: T, rhs: T) bool,

writeIntNative()

Naively combines a series of slices with a separator. Allocates memory for the result, which must be freed by the caller.

) void {
    std.sort.pdq(T, items, context, lessThanFn);

DelimiterType

Naively combines a series of slices with a separator and null terminator. Allocates memory for the result, which must be freed by the caller.

}

readIntSlice()

Copies each T from slices into a new slice that exactly holds all the elements.


/// TODO: currently this just calls `insertionSortContext`. The block sort implementation
/// in this file needs to be adapted to use the sort context.
pub fn sortContext(a: usize, b: usize, context: anytype) void {
    std.sort.insertionContext(a, b, context);

DelimiterType

Copies each T from slices into a new slice that exactly holds all the elements.

}

Test:

readIntBig and readIntLittle

Copies each T from slices into a new slice that exactly holds all the elements as well as the sentinel.


pub fn sortUnstableContext(a: usize, b: usize, context: anytype) void {
    std.sort.pdqContext(a, b, context);

DelimiterType

Returns the smallest number in a slice. O(n). slice must not be empty.

}

writeIntForeign()

Returns the largest number in a slice. O(n). slice must not be empty.


/// Compares two slices of numbers lexicographically. O(n).
pub fn order(comptime T: type, lhs: []const T, rhs: []const T) math.Order {
    const n = @min(lhs.len, rhs.len);
    for (lhs[0..n], rhs[0..n]) |lhs_elem, rhs_elem| {
        switch (math.order(lhs_elem, rhs_elem)) {
            .eq => continue,
            .lt => return .lt,
            .gt => return .gt,
        }
    }
    return math.order(lhs.len, rhs.len);

DelimiterType

Finds the smallest and largest number in a slice. O(n). Returns an anonymous struct with the fields min and max. slice must not be empty.

}

writeIntBig

Returns the index of the smallest number in a slice. O(n). slice must not be empty.


/// Compares two many-item pointers with NUL-termination lexicographically.
pub fn orderZ(comptime T: type, lhs: [*:0]const T, rhs: [*:0]const T) math.Order {
    var i: usize = 0;
    while (lhs[i] == rhs[i] and lhs[i] != 0) : (i += 1) {}
    return math.order(lhs[i], rhs[i]);

DelimiterType

Returns the index of the largest number in a slice. O(n). slice must not be empty.

}

writePackedIntNative

Finds the indices of the smallest and largest number in a slice. O(n). Returns an anonymous struct with the fields index_min and index_max. slice must not be empty.


test "order and orderZ" {
    try testing.expect(order(u8, "abcd", "bee") == .lt);
    try testing.expect(orderZ(u8, "abcd", "bee") == .lt);
    try testing.expect(order(u8, "abc", "abc") == .eq);
    try testing.expect(orderZ(u8, "abc", "abc") == .eq);
    try testing.expect(order(u8, "abc", "abc0") == .lt);
    try testing.expect(orderZ(u8, "abc", "abc0") == .lt);
    try testing.expect(order(u8, "", "") == .eq);
    try testing.expect(orderZ(u8, "", "") == .eq);
    try testing.expect(order(u8, "", "a") == .lt);
    try testing.expect(orderZ(u8, "", "a") == .lt);

DelimiterType

In-place order reversal of a slice

}

writePackedInt()

Iterates over a slice in reverse.


/// Returns true if lhs < rhs, false otherwise
pub fn lessThan(comptime T: type, lhs: []const T, rhs: []const T) bool {
    return order(T, lhs, rhs) == .lt;

DelimiterType

In-place rotation of the values in an array ([0 1 2 3] becomes [1 2 3 0] if we rotate by 1) Assumes 0 <= amount <= items.len

}

writeIntSliceBig()

Replace needle with replacement as many times as possible, writing to an output buffer which is assumed to be of appropriate size. Use replacementSize to calculate an appropriate buffer size. The needle must not be empty. Returns the number of replacements made.


test "lessThan" {
    try testing.expect(lessThan(u8, "abcd", "bee"));
    try testing.expect(!lessThan(u8, "abc", "abc"));
    try testing.expect(lessThan(u8, "abc", "abc0"));
    try testing.expect(!lessThan(u8, "", ""));
    try testing.expect(lessThan(u8, "", "a"));

DelimiterType

Replace all occurrences of needle with replacement.

}

writeIntSliceForeign

Collapse consecutive duplicate elements into one entry.


/// Compares two slices and returns whether they are equal.
pub fn eql(comptime T: type, a: []const T, b: []const T) bool {
    if (a.len != b.len) return false;
    if (a.ptr == b.ptr) return true;
    for (a, b) |a_elem, b_elem| {
        if (a_elem != b_elem) return false;
    }
    return true;

DelimiterType

Collapse consecutive duplicate elements into one entry.

}

writeVarPackedInt()

Calculate the size needed in an output buffer to perform a replacement. The needle must not be empty.


/// Compares two slices and returns the index of the first inequality.
/// Returns null if the slices are equal.
pub fn indexOfDiff(comptime T: type, a: []const T, b: []const T) ?usize {
    const shortest = @min(a.len, b.len);
    if (a.ptr == b.ptr)
        return if (a.len == b.len) null else shortest;
    var index: usize = 0;
    while (index < shortest) : (index += 1) if (a[index] != b[index]) return index;
    return if (a.len == b.len) null else shortest;

DelimiterType

Perform a replacement on an allocated buffer of pre-determined size. Caller must free returned memory.

}

byteSwapAllFields()

Converts a little-endian integer to host endianness.


test "indexOfDiff" {
    try testing.expectEqual(indexOfDiff(u8, "one", "one"), null);
    try testing.expectEqual(indexOfDiff(u8, "one two", "one"), 3);
    try testing.expectEqual(indexOfDiff(u8, "one", "one two"), 3);
    try testing.expectEqual(indexOfDiff(u8, "one twx", "one two"), 6);
    try testing.expectEqual(indexOfDiff(u8, "xne", "one"), 0);

DelimiterType

Converts a big-endian integer to host endianness.

}

tokenize

Converts an integer from specified endianness to host endianness.


/// Takes a sentinel-terminated pointer and returns a slice preserving pointer attributes.
/// `[*c]` pointers are assumed to be 0-terminated and assumed to not be allowzero.
fn Span(comptime T: type) type {
    switch (@typeInfo(T)) {
        .Optional => |optional_info| {
            return ?Span(optional_info.child);
        },
        .Pointer => |ptr_info| {
            var new_ptr_info = ptr_info;
            switch (ptr_info.size) {
                .C => {
                    new_ptr_info.sentinel = &@as(ptr_info.child, 0);
                    new_ptr_info.is_allowzero = false;
                },
                .Many => if (ptr_info.sentinel == null) @compileError("invalid type given to std.mem.span: " ++ @typeName(T)),
                .One, .Slice => @compileError("invalid type given to std.mem.span: " ++ @typeName(T)),
            }
            new_ptr_info.size = .Slice;
            return @Type(.{ .Pointer = new_ptr_info });
        },
        else => {},
    }
    @compileError("invalid type given to std.mem.span: " ++ @typeName(T));

DelimiterType

Converts an integer which has host endianness to the desired endianness.

}

tokenizeSequence()

Converts an integer which has host endianness to little endian.


test "Span" {
    try testing.expect(Span([*:1]u16) == [:1]u16);
    try testing.expect(Span(?[*:1]u16) == ?[:1]u16);
    try testing.expect(Span([*:1]const u8) == [:1]const u8);
    try testing.expect(Span(?[*:1]const u8) == ?[:1]const u8);
    try testing.expect(Span([*c]u16) == [:0]u16);
    try testing.expect(Span(?[*c]u16) == ?[:0]u16);
    try testing.expect(Span([*c]const u8) == [:0]const u8);
    try testing.expect(Span(?[*c]const u8) == ?[:0]const u8);

DelimiterType

Converts an integer which has host endianness to big endian.

}

Test:

tokenizeScalar

Returns the number of elements that, if added to the given pointer, align it to a multiple of the given quantity, or null if one of the following conditions is met: - The aligned pointer would not fit the address space, - The delta required to align the pointer is not a multiple of the pointee's type.


/// Takes a sentinel-terminated pointer and returns a slice, iterating over the
/// memory to find the sentinel and determine the length.
/// Pointer attributes such as const are preserved.
/// `[*c]` pointers are assumed to be non-null and 0-terminated.
pub fn span(ptr: anytype) Span(@TypeOf(ptr)) {
    if (@typeInfo(@TypeOf(ptr)) == .Optional) {
        if (ptr) |non_null| {
            return span(non_null);
        } else {
            return null;
        }
    }
    const Result = Span(@TypeOf(ptr));
    const l = len(ptr);
    const ptr_info = @typeInfo(Result).Pointer;
    if (ptr_info.sentinel) |s_ptr| {
        const s = @as(*align(1) const ptr_info.child, @ptrCast(s_ptr)).*;
        return ptr[0..l :s];
    } else {
        return ptr[0..l];
    }

DelimiterType

Aligns a given pointer value to a specified alignment factor. Returns an aligned pointer or null if one of the following conditions is met: - The aligned pointer would not fit the address space, - The delta required to align the pointer is not a multiple of the pointee's type.

}

Test:

tokenizeSequence

Given a pointer to a single item, returns a slice of the underlying bytes, preserving pointer attributes.


test "span" {
    var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
    const ptr = @as([*:3]u16, array[0..2 :3]);
    try testing.expect(eql(u16, span(ptr), &[_]u16{ 1, 2 }));
    try testing.expectEqual(@as(?[:0]u16, null), span(@as(?[*:0]u16, null)));

DelimiterType

Given any value, returns a copy of its bytes in an array.

}

split

Given a pointer to an array of bytes, returns a pointer to a value of the specified type backed by those bytes, preserving pointer attributes.


/// Helper for the return type of sliceTo()
fn SliceTo(comptime T: type, comptime end: meta.Elem(T)) type {
    switch (@typeInfo(T)) {
        .Optional => |optional_info| {
            return ?SliceTo(optional_info.child, end);
        },
        .Pointer => |ptr_info| {
            var new_ptr_info = ptr_info;
            new_ptr_info.size = .Slice;
            switch (ptr_info.size) {
                .One => switch (@typeInfo(ptr_info.child)) {
                    .Array => |array_info| {
                        new_ptr_info.child = array_info.child;
                        // The return type must only be sentinel terminated if we are guaranteed
                        // to find the value searched for, which is only the case if it matches
                        // the sentinel of the type passed.
                        if (array_info.sentinel) |sentinel_ptr| {
                            const sentinel = @as(*align(1) const array_info.child, @ptrCast(sentinel_ptr)).*;
                            if (end == sentinel) {
                                new_ptr_info.sentinel = &end;
                            } else {
                                new_ptr_info.sentinel = null;
                            }
                        }
                    },
                    else => {},
                },
                .Many, .Slice => {
                    // The return type must only be sentinel terminated if we are guaranteed
                    // to find the value searched for, which is only the case if it matches
                    // the sentinel of the type passed.
                    if (ptr_info.sentinel) |sentinel_ptr| {
                        const sentinel = @as(*align(1) const ptr_info.child, @ptrCast(sentinel_ptr)).*;
                        if (end == sentinel) {
                            new_ptr_info.sentinel = &end;
                        } else {
                            new_ptr_info.sentinel = null;
                        }
                    }
                },
                .C => {
                    new_ptr_info.sentinel = &end;
                    // C pointers are always allowzero, but we don't want the return type to be.
                    assert(new_ptr_info.is_allowzero);
                    new_ptr_info.is_allowzero = false;
                },
            }
            return @Type(.{ .Pointer = new_ptr_info });
        },
        else => {},
    }
    @compileError("invalid type given to std.mem.sliceTo: " ++ @typeName(T));

DelimiterType

Given a pointer to an array of bytes, returns a value of the specified type backed by a copy of those bytes.

}

splitAny()

Given a slice of bytes, returns a slice of the specified type backed by those bytes, preserving pointer attributes.


/// Takes an array, a pointer to an array, a sentinel-terminated pointer, or a slice and
/// iterates searching for the first occurrence of `end`, returning the scanned slice.
/// If `end` is not found, the full length of the array/slice/sentinel terminated pointer is returned.
/// If the pointer type is sentinel terminated and `end` matches that terminator, the
/// resulting slice is also sentinel terminated.
/// Pointer properties such as mutability and alignment are preserved.
/// C pointers are assumed to be non-null.
pub fn sliceTo(ptr: anytype, comptime end: meta.Elem(@TypeOf(ptr))) SliceTo(@TypeOf(ptr), end) {
    if (@typeInfo(@TypeOf(ptr)) == .Optional) {
        const non_null = ptr orelse return null;
        return sliceTo(non_null, end);
    }
    const Result = SliceTo(@TypeOf(ptr), end);
    const length = lenSliceTo(ptr, end);
    const ptr_info = @typeInfo(Result).Pointer;
    if (ptr_info.sentinel) |s_ptr| {
        const s = @as(*align(1) const ptr_info.child, @ptrCast(s_ptr)).*;
        return ptr[0..length :s];
    } else {
        return ptr[0..length];
    }

DelimiterType

Given a slice, returns a slice of the underlying bytes, preserving pointer attributes.

}

Test:

splitScalar

Round an address up to the next (or current) aligned address. The alignment must be a power of 2 and greater than 0. Asserts that rounding up the address does not cause integer overflow.


test "sliceTo" {
    try testing.expectEqualSlices(u8, "aoeu", sliceTo("aoeu", 0));

Test:

splitSequence

Force an evaluation of the expression; this tries to prevent the compiler from optimizing the computation away even if the result eventually gets discarded.


    {
        var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqualSlices(u16, &array, sliceTo(&array, 0));
        try testing.expectEqualSlices(u16, array[0..3], sliceTo(array[0..3], 0));
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(&array, 3));
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(array[0..3], 3));

Test:

splitAny

.stage2_c doesn't support asm blocks yet, so use volatile stores instead


        const sentinel_ptr = @as([*:5]u16, @ptrCast(&array));
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(sentinel_ptr, 3));
        try testing.expectEqualSlices(u16, array[0..4], sliceTo(sentinel_ptr, 99));

Test:

split (reset)

Round an address down to the previous (or current) aligned address. Unlike alignBackward, alignment can be any positive number, not just a power of 2.


        const optional_sentinel_ptr = @as(?[*:5]u16, @ptrCast(&array));
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(optional_sentinel_ptr, 3).?);
        try testing.expectEqualSlices(u16, array[0..4], sliceTo(optional_sentinel_ptr, 99).?);

splitBackwards

Round an address down to the previous (or current) aligned address. The alignment must be a power of 2 and greater than 0.


        const c_ptr = @as([*c]u16, &array);
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(c_ptr, 3));

splitBackwardsSequence()

Returns whether alignment is a valid alignment, meaning it is a positive power of 2.


        const slice: []u16 = &array;
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(slice, 3));
        try testing.expectEqualSlices(u16, &array, sliceTo(slice, 99));

splitBackwardsAny()

Returns whether alignment is a valid alignment, meaning it is a positive power of 2.


        const sentinel_slice: [:5]u16 = array[0..4 :5];
        try testing.expectEqualSlices(u16, array[0..2], sliceTo(sentinel_slice, 3));
        try testing.expectEqualSlices(u16, array[0..4], sliceTo(sentinel_slice, 99));
    }
    {
        var sentinel_array: [5:0]u16 = [_:0]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqualSlices(u16, sentinel_array[0..2], sliceTo(&sentinel_array, 3));
        try testing.expectEqualSlices(u16, &sentinel_array, sliceTo(&sentinel_array, 0));
        try testing.expectEqualSlices(u16, &sentinel_array, sliceTo(&sentinel_array, 99));
    }

splitBackwardsScalar()

Given an address and an alignment, return true if the address is a multiple of the alignment The alignment must be a power of 2 and greater than 0.


    try testing.expectEqual(@as(?[]u8, null), sliceTo(@as(?[]u8, null), 0));

DelimiterType

Returns a slice with the given new alignment, all other pointer attributes copied from AttributeSource.

}

Test:

splitBackwardsSequence

Returns the largest slice in the given bytes that conforms to the new alignment, or null if the given bytes contain no conforming address.


/// Private helper for sliceTo(). If you want the length, use sliceTo(foo, x).len
fn lenSliceTo(ptr: anytype, comptime end: meta.Elem(@TypeOf(ptr))) usize {
    switch (@typeInfo(@TypeOf(ptr))) {
        .Pointer => |ptr_info| switch (ptr_info.size) {
            .One => switch (@typeInfo(ptr_info.child)) {
                .Array => |array_info| {
                    if (array_info.sentinel) |sentinel_ptr| {
                        const sentinel = @as(*align(1) const array_info.child, @ptrCast(sentinel_ptr)).*;
                        if (sentinel == end) {
                            return indexOfSentinel(array_info.child, end, ptr);
                        }
                    }
                    return indexOfScalar(array_info.child, ptr, end) orelse array_info.len;
                },
                else => {},
            },
            .Many => if (ptr_info.sentinel) |sentinel_ptr| {
                const sentinel = @as(*align(1) const ptr_info.child, @ptrCast(sentinel_ptr)).*;
                // We may be looking for something other than the sentinel,
                // but iterating past the sentinel would be a bug so we need
                // to check for both.
                var i: usize = 0;
                while (ptr[i] != end and ptr[i] != sentinel) i += 1;
                return i;
            },
            .C => {
                assert(ptr != null);
                return indexOfSentinel(ptr_info.child, end, ptr);
            },
            .Slice => {
                if (ptr_info.sentinel) |sentinel_ptr| {
                    const sentinel = @as(*align(1) const ptr_info.child, @ptrCast(sentinel_ptr)).*;
                    if (sentinel == end) {
                        return indexOfSentinel(ptr_info.child, sentinel, ptr);
                    }
                }
                return indexOfScalar(ptr_info.child, ptr, end) orelse ptr.len;
            },
        },
        else => {},
    }
    @compileError("invalid type given to std.mem.sliceTo: " ++ @typeName(@TypeOf(ptr)));

DelimiterType

Returns the largest sub-slice within the given slice that conforms to the new alignment, or null if the given slice contains no conforming address.

}

Test:

splitBackwards (reset)


test "lenSliceTo" {
    try testing.expect(lenSliceTo("aoeu", 0) == 4);

window()


    {
        var array: [5]u16 = [_]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqual(@as(usize, 5), lenSliceTo(&array, 0));
        try testing.expectEqual(@as(usize, 3), lenSliceTo(array[0..3], 0));
        try testing.expectEqual(@as(usize, 2), lenSliceTo(&array, 3));
        try testing.expectEqual(@as(usize, 2), lenSliceTo(array[0..3], 3));

Test:

window


        const sentinel_ptr = @as([*:5]u16, @ptrCast(&array));
        try testing.expectEqual(@as(usize, 2), lenSliceTo(sentinel_ptr, 3));
        try testing.expectEqual(@as(usize, 4), lenSliceTo(sentinel_ptr, 99));

WindowIterator()


        const c_ptr = @as([*c]u16, &array);
        try testing.expectEqual(@as(usize, 2), lenSliceTo(c_ptr, 3));

first()


        const slice: []u16 = &array;
        try testing.expectEqual(@as(usize, 2), lenSliceTo(slice, 3));
        try testing.expectEqual(@as(usize, 5), lenSliceTo(slice, 99));

next()


        const sentinel_slice: [:5]u16 = array[0..4 :5];
        try testing.expectEqual(@as(usize, 2), lenSliceTo(sentinel_slice, 3));
        try testing.expectEqual(@as(usize, 4), lenSliceTo(sentinel_slice, 99));
    }
    {
        var sentinel_array: [5:0]u16 = [_:0]u16{ 1, 2, 3, 4, 5 };
        try testing.expectEqual(@as(usize, 2), lenSliceTo(&sentinel_array, 3));
        try testing.expectEqual(@as(usize, 5), lenSliceTo(&sentinel_array, 0));
        try testing.expectEqual(@as(usize, 5), lenSliceTo(&sentinel_array, 99));
    }

DelimiterType

}

startsWith()


/// Takes a sentinel-terminated pointer and iterates over the memory to find the
/// sentinel and determine the length.
/// `[*c]` pointers are assumed to be non-null and 0-terminated.
pub fn len(value: anytype) usize {
    switch (@typeInfo(@TypeOf(value))) {
        .Pointer => |info| switch (info.size) {
            .Many => {
                const sentinel_ptr = info.sentinel orelse
                    @compileError("invalid type given to std.mem.len: " ++ @typeName(@TypeOf(value)));
                const sentinel = @as(*align(1) const info.child, @ptrCast(sentinel_ptr)).*;
                return indexOfSentinel(info.child, sentinel, value);
            },
            .C => {
                assert(value != null);
                return indexOfSentinel(info.child, 0, value);
            },
            else => @compileError("invalid type given to std.mem.len: " ++ @typeName(@TypeOf(value))),
        },
        else => @compileError("invalid type given to std.mem.len: " ++ @typeName(@TypeOf(value))),
    }

DelimiterType

}

endsWith()


test "len" {
    var array: [5]u16 = [_]u16{ 1, 2, 0, 4, 5 };
    const ptr = @as([*:4]u16, array[0..3 :4]);
    try testing.expect(len(ptr) == 3);
    const c_ptr = @as([*c]u16, ptr);
    try testing.expect(len(c_ptr) == 2);

DelimiterType

}

DelimiterType


pub fn indexOfSentinel(comptime Elem: type, comptime sentinel: Elem, ptr: [*:sentinel]const Elem) usize {
    var i: usize = 0;
    while (ptr[i] != sentinel) {
        i += 1;
    }
    return i;

minMax()

}

next()


/// Returns true if all elements in a slice are equal to the scalar value provided
pub fn allEqual(comptime T: type, slice: []const T, scalar: T) bool {
    for (slice) |item| {
        if (item != scalar) return false;
    }
    return true;

minMax()

}

rest()


/// Remove a set of values from the beginning of a slice.
pub fn trimLeft(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
    var begin: usize = 0;
    while (begin < slice.len and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {}
    return slice[begin..];

minMax()

}

SplitIterator()


/// Remove a set of values from the end of a slice.
pub fn trimRight(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
    var end: usize = slice.len;
    while (end > 0 and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {}
    return slice[0..end];

minMax()

}

next()


/// Remove a set of values from the beginning and end of a slice.
pub fn trim(comptime T: type, slice: []const T, values_to_strip: []const T) []const T {
    var begin: usize = 0;
    var end: usize = slice.len;
    while (begin < end and indexOfScalar(T, values_to_strip, slice[begin]) != null) : (begin += 1) {}
    while (end > begin and indexOfScalar(T, values_to_strip, slice[end - 1]) != null) : (end -= 1) {}
    return slice[begin..end];

minMax()

}

rest()


test "trim" {
    try testing.expectEqualSlices(u8, "foo\n ", trimLeft(u8, " foo\n ", " \n"));
    try testing.expectEqualSlices(u8, " foo", trimRight(u8, " foo\n ", " \n"));
    try testing.expectEqualSlices(u8, "foo", trim(u8, " foo\n ", " \n"));
    try testing.expectEqualSlices(u8, "foo", trim(u8, "foo", " \n"));

minMax()

}

SplitBackwardsIterator()


/// Linear search for the index of a scalar value inside a slice.
pub fn indexOfScalar(comptime T: type, slice: []const T, value: T) ?usize {
    return indexOfScalarPos(T, slice, 0, value);

minMax()

}

next()


/// Linear search for the last index of a scalar value inside a slice.
pub fn lastIndexOfScalar(comptime T: type, slice: []const T, value: T) ?usize {
    var i: usize = slice.len;
    while (i != 0) {
        i -= 1;
        if (slice[i] == value) return i;
    }
    return null;

minMax()

}

reset()


pub fn indexOfScalarPos(comptime T: type, slice: []const T, start_index: usize, value: T) ?usize {
    var i: usize = start_index;
    while (i < slice.len) : (i += 1) {
        if (slice[i] == value) return i;
    }
    return null;

minMax()

}

joinZ()


pub fn indexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize {
    return indexOfAnyPos(T, slice, 0, values);

minMax()

}

Test:

joinZ


pub fn lastIndexOfAny(comptime T: type, slice: []const T, values: []const T) ?usize {
    var i: usize = slice.len;
    while (i != 0) {
        i -= 1;
        for (values) |value| {
            if (slice[i] == value) return i;
        }
    }
    return null;

minMax()

}

concatWithSentinel()


pub fn indexOfAnyPos(comptime T: type, slice: []const T, start_index: usize, values: []const T) ?usize {
    var i: usize = start_index;
    while (i < slice.len) : (i += 1) {
        for (values) |value| {
            if (slice[i] == value) return i;
        }
    }
    return null;

minMax()

}

Test:

concat


/// Find the first item in `slice` which is not contained in `values`.
///
/// Comparable to `strspn` in the C standard library.
pub fn indexOfNone(comptime T: type, slice: []const T, values: []const T) ?usize {
    return indexOfNonePos(T, slice, 0, values);

minMax()

}

Test:

testReadInt


/// Find the last item in `slice` which is not contained in `values`.
///
/// Like `strspn` in the C standard library, but searches from the end.
pub fn lastIndexOfNone(comptime T: type, slice: []const T, values: []const T) ?usize {
    var i: usize = slice.len;
    outer: while (i != 0) {
        i -= 1;
        for (values) |value| {
            if (slice[i] == value) continue :outer;
        }
        return i;
    }
    return null;

minMax()

}

min()


/// Find the first item in `slice[start_index..]` which is not contained in `values`.
/// The returned index will be relative to the start of `slice`, and never less than `start_index`.
///
/// Comparable to `strspn` in the C standard library.
pub fn indexOfNonePos(comptime T: type, slice: []const T, start_index: usize, values: []const T) ?usize {
    var i: usize = start_index;
    outer: while (i < slice.len) : (i += 1) {
        for (values) |value| {
            if (slice[i] == value) continue :outer;
        }
        return i;
    }
    return null;

minMax()

}

max()


test "indexOfNone" {
    try testing.expect(indexOfNone(u8, "abc123", "123").? == 0);
    try testing.expect(lastIndexOfNone(u8, "abc123", "123").? == 2);
    try testing.expect(indexOfNone(u8, "123abc", "123").? == 3);
    try testing.expect(lastIndexOfNone(u8, "123abc", "123").? == 5);
    try testing.expect(indexOfNone(u8, "123123", "123") == null);
    try testing.expect(indexOfNone(u8, "333333", "123") == null);

Test:

max


    try testing.expect(indexOfNonePos(u8, "abc123", 3, "321") == null);

minMax()

}

Test:

minMax


pub fn indexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize {
    return indexOfPos(T, haystack, 0, needle);

indexOfMinMax()

}

Test:

indexOfMin


/// Find the index in a slice of a sub-slice, searching from the end backwards.
/// To start looking at a different index, slice the haystack first.
/// Consider using `lastIndexOf` instead of this, which will automatically use a
/// more sophisticated algorithm on larger inputs.
pub fn lastIndexOfLinear(comptime T: type, haystack: []const T, needle: []const T) ?usize {
    var i: usize = haystack.len - needle.len;
    while (true) : (i -= 1) {
        if (mem.eql(T, haystack[i .. i + needle.len], needle)) return i;
        if (i == 0) return null;
    }

indexOfMinMax()

}

Test:

indexOfMax


/// Consider using `indexOfPos` instead of this, which will automatically use a
/// more sophisticated algorithm on larger inputs.
pub fn indexOfPosLinear(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize {
    var i: usize = start_index;
    const end = haystack.len - needle.len;
    while (i <= end) : (i += 1) {
        if (eql(T, haystack[i .. i + needle.len], needle)) return i;
    }
    return null;

indexOfMinMax()

}

Test:

indexOfMinMax


fn boyerMooreHorspoolPreprocessReverse(pattern: []const u8, table: *[256]usize) void {
    for (table) |*c| {
        c.* = pattern.len;
    }

swap()


    var i: usize = pattern.len - 1;
    // The first item is intentionally ignored and the skip size will be pattern.len.
    // This is the standard way Boyer-Moore-Horspool is implemented.
    while (i > 0) : (i -= 1) {
        table[pattern[i]] = i;
    }
}

reverse()


fn boyerMooreHorspoolPreprocess(pattern: []const u8, table: *[256]usize) void {
    for (table) |*c| {
        c.* = pattern.len;
    }

Test:

reverse


    var i: usize = 0;
    // The last item is intentionally ignored and the skip size will be pattern.len.
    // This is the standard way Boyer-Moore-Horspool is implemented.
    while (i < pattern.len - 1) : (i += 1) {
        table[pattern[i]] = pattern.len - 1 - i;
    }
}

next()


/// Find the index in a slice of a sub-slice, searching from the end backwards.
/// To start looking at a different index, slice the haystack first.
/// Uses the Reverse Boyer-Moore-Horspool algorithm on large inputs;
/// `lastIndexOfLinear` on small inputs.
pub fn lastIndexOf(comptime T: type, haystack: []const T, needle: []const T) ?usize {
    if (needle.len > haystack.len) return null;
    if (needle.len == 0) return haystack.len;

nextPtr()


    if (!meta.trait.hasUniqueRepresentation(T) or haystack.len < 52 or needle.len <= 4)
        return lastIndexOfLinear(T, haystack, needle);

reverseIterator()


    const haystack_bytes = sliceAsBytes(haystack);
    const needle_bytes = sliceAsBytes(needle);

Test:

reverseIterator


    var skip_table: [256]usize = undefined;
    boyerMooreHorspoolPreprocessReverse(needle_bytes, skip_table[0..]);

rotate()


    var i: usize = haystack_bytes.len - needle_bytes.len;
    while (true) {
        if (i % @sizeOf(T) == 0 and mem.eql(u8, haystack_bytes[i .. i + needle_bytes.len], needle_bytes)) {
            return @divExact(i, @sizeOf(T));
        }
        const skip = skip_table[haystack_bytes[i]];
        if (skip > i) break;
        i -= skip;
    }

Test:

rotate


    return null;
}

replace()


/// Uses Boyer-Moore-Horspool algorithm on large inputs; `indexOfPosLinear` on small inputs.
pub fn indexOfPos(comptime T: type, haystack: []const T, start_index: usize, needle: []const T) ?usize {
    if (needle.len > haystack.len) return null;
    if (needle.len == 0) return start_index;

Test:

replace


    if (!meta.trait.hasUniqueRepresentation(T) or haystack.len < 52 or needle.len <= 4)
        return indexOfPosLinear(T, haystack, start_index, needle);

replaceScalar()


    const haystack_bytes = sliceAsBytes(haystack);
    const needle_bytes = sliceAsBytes(needle);

collapseRepeatsLen()


    var skip_table: [256]usize = undefined;
    boyerMooreHorspoolPreprocess(needle_bytes, skip_table[0..]);

collapseRepeats()


    var i: usize = start_index * @sizeOf(T);
    while (i <= haystack_bytes.len - needle_bytes.len) {
        if (i % @sizeOf(T) == 0 and mem.eql(u8, haystack_bytes[i .. i + needle_bytes.len], needle_bytes)) {
            return @divExact(i, @sizeOf(T));
        }
        i += skip_table[haystack_bytes[i + needle_bytes.len - 1]];
    }

Test:

collapseRepeats


    return null;
}

replacementSize()


test "indexOf" {
    try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten eleven", "three four").? == 8);
    try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten eleven", "three four").? == 8);
    try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten eleven", "two two") == null);
    try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten eleven", "two two") == null);

Test:

replacementSize


    try testing.expect(indexOf(u8, "one two three four five six seven eight nine ten", "").? == 0);
    try testing.expect(lastIndexOf(u8, "one two three four five six seven eight nine ten", "").? == 48);

replaceOwned()


    try testing.expect(indexOf(u8, "one two three four", "four").? == 14);
    try testing.expect(lastIndexOf(u8, "one two three two four", "two").? == 14);
    try testing.expect(indexOf(u8, "one two three four", "gour") == null);
    try testing.expect(lastIndexOf(u8, "one two three four", "gour") == null);
    try testing.expect(indexOf(u8, "foo", "foo").? == 0);
    try testing.expect(lastIndexOf(u8, "foo", "foo").? == 0);
    try testing.expect(indexOf(u8, "foo", "fool") == null);
    try testing.expect(lastIndexOf(u8, "foo", "lfoo") == null);
    try testing.expect(lastIndexOf(u8, "foo", "fool") == null);

Test:

replaceOwned


    try testing.expect(indexOf(u8, "foo foo", "foo").? == 0);
    try testing.expect(lastIndexOf(u8, "foo foo", "foo").? == 4);
    try testing.expect(lastIndexOfAny(u8, "boo, cat", "abo").? == 6);
    try testing.expect(lastIndexOfScalar(u8, "boo", 'o').? == 2);
}

littleToNative()


test "indexOf multibyte" {
    {
        // make haystack and needle long enough to trigger Boyer-Moore-Horspool algorithm
        const haystack = [1]u16{0} ** 100 ++ [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee, 0x00ff };
        const needle = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee };
        try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needle), 100);

bigToNative()


        // check for misaligned false positives (little and big endian)
        const needleLE = [_]u16{ 0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff };
        try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needleLE), null);
        const needleBE = [_]u16{ 0xaacc, 0xbbdd, 0xccee, 0xddff, 0xee00 };
        try testing.expectEqual(indexOfPos(u16, &haystack, 0, &needleBE), null);
    }

toNative()


    {
        // make haystack and needle long enough to trigger Boyer-Moore-Horspool algorithm
        const haystack = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee, 0x00ff } ++ [1]u16{0} ** 100;
        const needle = [_]u16{ 0xbbaa, 0xccbb, 0xddcc, 0xeedd, 0xffee };
        try testing.expectEqual(lastIndexOf(u16, &haystack, &needle), 0);

nativeTo()


        // check for misaligned false positives (little and big endian)
        const needleLE = [_]u16{ 0xbbbb, 0xcccc, 0xdddd, 0xeeee, 0xffff };
        try testing.expectEqual(lastIndexOf(u16, &haystack, &needleLE), null);
        const needleBE = [_]u16{ 0xaacc, 0xbbdd, 0xccee, 0xddff, 0xee00 };
        try testing.expectEqual(lastIndexOf(u16, &haystack, &needleBE), null);
    }
}

nativeToLittle()


test "indexOfPos empty needle" {
    try testing.expectEqual(indexOfPos(u8, "abracadabra", 5, ""), 5);
}

nativeToBig()


/// Returns the number of needles inside the haystack
/// needle.len must be > 0
/// does not count overlapping needles
pub fn count(comptime T: type, haystack: []const T, needle: []const T) usize {
    assert(needle.len > 0);
    var i: usize = 0;
    var found: usize = 0;

alignPointerOffset()


    while (indexOfPos(T, haystack, i, needle)) |idx| {
        i = idx + needle.len;
        found += 1;
    }

alignPointer()


    return found;
}

Test:

alignPointer


test "count" {
    try testing.expect(count(u8, "", "h") == 0);
    try testing.expect(count(u8, "h", "h") == 1);
    try testing.expect(count(u8, "hh", "h") == 2);
    try testing.expect(count(u8, "world!", "hello") == 0);
    try testing.expect(count(u8, "hello world!", "hello") == 1);
    try testing.expect(count(u8, "   abcabc   abc", "abc") == 3);
    try testing.expect(count(u8, "udexdcbvbruhasdrw", "bruh") == 1);
    try testing.expect(count(u8, "foo bar", "o bar") == 1);
    try testing.expect(count(u8, "foofoofoo", "foo") == 3);
    try testing.expect(count(u8, "fffffff", "ff") == 3);
    try testing.expect(count(u8, "owowowu", "owowu") == 1);
}

asBytes()


/// Returns true if the haystack contains expected_count or more needles
/// needle.len must be > 0
/// does not count overlapping needles
pub fn containsAtLeast(comptime T: type, haystack: []const T, expected_count: usize, needle: []const T) bool {
    assert(needle.len > 0);
    if (expected_count == 0) return true;

Test:

asBytes


    var i: usize = 0;
    var found: usize = 0;

Test:

asBytes preserves pointer attributes


    while (indexOfPos(T, haystack, i, needle)) |idx| {
        i = idx + needle.len;
        found += 1;
        if (found == expected_count) return true;
    }
    return false;
}

toBytes()


test "containsAtLeast" {
    try testing.expect(containsAtLeast(u8, "aa", 0, "a"));
    try testing.expect(containsAtLeast(u8, "aa", 1, "a"));
    try testing.expect(containsAtLeast(u8, "aa", 2, "a"));
    try testing.expect(!containsAtLeast(u8, "aa", 3, "a"));

Test:

toBytes


    try testing.expect(containsAtLeast(u8, "radaradar", 1, "radar"));
    try testing.expect(!containsAtLeast(u8, "radaradar", 2, "radar"));

bytesAsValue()


    try testing.expect(containsAtLeast(u8, "radarradaradarradar", 3, "radar"));
    try testing.expect(!containsAtLeast(u8, "radarradaradarradar", 4, "radar"));

Test:

bytesAsValue


    try testing.expect(containsAtLeast(u8, "   radar      radar   ", 2, "radar"));
    try testing.expect(!containsAtLeast(u8, "   radar      radar   ", 3, "radar"));
}

Test:

bytesAsValue preserves pointer attributes


/// Reads an integer from memory with size equal to bytes.len.
/// T specifies the return type, which must be large enough to store
/// the result.
pub fn readVarInt(comptime ReturnType: type, bytes: []const u8, endian: Endian) ReturnType {
    var result: ReturnType = 0;
    switch (endian) {
        .Big => {
            for (bytes) |b| {
                result = (result << 8) | b;
            }
        },
        .Little => {
            const ShiftType = math.Log2Int(ReturnType);
            for (bytes, 0..) |b, index| {
                result = result | (@as(ReturnType, b) << @as(ShiftType, @intCast(index * 8)));
            }
        },
    }
    return result;
}

bytesToValue()


/// Loads an integer from packed memory with provided bit_count, bit_offset, and signedness.
/// Asserts that T is large enough to store the read value.
///
/// Example:
///     const T = packed struct(u16){ a: u3, b: u7, c: u6 };
///     var st = T{ .a = 1, .b = 2, .c = 4 };
///     const b_field = readVarPackedInt(u64, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 7, builtin.cpu.arch.endian(), .unsigned);
///
pub fn readVarPackedInt(
    comptime T: type,
    bytes: []const u8,
    bit_offset: usize,
    bit_count: usize,
    endian: std.builtin.Endian,
    signedness: std.builtin.Signedness,

alignForward()

) T {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const iN = std.meta.Int(.signed, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

bytesAsSlice()


    const read_size = (bit_count + (bit_offset % 8) + 7) / 8;
    const bit_shift = @as(u3, @intCast(bit_offset % 8));
    const pad = @as(Log2N, @intCast(@bitSizeOf(T) - bit_count));

Test:

bytesAsSlice


    const lowest_byte = switch (endian) {
        .Big => bytes.len - (bit_offset / 8) - read_size,
        .Little => bit_offset / 8,
    };
    const read_bytes = bytes[lowest_byte..][0..read_size];

Test:

bytesAsSlice keeps pointer alignment


    if (@bitSizeOf(T) <= 8) {
        // These are the same shifts/masks we perform below, but adds `@truncate`/`@intCast`
        // where needed since int is smaller than a byte.
        const value = if (read_size == 1) b: {
            break :b @as(uN, @truncate(read_bytes[0] >> bit_shift));
        } else b: {
            const i: u1 = @intFromBool(endian == .Big);
            const head = @as(uN, @truncate(read_bytes[i] >> bit_shift));
            const tail_shift = @as(Log2N, @intCast(@as(u4, 8) - bit_shift));
            const tail = @as(uN, @truncate(read_bytes[1 - i]));
            break :b (tail << tail_shift) | head;
        };
        switch (signedness) {
            .signed => return @as(T, @intCast((@as(iN, @bitCast(value)) << pad) >> pad)),
            .unsigned => return @as(T, @intCast((@as(uN, @bitCast(value)) << pad) >> pad)),
        }
    }

Test:

bytesAsSlice on a packed struct


    // Copy the value out (respecting endianness), accounting for bit_shift
    var int: uN = 0;
    switch (endian) {
        .Big => {
            for (read_bytes[0 .. read_size - 1]) |elem| {
                int = elem | (int << 8);
            }
            int = (read_bytes[read_size - 1] >> bit_shift) | (int << (@as(u4, 8) - bit_shift));
        },
        .Little => {
            int = read_bytes[0] >> bit_shift;
            for (read_bytes[1..], 0..) |elem, i| {
                int |= (@as(uN, elem) << @as(Log2N, @intCast((8 * (i + 1) - bit_shift))));
            }
        },
    }
    switch (signedness) {
        .signed => return @as(T, @intCast((@as(iN, @bitCast(int)) << pad) >> pad)),
        .unsigned => return @as(T, @intCast((@as(uN, @bitCast(int)) << pad) >> pad)),
    }
}

Test:

bytesAsSlice with specified alignment


/// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior.
/// Assumes the endianness of memory is native. This means the function can
/// simply pointer cast memory.
pub fn readIntNative(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8) T {
    return @as(*align(1) const T, @ptrCast(bytes)).*;
}

Test:

bytesAsSlice preserves pointer attributes


/// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior.
/// Assumes the endianness of memory is foreign, so it must byte-swap.
pub fn readIntForeign(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8) T {
    return @byteSwap(readIntNative(T, bytes));
}

sliceAsBytes()


pub const readIntLittle = switch (native_endian) {
    .Little => readIntNative,
    .Big => readIntForeign,
};

Test:

sliceAsBytes


pub const readIntBig = switch (native_endian) {
    .Little => readIntForeign,
    .Big => readIntNative,
};

Test:

sliceAsBytes with sentinel slice


/// Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0
/// and ignores extra bytes.
/// The bit count of T must be evenly divisible by 8.
/// Assumes the endianness of memory is native. This means the function can
/// simply pointer cast memory.
pub fn readIntSliceNative(comptime T: type, bytes: []const u8) T {
    const n = @divExact(@typeInfo(T).Int.bits, 8);
    assert(bytes.len >= n);
    return readIntNative(T, bytes[0..n]);
}

Test:

sliceAsBytes packed struct at runtime and comptime


/// Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0
/// and ignores extra bytes.
/// The bit count of T must be evenly divisible by 8.
/// Assumes the endianness of memory is foreign, so it must byte-swap.
pub fn readIntSliceForeign(comptime T: type, bytes: []const u8) T {
    return @byteSwap(readIntSliceNative(T, bytes));
}

Test:

sliceAsBytes and bytesAsSlice back


pub const readIntSliceLittle = switch (native_endian) {
    .Little => readIntSliceNative,
    .Big => readIntSliceForeign,
};

Test:

sliceAsBytes preserves pointer attributes


pub const readIntSliceBig = switch (native_endian) {
    .Little => readIntSliceForeign,
    .Big => readIntSliceNative,
};

alignForward()


/// Reads an integer from memory with bit count specified by T.
/// The bit count of T must be evenly divisible by 8.
/// This function cannot fail and cannot cause undefined behavior.
pub fn readInt(comptime T: type, bytes: *const [@divExact(@typeInfo(T).Int.bits, 8)]u8, endian: Endian) T {
    if (endian == native_endian) {
        return readIntNative(T, bytes);
    } else {
        return readIntForeign(T, bytes);
    }
}

alignForwardLog2()


fn readPackedIntLittle(comptime T: type, bytes: []const u8, bit_offset: usize) T {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

alignForwardGeneric


    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @as(u3, @intCast(bit_offset % 8));

doNotOptimizeAway()


    const load_size = (bit_count + 7) / 8;
    const load_tail_bits = @as(u3, @intCast((load_size * 8) - bit_count));
    const LoadInt = std.meta.Int(.unsigned, load_size * 8);

Test:

doNotOptimizeAway


    if (bit_count == 0)
        return 0;

Test:

alignForward


    // Read by loading a LoadInt, and then follow it up with a 1-byte read
    // of the tail if bit_offset pushed us over a byte boundary.
    const read_bytes = bytes[bit_offset / 8 ..];
    const val = @as(uN, @truncate(readIntLittle(LoadInt, read_bytes[0..load_size]) >> bit_shift));
    if (bit_shift > load_tail_bits) {
        const tail_bits = @as(Log2N, @intCast(bit_shift - load_tail_bits));
        const tail_byte = read_bytes[load_size];
        const tail_truncated = if (bit_count < 8) @as(uN, @truncate(tail_byte)) else @as(uN, tail_byte);
        return @as(T, @bitCast(val | (tail_truncated << (@as(Log2N, @truncate(bit_count)) -% tail_bits))));
    } else return @as(T, @bitCast(val));
}

alignBackwardAnyAlign()


fn readPackedIntBig(comptime T: type, bytes: []const u8, bit_offset: usize) T {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

alignBackward()


    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @as(u3, @intCast(bit_offset % 8));
    const byte_count = (@as(usize, bit_shift) + bit_count + 7) / 8;

alignBackwardGeneric


    const load_size = (bit_count + 7) / 8;
    const load_tail_bits = @as(u3, @intCast((load_size * 8) - bit_count));
    const LoadInt = std.meta.Int(.unsigned, load_size * 8);

isValidAlign()


    if (bit_count == 0)
        return 0;

isValidAlignGeneric()


    // Read by loading a LoadInt, and then follow it up with a 1-byte read
    // of the tail if bit_offset pushed us over a byte boundary.
    const end = bytes.len - (bit_offset / 8);
    const read_bytes = bytes[(end - byte_count)..end];
    const val = @as(uN, @truncate(readIntBig(LoadInt, bytes[(end - load_size)..end][0..load_size]) >> bit_shift));
    if (bit_shift > load_tail_bits) {
        const tail_bits = @as(Log2N, @intCast(bit_shift - load_tail_bits));
        const tail_byte = if (bit_count < 8) @as(uN, @truncate(read_bytes[0])) else @as(uN, read_bytes[0]);
        return @as(T, @bitCast(val | (tail_byte << (@as(Log2N, @truncate(bit_count)) -% tail_bits))));
    } else return @as(T, @bitCast(val));
}

isAlignedAnyAlign()


pub const readPackedIntNative = switch (native_endian) {
    .Little => readPackedIntLittle,
    .Big => readPackedIntBig,
};

isAlignedLog2()


pub const readPackedIntForeign = switch (native_endian) {
    .Little => readPackedIntBig,
    .Big => readPackedIntLittle,
};

isAligned()


/// Loads an integer from packed memory.
/// Asserts that buffer contains at least bit_offset + @bitSizeOf(T) bits.
///
/// Example:
///     const T = packed struct(u16){ a: u3, b: u7, c: u6 };
///     var st = T{ .a = 1, .b = 2, .c = 4 };
///     const b_field = readPackedInt(u7, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), builtin.cpu.arch.endian());
///
pub fn readPackedInt(comptime T: type, bytes: []const u8, bit_offset: usize, endian: Endian) T {
    switch (endian) {
        .Little => return readPackedIntLittle(T, bytes, bit_offset),
        .Big => return readPackedIntBig(T, bytes, bit_offset),
    }
}

isAlignedGeneric()


/// Asserts that bytes.len >= @typeInfo(T).Int.bits / 8. Reads the integer starting from index 0
/// and ignores extra bytes.
/// The bit count of T must be evenly divisible by 8.
pub fn readIntSlice(comptime T: type, bytes: []const u8, endian: Endian) T {
    const n = @divExact(@typeInfo(T).Int.bits, 8);
    assert(bytes.len >= n);
    return readInt(T, bytes[0..n], endian);
}

Test:

isAligned


test "comptime read/write int" {
    comptime {
        var bytes: [2]u8 = undefined;
        writeIntLittle(u16, &bytes, 0x1234);
        const result = readIntBig(u16, &bytes);
        try testing.expect(result == 0x3412);
    }
    comptime {
        var bytes: [2]u8 = undefined;
        writeIntBig(u16, &bytes, 0x1234);
        const result = readIntLittle(u16, &bytes);
        try testing.expect(result == 0x3412);
    }
}

Test:

freeing empty string with null-terminated sentinel


test "readIntBig and readIntLittle" {
    if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;

alignInBytes()


    try testing.expect(readIntSliceBig(u0, &[_]u8{}) == 0x0);
    try testing.expect(readIntSliceLittle(u0, &[_]u8{}) == 0x0);

alignInSlice()


    try testing.expect(readIntSliceBig(u8, &[_]u8{0x32}) == 0x32);
    try testing.expect(readIntSliceLittle(u8, &[_]u8{0x12}) == 0x12);

Test:

read/write(Var)PackedInt


    try testing.expect(readIntSliceBig(u16, &[_]u8{ 0x12, 0x34 }) == 0x1234);
    try testing.expect(readIntSliceLittle(u16, &[_]u8{ 0x12, 0x34 }) == 0x3412);

    try testing.expect(readIntSliceBig(u72, &[_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }) == 0x123456789abcdef024);
    try testing.expect(readIntSliceLittle(u72, &[_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }) == 0xfedcba9876543210ec);

    try testing.expect(readIntSliceBig(i8, &[_]u8{0xff}) == -1);
    try testing.expect(readIntSliceLittle(i8, &[_]u8{0xfe}) == -2);

    try testing.expect(readIntSliceBig(i16, &[_]u8{ 0xff, 0xfd }) == -3);
    try testing.expect(readIntSliceLittle(i16, &[_]u8{ 0xfc, 0xff }) == -4);
}

/// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, and
/// accepts any integer bit width.
/// This function stores in native endian, which means it is implemented as a simple
/// memory store.
pub fn writeIntNative(comptime T: type, buf: *[@as(u16, @intCast((@as(u17, @typeInfo(T).Int.bits) + 7) / 8))]u8, value: T) void {
    @as(*align(1) T, @ptrCast(buf)).* = value;
}

/// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, but
/// the integer bit width must be divisible by 8.
/// This function stores in foreign endian, which means it does a @byteSwap first.
pub fn writeIntForeign(comptime T: type, buf: *[@divExact(@typeInfo(T).Int.bits, 8)]u8, value: T) void {
    writeIntNative(T, buf, @byteSwap(value));
}

pub const writeIntLittle = switch (native_endian) {
    .Little => writeIntNative,
    .Big => writeIntForeign,
};

pub const writeIntBig = switch (native_endian) {
    .Little => writeIntForeign,
    .Big => writeIntNative,
};

/// Writes an integer to memory, storing it in twos-complement.
/// This function always succeeds, has defined behavior for all inputs, but
/// the integer bit width must be divisible by 8.
pub fn writeInt(comptime T: type, buffer: *[@divExact(@typeInfo(T).Int.bits, 8)]u8, value: T, endian: Endian) void {
    if (endian == native_endian) {
        return writeIntNative(T, buffer, value);
    } else {
        return writeIntForeign(T, buffer, value);
    }
}

fn writePackedIntLittle(comptime T: type, bytes: []u8, bit_offset: usize, value: T) void {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @as(u3, @intCast(bit_offset % 8));

    const store_size = (@bitSizeOf(T) + 7) / 8;
    const store_tail_bits = @as(u3, @intCast((store_size * 8) - bit_count));
    const StoreInt = std.meta.Int(.unsigned, store_size * 8);

    if (bit_count == 0)
        return;

    // Write by storing a StoreInt, and then follow it up with a 1-byte tail
    // if bit_offset pushed us over a byte boundary.
    const write_bytes = bytes[bit_offset / 8 ..];
    const head = write_bytes[0] & ((@as(u8, 1) << bit_shift) - 1);

    var write_value = (@as(StoreInt, @as(uN, @bitCast(value))) << bit_shift) | @as(StoreInt, @intCast(head));
    if (bit_shift > store_tail_bits) {
        const tail_len = @as(Log2N, @intCast(bit_shift - store_tail_bits));
        write_bytes[store_size] &= ~((@as(u8, 1) << @as(u3, @intCast(tail_len))) - 1);
        write_bytes[store_size] |= @as(u8, @intCast((@as(uN, @bitCast(value)) >> (@as(Log2N, @truncate(bit_count)) -% tail_len))));
    } else if (bit_shift < store_tail_bits) {
        const tail_len = store_tail_bits - bit_shift;
        const tail = write_bytes[store_size - 1] & (@as(u8, 0xfe) << (7 - tail_len));
        write_value |= @as(StoreInt, tail) << (8 * (store_size - 1));
    }

    writeIntLittle(StoreInt, write_bytes[0..store_size], write_value);
}

fn writePackedIntBig(comptime T: type, bytes: []u8, bit_offset: usize, value: T) void {
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));
    const Log2N = std.math.Log2Int(T);

    const bit_count = @as(usize, @bitSizeOf(T));
    const bit_shift = @as(u3, @intCast(bit_offset % 8));
    const byte_count = (bit_shift + bit_count + 7) / 8;

    const store_size = (@bitSizeOf(T) + 7) / 8;
    const store_tail_bits = @as(u3, @intCast((store_size * 8) - bit_count));
    const StoreInt = std.meta.Int(.unsigned, store_size * 8);

    if (bit_count == 0)
        return;

    // Write by storing a StoreInt, and then follow it up with a 1-byte tail
    // if bit_offset pushed us over a byte boundary.
    const end = bytes.len - (bit_offset / 8);
    const write_bytes = bytes[(end - byte_count)..end];
    const head = write_bytes[byte_count - 1] & ((@as(u8, 1) << bit_shift) - 1);

    var write_value = (@as(StoreInt, @as(uN, @bitCast(value))) << bit_shift) | @as(StoreInt, @intCast(head));
    if (bit_shift > store_tail_bits) {
        const tail_len = @as(Log2N, @intCast(bit_shift - store_tail_bits));
        write_bytes[0] &= ~((@as(u8, 1) << @as(u3, @intCast(tail_len))) - 1);
        write_bytes[0] |= @as(u8, @intCast((@as(uN, @bitCast(value)) >> (@as(Log2N, @truncate(bit_count)) -% tail_len))));
    } else if (bit_shift < store_tail_bits) {
        const tail_len = store_tail_bits - bit_shift;
        const tail = write_bytes[0] & (@as(u8, 0xfe) << (7 - tail_len));
        write_value |= @as(StoreInt, tail) << (8 * (store_size - 1));
    }

    writeIntBig(StoreInt, write_bytes[(byte_count - store_size)..][0..store_size], write_value);
}

pub const writePackedIntNative = switch (native_endian) {
    .Little => writePackedIntLittle,
    .Big => writePackedIntBig,
};

pub const writePackedIntForeign = switch (native_endian) {
    .Little => writePackedIntBig,
    .Big => writePackedIntLittle,
};

/// Stores an integer to packed memory.
/// Asserts that buffer contains at least bit_offset + @bitSizeOf(T) bits.
///
/// Example:
///     const T = packed struct(u16){ a: u3, b: u7, c: u6 };
///     var st = T{ .a = 1, .b = 2, .c = 4 };
///     // st.b = 0x7f;
///     writePackedInt(u7, std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 0x7f, builtin.cpu.arch.endian());
///
pub fn writePackedInt(comptime T: type, bytes: []u8, bit_offset: usize, value: T, endian: Endian) void {
    switch (endian) {
        .Little => writePackedIntLittle(T, bytes, bit_offset, value),
        .Big => writePackedIntBig(T, bytes, bit_offset, value),
    }
}

/// Writes a twos-complement little-endian integer to memory.
/// Asserts that buf.len >= @typeInfo(T).Int.bits / 8.
/// The bit count of T must be divisible by 8.
/// Any extra bytes in buffer after writing the integer are set to zero. To
/// avoid the branch to check for extra buffer bytes, use writeIntLittle
/// instead.
pub fn writeIntSliceLittle(comptime T: type, buffer: []u8, value: T) void {
    assert(buffer.len >= @divExact(@typeInfo(T).Int.bits, 8));

    if (@typeInfo(T).Int.bits == 0) {
        return @memset(buffer, 0);
    } else if (@typeInfo(T).Int.bits == 8) {
        @memset(buffer, 0);
        buffer[0] = @as(u8, @bitCast(value));
        return;
    }
    // TODO I want to call writeIntLittle here but comptime eval facilities aren't good enough
    const uint = std.meta.Int(.unsigned, @typeInfo(T).Int.bits);
    var bits = @as(uint, @bitCast(value));
    for (buffer) |*b| {
        b.* = @as(u8, @truncate(bits));
        bits >>= 8;
    }
}

/// Writes a twos-complement big-endian integer to memory.
/// Asserts that buffer.len >= @typeInfo(T).Int.bits / 8.
/// The bit count of T must be divisible by 8.
/// Any extra bytes in buffer before writing the integer are set to zero. To
/// avoid the branch to check for extra buffer bytes, use writeIntBig instead.
pub fn writeIntSliceBig(comptime T: type, buffer: []u8, value: T) void {
    assert(buffer.len >= @divExact(@typeInfo(T).Int.bits, 8));

    if (@typeInfo(T).Int.bits == 0) {
        return @memset(buffer, 0);
    } else if (@typeInfo(T).Int.bits == 8) {
        @memset(buffer, 0);
        buffer[buffer.len - 1] = @as(u8, @bitCast(value));
        return;
    }

    // TODO I want to call writeIntBig here but comptime eval facilities aren't good enough
    const uint = std.meta.Int(.unsigned, @typeInfo(T).Int.bits);
    var bits = @as(uint, @bitCast(value));
    var index: usize = buffer.len;
    while (index != 0) {
        index -= 1;
        buffer[index] = @as(u8, @truncate(bits));
        bits >>= 8;
    }
}

pub const writeIntSliceNative = switch (native_endian) {
    .Little => writeIntSliceLittle,
    .Big => writeIntSliceBig,
};

pub const writeIntSliceForeign = switch (native_endian) {
    .Little => writeIntSliceBig,
    .Big => writeIntSliceLittle,
};

/// Writes a twos-complement integer to memory, with the specified endianness.
/// Asserts that buf.len >= @typeInfo(T).Int.bits / 8.
/// The bit count of T must be evenly divisible by 8.
/// Any extra bytes in buffer not part of the integer are set to zero, with
/// respect to endianness. To avoid the branch to check for extra buffer bytes,
/// use writeInt instead.
pub fn writeIntSlice(comptime T: type, buffer: []u8, value: T, endian: Endian) void {
    comptime assert(@typeInfo(T).Int.bits % 8 == 0);
    return switch (endian) {
        .Little => writeIntSliceLittle(T, buffer, value),
        .Big => writeIntSliceBig(T, buffer, value),
    };
}

/// Stores an integer to packed memory with provided bit_count, bit_offset, and signedness.
/// If negative, the written value is sign-extended.
///
/// Example:
///     const T = packed struct(u16){ a: u3, b: u7, c: u6 };
///     var st = T{ .a = 1, .b = 2, .c = 4 };
///     // st.b = 0x7f;
///     var value: u64 = 0x7f;
///     writeVarPackedInt(std.mem.asBytes(&st), @bitOffsetOf(T, "b"), 7, value, builtin.cpu.arch.endian());
///
pub fn writeVarPackedInt(bytes: []u8, bit_offset: usize, bit_count: usize, value: anytype, endian: std.builtin.Endian) void {
    const T = @TypeOf(value);
    const uN = std.meta.Int(.unsigned, @bitSizeOf(T));

    const bit_shift = @as(u3, @intCast(bit_offset % 8));
    const write_size = (bit_count + bit_shift + 7) / 8;
    const lowest_byte = switch (endian) {
        .Big => bytes.len - (bit_offset / 8) - write_size,
        .Little => bit_offset / 8,
    };
    const write_bytes = bytes[lowest_byte..][0..write_size];

    if (write_size == 1) {
        // Single byte writes are handled specially, since we need to mask bits
        // on both ends of the byte.
        const mask = (@as(u8, 0xff) >> @as(u3, @intCast(8 - bit_count)));
        const new_bits = @as(u8, @intCast(@as(uN, @bitCast(value)) & mask)) << bit_shift;
        write_bytes[0] = (write_bytes[0] & ~(mask << bit_shift)) | new_bits;
        return;
    }

    var remaining: T = value;

    // Iterate bytes forward for Little-endian, backward for Big-endian
    const delta: i2 = if (endian == .Big) -1 else 1;
    const start = if (endian == .Big) @as(isize, @intCast(write_bytes.len - 1)) else 0;

    var i: isize = start; // isize for signed index arithmetic

    // Write first byte, using a mask to protects bits preceding bit_offset
    const head_mask = @as(u8, 0xff) >> bit_shift;
    write_bytes[@intCast(i)] &= ~(head_mask << bit_shift);
    write_bytes[@intCast(i)] |= @as(u8, @intCast(@as(uN, @bitCast(remaining)) & head_mask)) << bit_shift;
    remaining = math.shr(T, remaining, @as(u4, 8) - bit_shift);
    i += delta;

    // Write bytes[1..bytes.len - 1]
    if (@bitSizeOf(T) > 8) {
        const loop_end = start + delta * (@as(isize, @intCast(write_size)) - 1);
        while (i != loop_end) : (i += delta) {
            write_bytes[@as(usize, @intCast(i))] = @as(u8, @truncate(@as(uN, @bitCast(remaining))));
            remaining >>= 8;
        }
    }

    // Write last byte, using a mask to protect bits following bit_offset + bit_count
    const following_bits = -%@as(u3, @truncate(bit_shift + bit_count));
    const tail_mask = (@as(u8, 0xff) << following_bits) >> following_bits;
    write_bytes[@as(usize, @intCast(i))] &= ~tail_mask;
    write_bytes[@as(usize, @intCast(i))] |= @as(u8, @intCast(@as(uN, @bitCast(remaining)) & tail_mask));
}

test "writeIntBig and writeIntLittle" {
    if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;

    var buf0: [0]u8 = undefined;
    var buf1: [1]u8 = undefined;
    var buf2: [2]u8 = undefined;
    var buf9: [9]u8 = undefined;

    writeIntBig(u0, &buf0, 0x0);
    try testing.expect(eql(u8, buf0[0..], &[_]u8{}));
    writeIntLittle(u0, &buf0, 0x0);
    try testing.expect(eql(u8, buf0[0..], &[_]u8{}));

    writeIntBig(u8, &buf1, 0x12);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0x12}));
    writeIntLittle(u8, &buf1, 0x34);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0x34}));

    writeIntBig(u16, &buf2, 0x1234);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0x12, 0x34 }));
    writeIntLittle(u16, &buf2, 0x5678);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0x78, 0x56 }));

    writeIntBig(u72, &buf9, 0x123456789abcdef024);
    try testing.expect(eql(u8, buf9[0..], &[_]u8{ 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x24 }));
    writeIntLittle(u72, &buf9, 0xfedcba9876543210ec);
    try testing.expect(eql(u8, buf9[0..], &[_]u8{ 0xec, 0x10, 0x32, 0x54, 0x76, 0x98, 0xba, 0xdc, 0xfe }));

    writeIntBig(i8, &buf1, -1);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0xff}));
    writeIntLittle(i8, &buf1, -2);
    try testing.expect(eql(u8, buf1[0..], &[_]u8{0xfe}));

    writeIntBig(i16, &buf2, -3);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0xff, 0xfd }));
    writeIntLittle(i16, &buf2, -4);
    try testing.expect(eql(u8, buf2[0..], &[_]u8{ 0xfc, 0xff }));
}

/// Swap the byte order of all the members of the fields of a struct
/// (Changing their endianness)
pub fn byteSwapAllFields(comptime S: type, ptr: *S) void {
    if (@typeInfo(S) != .Struct) @compileError("byteSwapAllFields expects a struct as the first argument");
    inline for (std.meta.fields(S)) |f| {
        if (@typeInfo(f.type) == .Struct) {
            byteSwapAllFields(f.type, &@field(ptr, f.name));
        } else {
            @field(ptr, f.name) = @byteSwap(@field(ptr, f.name));
        }
    }
}

test "byteSwapAllFields" {
    const T = extern struct {
        f0: u8,
        f1: u16,
        f2: u32,
    };
    const K = extern struct {
        f0: u8,
        f1: T,
        f2: u16,
    };
    var s = T{
        .f0 = 0x12,
        .f1 = 0x1234,
        .f2 = 0x12345678,
    };
    var k = K{
        .f0 = 0x12,
        .f1 = s,
        .f2 = 0x1234,
    };
    byteSwapAllFields(T, &s);
    byteSwapAllFields(K, &k);
    try std.testing.expectEqual(T{
        .f0 = 0x12,
        .f1 = 0x3412,
        .f2 = 0x78563412,
    }, s);
    try std.testing.expectEqual(K{
        .f0 = 0x12,
        .f1 = s,
        .f2 = 0x3412,
    }, k);
}

/// Deprecated: use `tokenizeAny`, `tokenizeSequence`, or `tokenizeScalar`
pub const tokenize = tokenizeAny;

/// Returns an iterator that iterates over the slices of `buffer` that are not
/// any of the items in `delimiters`.
///
/// `tokenizeAny(u8, "   abc|def ||  ghi  ", " |")` will return slices
/// for "abc", "def", "ghi", null, in that order.
///
/// If `buffer` is empty, the iterator will return null.
/// If none of `delimiters` exist in buffer,
/// the iterator will return `buffer`, null, in that order.
///
/// See also: `tokenizeSequence`, `tokenizeScalar`,
///           `splitSequence`,`splitAny`, `splitScalar`,
///           `splitBackwardsSequence`, `splitBackwardsAny`, and `splitBackwardsScalar`
pub fn tokenizeAny(comptime T: type, buffer: []const T, delimiters: []const T) TokenIterator(T, .any) {
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter = delimiters,
    };
}

/// Returns an iterator that iterates over the slices of `buffer` that are not
/// the sequence in `delimiter`.
///
/// `tokenizeSequence(u8, "<>abc><def<><>ghi", "<>")` will return slices
/// for "abc><def", "ghi", null, in that order.
///
/// If `buffer` is empty, the iterator will return null.
/// If `delimiter` does not exist in buffer,
/// the iterator will return `buffer`, null, in that order.
/// The delimiter length must not be zero.
///
/// See also: `tokenizeAny`, `tokenizeScalar`,
///           `splitSequence`,`splitAny`, and `splitScalar`
///           `splitBackwardsSequence`, `splitBackwardsAny`, and `splitBackwardsScalar`
pub fn tokenizeSequence(comptime T: type, buffer: []const T, delimiter: []const T) TokenIterator(T, .sequence) {
    assert(delimiter.len != 0);
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}

/// Returns an iterator that iterates over the slices of `buffer` that are not
/// `delimiter`.
///
/// `tokenizeScalar(u8, "   abc def     ghi  ", ' ')` will return slices
/// for "abc", "def", "ghi", null, in that order.
///
/// If `buffer` is empty, the iterator will return null.
/// If `delimiter` does not exist in buffer,
/// the iterator will return `buffer`, null, in that order.
///
/// See also: `tokenizeAny`, `tokenizeSequence`,
///           `splitSequence`,`splitAny`, and `splitScalar`
///           `splitBackwardsSequence`, `splitBackwardsAny`, and `splitBackwardsScalar`
pub fn tokenizeScalar(comptime T: type, buffer: []const T, delimiter: T) TokenIterator(T, .scalar) {
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}

test "tokenizeScalar" {
    var it = tokenizeScalar(u8, "   abc def   ghi  ", ' ');
    try testing.expect(eql(u8, it.next().?, "abc"));
    try testing.expect(eql(u8, it.peek().?, "def"));
    try testing.expect(eql(u8, it.next().?, "def"));
    try testing.expect(eql(u8, it.next().?, "ghi"));
    try testing.expect(it.next() == null);

    it = tokenizeScalar(u8, "..\\bob", '\\');
    try testing.expect(eql(u8, it.next().?, ".."));
    try testing.expect(eql(u8, "..", "..\\bob"[0..it.index]));
    try testing.expect(eql(u8, it.next().?, "bob"));
    try testing.expect(it.next() == null);

    it = tokenizeScalar(u8, "//a/b", '/');
    try testing.expect(eql(u8, it.next().?, "a"));
    try testing.expect(eql(u8, it.next().?, "b"));
    try testing.expect(eql(u8, "//a/b", "//a/b"[0..it.index]));
    try testing.expect(it.next() == null);

    it = tokenizeScalar(u8, "|", '|');
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);

    it = tokenizeScalar(u8, "", '|');
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);

    it = tokenizeScalar(u8, "hello", ' ');
    try testing.expect(eql(u8, it.next().?, "hello"));
    try testing.expect(it.next() == null);

    var it16 = tokenizeScalar(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("hello"),
        ' ',
    );
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("hello")));
    try testing.expect(it16.next() == null);
}

test "tokenizeAny" {
    var it = tokenizeAny(u8, "a|b,c/d e", " /,|");
    try testing.expect(eql(u8, it.next().?, "a"));
    try testing.expect(eql(u8, it.peek().?, "b"));
    try testing.expect(eql(u8, it.next().?, "b"));
    try testing.expect(eql(u8, it.next().?, "c"));
    try testing.expect(eql(u8, it.next().?, "d"));
    try testing.expect(eql(u8, it.next().?, "e"));
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);

    it = tokenizeAny(u8, "hello", "");
    try testing.expect(eql(u8, it.next().?, "hello"));
    try testing.expect(it.next() == null);

    var it16 = tokenizeAny(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a|b,c/d e"),
        std.unicode.utf8ToUtf16LeStringLiteral(" /,|"),
    );
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("e")));
    try testing.expect(it16.next() == null);
}

test "tokenizeSequence" {
    var it = tokenizeSequence(u8, "a<>b<><>c><>d><", "<>");
    try testing.expectEqualStrings("a", it.next().?);
    try testing.expectEqualStrings("b", it.peek().?);
    try testing.expectEqualStrings("b", it.next().?);
    try testing.expectEqualStrings("c>", it.next().?);
    try testing.expectEqualStrings("d><", it.next().?);
    try testing.expect(it.next() == null);
    try testing.expect(it.peek() == null);

    var it16 = tokenizeSequence(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a<>b<><>c><>d><"),
        std.unicode.utf8ToUtf16LeStringLiteral("<>"),
    );
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c>")));
    try testing.expect(eql(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d><")));
    try testing.expect(it16.next() == null);
}

test "tokenize (reset)" {
    {
        var it = tokenizeAny(u8, "   abc def   ghi  ", " ");
        try testing.expect(eql(u8, it.next().?, "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));

        it.reset();

        try testing.expect(eql(u8, it.next().?, "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));
        try testing.expect(it.next() == null);
    }
    {
        var it = tokenizeSequence(u8, "<><>abc<>def<><>ghi<>", "<>");
        try testing.expect(eql(u8, it.next().?, "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));

        it.reset();

        try testing.expect(eql(u8, it.next().?, "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));
        try testing.expect(it.next() == null);
    }
    {
        var it = tokenizeScalar(u8, "   abc def   ghi  ", ' ');
        try testing.expect(eql(u8, it.next().?, "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));

        it.reset();

        try testing.expect(eql(u8, it.next().?, "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));
        try testing.expect(it.next() == null);
    }
}

/// Deprecated: use `splitSequence`, `splitAny`, or `splitScalar`
pub const split = splitSequence;

/// Returns an iterator that iterates over the slices of `buffer` that
/// are separated by the byte sequence in `delimiter`.
///
/// `splitSequence(u8, "abc||def||||ghi", "||")` will return slices
/// for "abc", "def", "", "ghi", null, in that order.
///
/// If `delimiter` does not exist in buffer,
/// the iterator will return `buffer`, null, in that order.
/// The delimiter length must not be zero.
///
/// See also: `splitAny`, `splitScalar`, `splitBackwardsSequence`,
///           `splitBackwardsAny`,`splitBackwardsScalar`,
///           `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`.
pub fn splitSequence(comptime T: type, buffer: []const T, delimiter: []const T) SplitIterator(T, .sequence) {
    assert(delimiter.len != 0);
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}

/// Returns an iterator that iterates over the slices of `buffer` that
/// are separated by any item in `delimiters`.
///
/// `splitAny(u8, "abc,def||ghi", "|,")` will return slices
/// for "abc", "def", "", "ghi", null, in that order.
///
/// If none of `delimiters` exist in buffer,
/// the iterator will return `buffer`, null, in that order.
///
/// See also: `splitSequence`, `splitScalar`, `splitBackwardsSequence`,
///           `splitBackwardsAny`,`splitBackwardsScalar`,
///           `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`.
pub fn splitAny(comptime T: type, buffer: []const T, delimiters: []const T) SplitIterator(T, .any) {
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter = delimiters,
    };
}

/// Returns an iterator that iterates over the slices of `buffer` that
/// are separated by `delimiter`.
///
/// `splitScalar(u8, "abc|def||ghi", '|')` will return slices
/// for "abc", "def", "", "ghi", null, in that order.
///
/// If `delimiter` does not exist in buffer,
/// the iterator will return `buffer`, null, in that order.
///
/// See also: `splitSequence`, `splitAny`, `splitBackwardsSequence`,
///           `splitBackwardsAny`,`splitBackwardsScalar`,
///           `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`.
pub fn splitScalar(comptime T: type, buffer: []const T, delimiter: T) SplitIterator(T, .scalar) {
    return .{
        .index = 0,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}

test "splitScalar" {
    var it = splitScalar(u8, "abc|def||ghi", '|');
    try testing.expectEqualSlices(u8, it.rest(), "abc|def||ghi");
    try testing.expectEqualSlices(u8, it.first(), "abc");

    try testing.expectEqualSlices(u8, it.rest(), "def||ghi");
    try testing.expectEqualSlices(u8, it.peek().?, "def");
    try testing.expectEqualSlices(u8, it.next().?, "def");

    try testing.expectEqualSlices(u8, it.rest(), "|ghi");
    try testing.expectEqualSlices(u8, it.next().?, "");

    try testing.expectEqualSlices(u8, it.rest(), "ghi");
    try testing.expectEqualSlices(u8, it.peek().?, "ghi");
    try testing.expectEqualSlices(u8, it.next().?, "ghi");

    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.peek() == null);
    try testing.expect(it.next() == null);

    it = splitScalar(u8, "", '|');
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expect(it.next() == null);

    it = splitScalar(u8, "|", '|');
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expectEqualSlices(u8, it.next().?, "");
    try testing.expect(it.peek() == null);
    try testing.expect(it.next() == null);

    it = splitScalar(u8, "hello", ' ');
    try testing.expectEqualSlices(u8, it.first(), "hello");
    try testing.expect(it.next() == null);

    var it16 = splitScalar(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("hello"),
        ' ',
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("hello"));
    try testing.expect(it16.next() == null);
}

test "splitSequence" {
    var it = splitSequence(u8, "a, b ,, c, d, e", ", ");
    try testing.expectEqualSlices(u8, it.first(), "a");
    try testing.expectEqualSlices(u8, it.rest(), "b ,, c, d, e");
    try testing.expectEqualSlices(u8, it.next().?, "b ,");
    try testing.expectEqualSlices(u8, it.next().?, "c");
    try testing.expectEqualSlices(u8, it.next().?, "d");
    try testing.expectEqualSlices(u8, it.next().?, "e");
    try testing.expect(it.next() == null);

    var it16 = splitSequence(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a, b ,, c, d, e"),
        std.unicode.utf8ToUtf16LeStringLiteral(", "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("a"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b ,"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("e"));
    try testing.expect(it16.next() == null);
}

test "splitAny" {
    var it = splitAny(u8, "a,b, c d e", ", ");
    try testing.expectEqualSlices(u8, it.first(), "a");
    try testing.expectEqualSlices(u8, it.rest(), "b, c d e");
    try testing.expectEqualSlices(u8, it.next().?, "b");
    try testing.expectEqualSlices(u8, it.next().?, "");
    try testing.expectEqualSlices(u8, it.next().?, "c");
    try testing.expectEqualSlices(u8, it.next().?, "d");
    try testing.expectEqualSlices(u8, it.next().?, "e");
    try testing.expect(it.next() == null);

    it = splitAny(u8, "hello", "");
    try testing.expect(eql(u8, it.next().?, "hello"));
    try testing.expect(it.next() == null);

    var it16 = splitAny(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a,b, c d e"),
        std.unicode.utf8ToUtf16LeStringLiteral(", "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("a"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral(""));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("e"));
    try testing.expect(it16.next() == null);
}

test "split (reset)" {
    {
        var it = splitSequence(u8, "abc def ghi", " ");
        try testing.expect(eql(u8, it.first(), "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));

        it.reset();

        try testing.expect(eql(u8, it.first(), "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));
        try testing.expect(it.next() == null);
    }
    {
        var it = splitAny(u8, "abc def,ghi", " ,");
        try testing.expect(eql(u8, it.first(), "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));

        it.reset();

        try testing.expect(eql(u8, it.first(), "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));
        try testing.expect(it.next() == null);
    }
    {
        var it = splitScalar(u8, "abc def ghi", ' ');
        try testing.expect(eql(u8, it.first(), "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));

        it.reset();

        try testing.expect(eql(u8, it.first(), "abc"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "ghi"));
        try testing.expect(it.next() == null);
    }
}

/// Deprecated: use `splitBackwardsSequence`, `splitBackwardsAny`, or `splitBackwardsScalar`
pub const splitBackwards = splitBackwardsSequence;

/// Returns an iterator that iterates backwards over the slices of `buffer` that
/// are separated by the sequence in `delimiter`.
///
/// `splitBackwardsSequence(u8, "abc||def||||ghi", "||")` will return slices
/// for "ghi", "", "def", "abc", null, in that order.
///
/// If `delimiter` does not exist in buffer,
/// the iterator will return `buffer`, null, in that order.
/// The delimiter length must not be zero.
///
/// See also: `splitBackwardsAny`, `splitBackwardsScalar`,
///           `splitSequence`, `splitAny`,`splitScalar`,
///           `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`.
pub fn splitBackwardsSequence(comptime T: type, buffer: []const T, delimiter: []const T) SplitBackwardsIterator(T, .sequence) {
    assert(delimiter.len != 0);
    return .{
        .index = buffer.len,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}

/// Returns an iterator that iterates backwards over the slices of `buffer` that
/// are separated by any item in `delimiters`.
///
/// `splitBackwardsAny(u8, "abc,def||ghi", "|,")` will return slices
/// for "ghi", "", "def", "abc", null, in that order.
///
/// If none of `delimiters` exist in buffer,
/// the iterator will return `buffer`, null, in that order.
///
/// See also: `splitBackwardsSequence`, `splitBackwardsScalar`,
///           `splitSequence`, `splitAny`,`splitScalar`,
///           `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`.
pub fn splitBackwardsAny(comptime T: type, buffer: []const T, delimiters: []const T) SplitBackwardsIterator(T, .any) {
    return .{
        .index = buffer.len,
        .buffer = buffer,
        .delimiter = delimiters,
    };
}

/// Returns an iterator that iterates backwards over the slices of `buffer` that
/// are separated by `delimiter`.
///
/// `splitBackwardsScalar(u8, "abc|def||ghi", '|')` will return slices
/// for "ghi", "", "def", "abc", null, in that order.
///
/// If `delimiter` does not exist in buffer,
/// the iterator will return `buffer`, null, in that order.
///
/// See also: `splitBackwardsSequence`, `splitBackwardsAny`,
///           `splitSequence`, `splitAny`,`splitScalar`,
///           `tokenizeAny`, `tokenizeSequence`, and `tokenizeScalar`.
pub fn splitBackwardsScalar(comptime T: type, buffer: []const T, delimiter: T) SplitBackwardsIterator(T, .scalar) {
    return .{
        .index = buffer.len,
        .buffer = buffer,
        .delimiter = delimiter,
    };
}

test "splitBackwardsScalar" {
    var it = splitBackwardsScalar(u8, "abc|def||ghi", '|');
    try testing.expectEqualSlices(u8, it.rest(), "abc|def||ghi");
    try testing.expectEqualSlices(u8, it.first(), "ghi");

    try testing.expectEqualSlices(u8, it.rest(), "abc|def|");
    try testing.expectEqualSlices(u8, it.next().?, "");

    try testing.expectEqualSlices(u8, it.rest(), "abc|def");
    try testing.expectEqualSlices(u8, it.next().?, "def");

    try testing.expectEqualSlices(u8, it.rest(), "abc");
    try testing.expectEqualSlices(u8, it.next().?, "abc");

    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.next() == null);

    it = splitBackwardsScalar(u8, "", '|');
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expect(it.next() == null);

    it = splitBackwardsScalar(u8, "|", '|');
    try testing.expectEqualSlices(u8, it.first(), "");
    try testing.expectEqualSlices(u8, it.next().?, "");
    try testing.expect(it.next() == null);

    it = splitBackwardsScalar(u8, "hello", ' ');
    try testing.expectEqualSlices(u8, it.first(), "hello");
    try testing.expect(it.next() == null);

    var it16 = splitBackwardsScalar(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("hello"),
        ' ',
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("hello"));
    try testing.expect(it16.next() == null);
}

test "splitBackwardsSequence" {
    var it = splitBackwardsSequence(u8, "a, b ,, c, d, e", ", ");
    try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c, d, e");
    try testing.expectEqualSlices(u8, it.first(), "e");

    try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c, d");
    try testing.expectEqualSlices(u8, it.next().?, "d");

    try testing.expectEqualSlices(u8, it.rest(), "a, b ,, c");
    try testing.expectEqualSlices(u8, it.next().?, "c");

    try testing.expectEqualSlices(u8, it.rest(), "a, b ,");
    try testing.expectEqualSlices(u8, it.next().?, "b ,");

    try testing.expectEqualSlices(u8, it.rest(), "a");
    try testing.expectEqualSlices(u8, it.next().?, "a");

    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.next() == null);

    var it16 = splitBackwardsSequence(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a, b ,, c, d, e"),
        std.unicode.utf8ToUtf16LeStringLiteral(", "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("e"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b ,"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a"));
    try testing.expect(it16.next() == null);
}

test "splitBackwardsAny" {
    var it = splitBackwardsAny(u8, "a,b, c d e", ", ");
    try testing.expectEqualSlices(u8, it.rest(), "a,b, c d e");
    try testing.expectEqualSlices(u8, it.first(), "e");

    try testing.expectEqualSlices(u8, it.rest(), "a,b, c d");
    try testing.expectEqualSlices(u8, it.next().?, "d");

    try testing.expectEqualSlices(u8, it.rest(), "a,b, c");
    try testing.expectEqualSlices(u8, it.next().?, "c");

    try testing.expectEqualSlices(u8, it.rest(), "a,b,");
    try testing.expectEqualSlices(u8, it.next().?, "");

    try testing.expectEqualSlices(u8, it.rest(), "a,b");
    try testing.expectEqualSlices(u8, it.next().?, "b");

    try testing.expectEqualSlices(u8, it.rest(), "a");
    try testing.expectEqualSlices(u8, it.next().?, "a");

    try testing.expectEqualSlices(u8, it.rest(), "");
    try testing.expect(it.next() == null);

    var it16 = splitBackwardsAny(
        u16,
        std.unicode.utf8ToUtf16LeStringLiteral("a,b, c d e"),
        std.unicode.utf8ToUtf16LeStringLiteral(", "),
    );
    try testing.expectEqualSlices(u16, it16.first(), std.unicode.utf8ToUtf16LeStringLiteral("e"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("d"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("c"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral(""));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("b"));
    try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("a"));
    try testing.expect(it16.next() == null);
}

test "splitBackwards (reset)" {
    {
        var it = splitBackwardsSequence(u8, "abc def ghi", " ");
        try testing.expect(eql(u8, it.first(), "ghi"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "abc"));

        it.reset();

        try testing.expect(eql(u8, it.first(), "ghi"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "abc"));
        try testing.expect(it.next() == null);
    }
    {
        var it = splitBackwardsAny(u8, "abc def,ghi", " ,");
        try testing.expect(eql(u8, it.first(), "ghi"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "abc"));

        it.reset();

        try testing.expect(eql(u8, it.first(), "ghi"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "abc"));
        try testing.expect(it.next() == null);
    }
    {
        var it = splitBackwardsScalar(u8, "abc def ghi", ' ');
        try testing.expect(eql(u8, it.first(), "ghi"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "abc"));

        it.reset();

        try testing.expect(eql(u8, it.first(), "ghi"));
        try testing.expect(eql(u8, it.next().?, "def"));
        try testing.expect(eql(u8, it.next().?, "abc"));
        try testing.expect(it.next() == null);
    }
}

/// Returns an iterator with a sliding window of slices for `buffer`.
/// The sliding window has length `size` and on every iteration moves
/// forward by `advance`.
///
/// Extract data for moving average with:
/// `window(u8, "abcdefg", 3, 1)` will return slices
/// "abc", "bcd", "cde", "def", "efg", null, in that order.
///
/// Chunk or split every N items with:
/// `window(u8, "abcdefg", 3, 3)` will return slices
/// "abc", "def", "g", null, in that order.
///
/// Pick every even index with:
/// `window(u8, "abcdefg", 1, 2)` will return slices
/// "a", "c", "e", "g" null, in that order.
///
/// The `size` and `advance` must be not be zero.
pub fn window(comptime T: type, buffer: []const T, size: usize, advance: usize) WindowIterator(T) {
    assert(size != 0);
    assert(advance != 0);
    return .{
        .index = 0,
        .buffer = buffer,
        .size = size,
        .advance = advance,
    };
}

test "window" {
    {
        // moving average size 3
        var it = window(u8, "abcdefg", 3, 1);
        try testing.expectEqualSlices(u8, it.next().?, "abc");
        try testing.expectEqualSlices(u8, it.next().?, "bcd");
        try testing.expectEqualSlices(u8, it.next().?, "cde");
        try testing.expectEqualSlices(u8, it.next().?, "def");
        try testing.expectEqualSlices(u8, it.next().?, "efg");
        try testing.expectEqual(it.next(), null);

        // multibyte
        var it16 = window(u16, std.unicode.utf8ToUtf16LeStringLiteral("abcdefg"), 3, 1);
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("abc"));
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("bcd"));
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("cde"));
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("def"));
        try testing.expectEqualSlices(u16, it16.next().?, std.unicode.utf8ToUtf16LeStringLiteral("efg"));
        try testing.expectEqual(it16.next(), null);
    }

    {
        // chunk/split every 3
        var it = window(u8, "abcdefg", 3, 3);
        try testing.expectEqualSlices(u8, it.next().?, "abc");
        try testing.expectEqualSlices(u8, it.next().?, "def");
        try testing.expectEqualSlices(u8, it.next().?, "g");
        try testing.expectEqual(it.next(), null);
    }

    {
        // pick even
        var it = window(u8, "abcdefg", 1, 2);
        try testing.expectEqualSlices(u8, it.next().?, "a");
        try testing.expectEqualSlices(u8, it.next().?, "c");
        try testing.expectEqualSlices(u8, it.next().?, "e");
        try testing.expectEqualSlices(u8, it.next().?, "g");
        try testing.expectEqual(it.next(), null);
    }

    {
        // empty
        var it = window(u8, "", 1, 1);
        try testing.expectEqualSlices(u8, it.next().?, "");
        try testing.expectEqual(it.next(), null);

        it = window(u8, "", 10, 1);
        try testing.expectEqualSlices(u8, it.next().?, "");
        try testing.expectEqual(it.next(), null);

        it = window(u8, "", 1, 10);
        try testing.expectEqualSlices(u8, it.next().?, "");
        try testing.expectEqual(it.next(), null);

        it = window(u8, "", 10, 10);
        try testing.expectEqualSlices(u8, it.next().?, "");
        try testing.expectEqual(it.next(), null);
    }

    {
        // first
        var it = window(u8, "abcdefg", 3, 3);
        try testing.expectEqualSlices(u8, it.first(), "abc");
        it.reset();
        try testing.expectEqualSlices(u8, it.next().?, "abc");
    }

    {
        // reset
        var it = window(u8, "abcdefg", 3, 3);
        try testing.expectEqualSlices(u8, it.next().?, "abc");
        try testing.expectEqualSlices(u8, it.next().?, "def");
        try testing.expectEqualSlices(u8, it.next().?, "g");
        try testing.expectEqual(it.next(), null);

        it.reset();
        try testing.expectEqualSlices(u8, it.next().?, "abc");
        try testing.expectEqualSlices(u8, it.next().?, "def");
        try testing.expectEqualSlices(u8, it.next().?, "g");
        try testing.expectEqual(it.next(), null);
    }
}

pub fn WindowIterator(comptime T: type) type {
    return struct {
        buffer: []const T,
        index: ?usize,
        size: usize,
        advance: usize,

        const Self = @This();

        /// Returns a slice of the first window. This never fails.
        /// Call this only to get the first window and then use `next` to get
        /// all subsequent windows.
        pub fn first(self: *Self) []const T {
            assert(self.index.? == 0);
            return self.next().?;
        }

        /// Returns a slice of the next window, or null if window is at end.
        pub fn next(self: *Self) ?[]const T {
            const start = self.index orelse return null;
            const next_index = start + self.advance;
            const end = if (start + self.size < self.buffer.len and next_index < self.buffer.len) blk: {
                self.index = next_index;
                break :blk start + self.size;
            } else blk: {
                self.index = null;
                break :blk self.buffer.len;
            };

            return self.buffer[start..end];
        }

        /// Resets the iterator to the initial window.
        pub fn reset(self: *Self) void {
            self.index = 0;
        }
    };
}

pub fn startsWith(comptime T: type, haystack: []const T, needle: []const T) bool {
    return if (needle.len > haystack.len) false else eql(T, haystack[0..needle.len], needle);
}

test "startsWith" {
    try testing.expect(startsWith(u8, "Bob", "Bo"));
    try testing.expect(!startsWith(u8, "Needle in haystack", "haystack"));
}

pub fn endsWith(comptime T: type, haystack: []const T, needle: []const T) bool {
    return if (needle.len > haystack.len) false else eql(T, haystack[haystack.len - needle.len ..], needle);
}

test "endsWith" {
    try testing.expect(endsWith(u8, "Needle in haystack", "haystack"));
    try testing.expect(!endsWith(u8, "Bob", "Bo"));
}

pub const DelimiterType = enum { sequence, any, scalar };

pub fn TokenIterator(comptime T: type, comptime delimiter_type: DelimiterType) type {
    return struct {
        buffer: []const T,
        delimiter: switch (delimiter_type) {
            .sequence, .any => []const T,
            .scalar => T,
        },
        index: usize,

        const Self = @This();

        /// Returns a slice of the current token, or null if tokenization is
        /// complete, and advances to the next token.
        pub fn next(self: *Self) ?[]const T {
            const result = self.peek() orelse return null;
            self.index += result.len;
            return result;
        }

        /// Returns a slice of the current token, or null if tokenization is
        /// complete. Does not advance to the next token.
        pub fn peek(self: *Self) ?[]const T {
            // move to beginning of token
            while (self.index < self.buffer.len and self.isDelimiter(self.index)) : (self.index += switch (delimiter_type) {
                .sequence => self.delimiter.len,
                .any, .scalar => 1,
            }) {}
            const start = self.index;
            if (start == self.buffer.len) {
                return null;
            }

            // move to end of token
            var end = start;
            while (end < self.buffer.len and !self.isDelimiter(end)) : (end += 1) {}

            return self.buffer[start..end];
        }

        /// Returns a slice of the remaining bytes. Does not affect iterator state.
        pub fn rest(self: Self) []const T {
            // move to beginning of token
            var index: usize = self.index;
            while (index < self.buffer.len and self.isDelimiter(index)) : (index += switch (delimiter_type) {
                .sequence => self.delimiter.len,
                .any, .scalar => 1,
            }) {}
            return self.buffer[index..];
        }

        /// Resets the iterator to the initial token.
        pub fn reset(self: *Self) void {
            self.index = 0;
        }

        fn isDelimiter(self: Self, index: usize) bool {
            switch (delimiter_type) {
                .sequence => return startsWith(T, self.buffer[index..], self.delimiter),
                .any => {
                    const item = self.buffer[index];
                    for (self.delimiter) |delimiter_item| {
                        if (item == delimiter_item) {
                            return true;
                        }
                    }
                    return false;
                },
                .scalar => return self.buffer[index] == self.delimiter,
            }
        }
    };
}

pub fn SplitIterator(comptime T: type, comptime delimiter_type: DelimiterType) type {
    return struct {
        buffer: []const T,
        index: ?usize,
        delimiter: switch (delimiter_type) {
            .sequence, .any => []const T,
            .scalar => T,
        },

        const Self = @This();

        /// Returns a slice of the first field. This never fails.
        /// Call this only to get the first field and then use `next` to get all subsequent fields.
        pub fn first(self: *Self) []const T {
            assert(self.index.? == 0);
            return self.next().?;
        }

        /// Returns a slice of the next field, or null if splitting is complete.
        pub fn next(self: *Self) ?[]const T {
            const start = self.index orelse return null;
            const end = if (switch (delimiter_type) {
                .sequence => indexOfPos(T, self.buffer, start, self.delimiter),
                .any => indexOfAnyPos(T, self.buffer, start, self.delimiter),
                .scalar => indexOfScalarPos(T, self.buffer, start, self.delimiter),
            }) |delim_start| blk: {
                self.index = delim_start + switch (delimiter_type) {
                    .sequence => self.delimiter.len,
                    .any, .scalar => 1,
                };
                break :blk delim_start;
            } else blk: {
                self.index = null;
                break :blk self.buffer.len;
            };
            return self.buffer[start..end];
        }

        /// Returns a slice of the next field, or null if splitting is complete.
        /// This method does not alter self.index.
        pub fn peek(self: *Self) ?[]const T {
            const start = self.index orelse return null;
            const end = if (switch (delimiter_type) {
                .sequence => indexOfPos(T, self.buffer, start, self.delimiter),
                .any => indexOfAnyPos(T, self.buffer, start, self.delimiter),
                .scalar => indexOfScalarPos(T, self.buffer, start, self.delimiter),
            }) |delim_start| delim_start else self.buffer.len;
            return self.buffer[start..end];
        }

        /// Returns a slice of the remaining bytes. Does not affect iterator state.
        pub fn rest(self: Self) []const T {
            const end = self.buffer.len;
            const start = self.index orelse end;
            return self.buffer[start..end];
        }

        /// Resets the iterator to the initial slice.
        pub fn reset(self: *Self) void {
            self.index = 0;
        }
    };
}

pub fn SplitBackwardsIterator(comptime T: type, comptime delimiter_type: DelimiterType) type {
    return struct {
        buffer: []const T,
        index: ?usize,
        delimiter: switch (delimiter_type) {
            .sequence, .any => []const T,
            .scalar => T,
        },

        const Self = @This();

        /// Returns a slice of the first field. This never fails.
        /// Call this only to get the first field and then use `next` to get all subsequent fields.
        pub fn first(self: *Self) []const T {
            assert(self.index.? == self.buffer.len);
            return self.next().?;
        }

        /// Returns a slice of the next field, or null if splitting is complete.
        pub fn next(self: *Self) ?[]const T {
            const end = self.index orelse return null;
            const start = if (switch (delimiter_type) {
                .sequence => lastIndexOf(T, self.buffer[0..end], self.delimiter),
                .any => lastIndexOfAny(T, self.buffer[0..end], self.delimiter),
                .scalar => lastIndexOfScalar(T, self.buffer[0..end], self.delimiter),
            }) |delim_start| blk: {
                self.index = delim_start;
                break :blk delim_start + switch (delimiter_type) {
                    .sequence => self.delimiter.len,
                    .any, .scalar => 1,
                };
            } else blk: {
                self.index = null;
                break :blk 0;
            };
            return self.buffer[start..end];
        }

        /// Returns a slice of the remaining bytes. Does not affect iterator state.
        pub fn rest(self: Self) []const T {
            const end = self.index orelse 0;
            return self.buffer[0..end];
        }

        /// Resets the iterator to the initial slice.
        pub fn reset(self: *Self) void {
            self.index = self.buffer.len;
        }
    };
}

/// Naively combines a series of slices with a separator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn join(allocator: Allocator, separator: []const u8, slices: []const []const u8) ![]u8 {
    return joinMaybeZ(allocator, separator, slices, false);
}

/// Naively combines a series of slices with a separator and null terminator.
/// Allocates memory for the result, which must be freed by the caller.
pub fn joinZ(allocator: Allocator, separator: []const u8, slices: []const []const u8) ![:0]u8 {
    const out = try joinMaybeZ(allocator, separator, slices, true);
    return out[0 .. out.len - 1 :0];
}

fn joinMaybeZ(allocator: Allocator, separator: []const u8, slices: []const []const u8, zero: bool) ![]u8 {
    if (slices.len == 0) return if (zero) try allocator.dupe(u8, &[1]u8{0}) else &[0]u8{};

    const total_len = blk: {
        var sum: usize = separator.len * (slices.len - 1);
        for (slices) |slice| sum += slice.len;
        if (zero) sum += 1;
        break :blk sum;
    };

    const buf = try allocator.alloc(u8, total_len);
    errdefer allocator.free(buf);

    copy(u8, buf, slices[0]);
    var buf_index: usize = slices[0].len;
    for (slices[1..]) |slice| {
        copy(u8, buf[buf_index..], separator);
        buf_index += separator.len;
        copy(u8, buf[buf_index..], slice);
        buf_index += slice.len;
    }

    if (zero) buf[buf.len - 1] = 0;

    // No need for shrink since buf is exactly the correct size.
    return buf;
}

test "join" {
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, ""));
    }
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{ "a", "b", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,b,c"));
    }
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{"a"});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a"));
    }
    {
        const str = try join(testing.allocator, ",", &[_][]const u8{ "a", "", "b", "", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,,b,,c"));
    }
}

test "joinZ" {
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, ""));
        try testing.expectEqual(str[str.len], 0);
    }
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{ "a", "b", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,b,c"));
        try testing.expectEqual(str[str.len], 0);
    }
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{"a"});
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a"));
        try testing.expectEqual(str[str.len], 0);
    }
    {
        const str = try joinZ(testing.allocator, ",", &[_][]const u8{ "a", "", "b", "", "c" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "a,,b,,c"));
        try testing.expectEqual(str[str.len], 0);
    }
}

/// Copies each T from slices into a new slice that exactly holds all the elements.
pub fn concat(allocator: Allocator, comptime T: type, slices: []const []const T) ![]T {
    return concatMaybeSentinel(allocator, T, slices, null);
}

/// Copies each T from slices into a new slice that exactly holds all the elements.
pub fn concatWithSentinel(allocator: Allocator, comptime T: type, slices: []const []const T, comptime s: T) ![:s]T {
    const ret = try concatMaybeSentinel(allocator, T, slices, s);
    return ret[0 .. ret.len - 1 :s];
}

/// Copies each T from slices into a new slice that exactly holds all the elements as well as the sentinel.
pub fn concatMaybeSentinel(allocator: Allocator, comptime T: type, slices: []const []const T, comptime s: ?T) ![]T {
    if (slices.len == 0) return if (s) |sentinel| try allocator.dupe(T, &[1]T{sentinel}) else &[0]T{};

    const total_len = blk: {
        var sum: usize = 0;
        for (slices) |slice| {
            sum += slice.len;
        }

        if (s) |_| {
            sum += 1;
        }

        break :blk sum;
    };

    const buf = try allocator.alloc(T, total_len);
    errdefer allocator.free(buf);

    var buf_index: usize = 0;
    for (slices) |slice| {
        copy(T, buf[buf_index..], slice);
        buf_index += slice.len;
    }

    if (s) |sentinel| {
        buf[buf.len - 1] = sentinel;
    }

    // No need for shrink since buf is exactly the correct size.
    return buf;
}

test "concat" {
    {
        const str = try concat(testing.allocator, u8, &[_][]const u8{ "abc", "def", "ghi" });
        defer testing.allocator.free(str);
        try testing.expect(eql(u8, str, "abcdefghi"));
    }
    {
        const str = try concat(testing.allocator, u32, &[_][]const u32{
            &[_]u32{ 0, 1 },
            &[_]u32{ 2, 3, 4 },
            &[_]u32{},
            &[_]u32{5},
        });
        defer testing.allocator.free(str);
        try testing.expect(eql(u32, str, &[_]u32{ 0, 1, 2, 3, 4, 5 }));
    }
    {
        const str = try concatWithSentinel(testing.allocator, u8, &[_][]const u8{ "abc", "def", "ghi" }, 0);
        defer testing.allocator.free(str);
        try testing.expectEqualSentinel(u8, 0, str, "abcdefghi");
    }
    {
        const slice = try concatWithSentinel(testing.allocator, u8, &[_][]const u8{}, 0);
        defer testing.allocator.free(slice);
        try testing.expectEqualSentinel(u8, 0, slice, &[_:0]u8{});
    }
    {
        const slice = try concatWithSentinel(testing.allocator, u32, &[_][]const u32{
            &[_]u32{ 0, 1 },
            &[_]u32{ 2, 3, 4 },
            &[_]u32{},
            &[_]u32{5},
        }, 2);
        defer testing.allocator.free(slice);
        try testing.expectEqualSentinel(u32, 2, slice, &[_:2]u32{ 0, 1, 2, 3, 4, 5 });
    }
}

test "testStringEquality" {
    try testing.expect(eql(u8, "abcd", "abcd"));
    try testing.expect(!eql(u8, "abcdef", "abZdef"));
    try testing.expect(!eql(u8, "abcdefg", "abcdef"));
}

test "testReadInt" {
    try testReadIntImpl();
    try comptime testReadIntImpl();
}
fn testReadIntImpl() !void {
    {
        const bytes = [_]u8{
            0x12,
            0x34,
            0x56,
            0x78,
        };
        try testing.expect(readInt(u32, &bytes, Endian.Big) == 0x12345678);
        try testing.expect(readIntBig(u32, &bytes) == 0x12345678);
        try testing.expect(readIntBig(i32, &bytes) == 0x12345678);
        try testing.expect(readInt(u32, &bytes, Endian.Little) == 0x78563412);
        try testing.expect(readIntLittle(u32, &bytes) == 0x78563412);
        try testing.expect(readIntLittle(i32, &bytes) == 0x78563412);
    }
    {
        const buf = [_]u8{
            0x00,
            0x00,
            0x12,
            0x34,
        };
        const answer = readInt(u32, &buf, Endian.Big);
        try testing.expect(answer == 0x00001234);
    }
    {
        const buf = [_]u8{
            0x12,
            0x34,
            0x00,
            0x00,
        };
        const answer = readInt(u32, &buf, Endian.Little);
        try testing.expect(answer == 0x00003412);
    }
    {
        const bytes = [_]u8{
            0xff,
            0xfe,
        };
        try testing.expect(readIntBig(u16, &bytes) == 0xfffe);
        try testing.expect(readIntBig(i16, &bytes) == -0x0002);
        try testing.expect(readIntLittle(u16, &bytes) == 0xfeff);
        try testing.expect(readIntLittle(i16, &bytes) == -0x0101);
    }
}

test writeIntSlice {
    try testWriteIntImpl();
    try comptime testWriteIntImpl();
}
fn testWriteIntImpl() !void {
    var bytes: [8]u8 = undefined;

    writeIntSlice(u0, bytes[0..], 0, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));

    writeIntSlice(u0, bytes[0..], 0, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));

    writeIntSlice(u64, bytes[0..], 0x12345678CAFEBABE, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12,
        0x34,
        0x56,
        0x78,
        0xCA,
        0xFE,
        0xBA,
        0xBE,
    }));

    writeIntSlice(u64, bytes[0..], 0xBEBAFECA78563412, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12,
        0x34,
        0x56,
        0x78,
        0xCA,
        0xFE,
        0xBA,
        0xBE,
    }));

    writeIntSlice(u32, bytes[0..], 0x12345678, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00,
        0x00,
        0x00,
        0x00,
        0x12,
        0x34,
        0x56,
        0x78,
    }));

    writeIntSlice(u32, bytes[0..], 0x78563412, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12,
        0x34,
        0x56,
        0x78,
        0x00,
        0x00,
        0x00,
        0x00,
    }));

    writeIntSlice(u16, bytes[0..], 0x1234, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x12,
        0x34,
    }));

    writeIntSlice(u16, bytes[0..], 0x1234, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x34,
        0x12,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
    }));

    writeIntSlice(i16, bytes[0..], @as(i16, -21555), Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0xCD,
        0xAB,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
    }));

    writeIntSlice(i16, bytes[0..], @as(i16, -21555), Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0x00,
        0xAB,
        0xCD,
    }));

    writeIntSlice(u8, bytes[0..], 0x12, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x12,
    }));

    writeIntSlice(u8, bytes[0..], 0x12, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x12, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));

    writeIntSlice(i8, bytes[0..], -1, Endian.Big);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0xff,
    }));

    writeIntSlice(i8, bytes[0..], -1, Endian.Little);
    try testing.expect(eql(u8, &bytes, &[_]u8{
        0xff, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00,
    }));
}

/// Returns the smallest number in a slice. O(n).
/// `slice` must not be empty.
pub fn min(comptime T: type, slice: []const T) T {
    assert(slice.len > 0);
    var best = slice[0];
    for (slice[1..]) |item| {
        best = @min(best, item);
    }
    return best;
}

test "min" {
    try testing.expectEqual(min(u8, "abcdefg"), 'a');
    try testing.expectEqual(min(u8, "bcdefga"), 'a');
    try testing.expectEqual(min(u8, "a"), 'a');
}

/// Returns the largest number in a slice. O(n).
/// `slice` must not be empty.
pub fn max(comptime T: type, slice: []const T) T {
    assert(slice.len > 0);
    var best = slice[0];
    for (slice[1..]) |item| {
        best = @max(best, item);
    }
    return best;
}

test "max" {
    try testing.expectEqual(max(u8, "abcdefg"), 'g');
    try testing.expectEqual(max(u8, "gabcdef"), 'g');
    try testing.expectEqual(max(u8, "g"), 'g');
}

/// Finds the smallest and largest number in a slice. O(n).
/// Returns an anonymous struct with the fields `min` and `max`.
/// `slice` must not be empty.
pub fn minMax(comptime T: type, slice: []const T) struct { min: T, max: T } {
    assert(slice.len > 0);
    var minVal = slice[0];
    var maxVal = slice[0];
    for (slice[1..]) |item| {
        minVal = @min(minVal, item);
        maxVal = @max(maxVal, item);
    }
    return .{ .min = minVal, .max = maxVal };
}

test "minMax" {
    try testing.expectEqual(minMax(u8, "abcdefg"), .{ .min = 'a', .max = 'g' });
    try testing.expectEqual(minMax(u8, "bcdefga"), .{ .min = 'a', .max = 'g' });
    try testing.expectEqual(minMax(u8, "a"), .{ .min = 'a', .max = 'a' });
}

/// Returns the index of the smallest number in a slice. O(n).
/// `slice` must not be empty.
pub fn indexOfMin(comptime T: type, slice: []const T) usize {
    assert(slice.len > 0);
    var best = slice[0];
    var index: usize = 0;
    for (slice[1..], 0..) |item, i| {
        if (item < best) {
            best = item;
            index = i + 1;
        }
    }
    return index;
}

test "indexOfMin" {
    try testing.expectEqual(indexOfMin(u8, "abcdefg"), 0);
    try testing.expectEqual(indexOfMin(u8, "bcdefga"), 6);
    try testing.expectEqual(indexOfMin(u8, "a"), 0);
}

/// Returns the index of the largest number in a slice. O(n).
/// `slice` must not be empty.
pub fn indexOfMax(comptime T: type, slice: []const T) usize {
    assert(slice.len > 0);
    var best = slice[0];
    var index: usize = 0;
    for (slice[1..], 0..) |item, i| {
        if (item > best) {
            best = item;
            index = i + 1;
        }
    }
    return index;
}

test "indexOfMax" {
    try testing.expectEqual(indexOfMax(u8, "abcdefg"), 6);
    try testing.expectEqual(indexOfMax(u8, "gabcdef"), 0);
    try testing.expectEqual(indexOfMax(u8, "a"), 0);
}

/// Finds the indices of the smallest and largest number in a slice. O(n).
/// Returns an anonymous struct with the fields `index_min` and `index_max`.
/// `slice` must not be empty.
pub fn indexOfMinMax(comptime T: type, slice: []const T) struct { index_min: usize, index_max: usize } {
    assert(slice.len > 0);
    var minVal = slice[0];
    var maxVal = slice[0];
    var minIdx: usize = 0;
    var maxIdx: usize = 0;
    for (slice[1..], 0..) |item, i| {
        if (item < minVal) {
            minVal = item;
            minIdx = i + 1;
        }
        if (item > maxVal) {
            maxVal = item;
            maxIdx = i + 1;
        }
    }
    return .{ .index_min = minIdx, .index_max = maxIdx };
}

test "indexOfMinMax" {
    try testing.expectEqual(indexOfMinMax(u8, "abcdefg"), .{ .index_min = 0, .index_max = 6 });
    try testing.expectEqual(indexOfMinMax(u8, "gabcdef"), .{ .index_min = 1, .index_max = 0 });
    try testing.expectEqual(indexOfMinMax(u8, "a"), .{ .index_min = 0, .index_max = 0 });
}

pub fn swap(comptime T: type, a: *T, b: *T) void {
    const tmp = a.*;
    a.* = b.*;
    b.* = tmp;
}

/// In-place order reversal of a slice
pub fn reverse(comptime T: type, items: []T) void {
    var i: usize = 0;
    const end = items.len / 2;
    while (i < end) : (i += 1) {
        swap(T, &items[i], &items[items.len - i - 1]);
    }
}

test "reverse" {
    var arr = [_]i32{ 5, 3, 1, 2, 4 };
    reverse(i32, arr[0..]);

    try testing.expect(eql(i32, &arr, &[_]i32{ 4, 2, 1, 3, 5 }));
}

fn ReverseIterator(comptime T: type) type {
    const Pointer = blk: {
        switch (@typeInfo(T)) {
            .Pointer => |ptr_info| switch (ptr_info.size) {
                .One => switch (@typeInfo(ptr_info.child)) {
                    .Array => |array_info| {
                        var new_ptr_info = ptr_info;
                        new_ptr_info.size = .Many;
                        new_ptr_info.child = array_info.child;
                        new_ptr_info.sentinel = array_info.sentinel;
                        break :blk @Type(.{ .Pointer = new_ptr_info });
                    },
                    else => {},
                },
                .Slice => {
                    var new_ptr_info = ptr_info;
                    new_ptr_info.size = .Many;
                    break :blk @Type(.{ .Pointer = new_ptr_info });
                },
                else => {},
            },
            else => {},
        }
        @compileError("expected slice or pointer to array, found '" ++ @typeName(T) ++ "'");
    };
    const Element = std.meta.Elem(Pointer);
    const ElementPointer = @TypeOf(&@as(Pointer, undefined)[0]);
    return struct {
        ptr: Pointer,
        index: usize,
        pub fn next(self: *@This()) ?Element {
            if (self.index == 0) return null;
            self.index -= 1;
            return self.ptr[self.index];
        }
        pub fn nextPtr(self: *@This()) ?ElementPointer {
            if (self.index == 0) return null;
            self.index -= 1;
            return &self.ptr[self.index];
        }
    };
}

/// Iterates over a slice in reverse.
pub fn reverseIterator(slice: anytype) ReverseIterator(@TypeOf(slice)) {
    const T = @TypeOf(slice);
    if (comptime trait.isPtrTo(.Array)(T)) {
        return .{ .ptr = slice, .index = slice.len };
    } else {
        comptime assert(trait.isSlice(T));
        return .{ .ptr = slice.ptr, .index = slice.len };
    }
}

test "reverseIterator" {
    {
        var it = reverseIterator("abc");
        try testing.expectEqual(@as(?u8, 'c'), it.next());
        try testing.expectEqual(@as(?u8, 'b'), it.next());
        try testing.expectEqual(@as(?u8, 'a'), it.next());
        try testing.expectEqual(@as(?u8, null), it.next());
    }
    {
        var array = [2]i32{ 3, 7 };
        const slice: []const i32 = &array;
        var it = reverseIterator(slice);
        try testing.expectEqual(@as(?i32, 7), it.next());
        try testing.expectEqual(@as(?i32, 3), it.next());
        try testing.expectEqual(@as(?i32, null), it.next());

        it = reverseIterator(slice);
        try testing.expect(trait.isConstPtr(@TypeOf(it.nextPtr().?)));
        try testing.expectEqual(@as(?i32, 7), it.nextPtr().?.*);
        try testing.expectEqual(@as(?i32, 3), it.nextPtr().?.*);
        try testing.expectEqual(@as(?*const i32, null), it.nextPtr());

        var mut_slice: []i32 = &array;
        var mut_it = reverseIterator(mut_slice);
        mut_it.nextPtr().?.* += 1;
        mut_it.nextPtr().?.* += 2;
        try testing.expectEqual([2]i32{ 5, 8 }, array);
    }
    {
        var array = [2]i32{ 3, 7 };
        const ptr_to_array: *const [2]i32 = &array;
        var it = reverseIterator(ptr_to_array);
        try testing.expectEqual(@as(?i32, 7), it.next());
        try testing.expectEqual(@as(?i32, 3), it.next());
        try testing.expectEqual(@as(?i32, null), it.next());

        it = reverseIterator(ptr_to_array);
        try testing.expect(trait.isConstPtr(@TypeOf(it.nextPtr().?)));
        try testing.expectEqual(@as(?i32, 7), it.nextPtr().?.*);
        try testing.expectEqual(@as(?i32, 3), it.nextPtr().?.*);
        try testing.expectEqual(@as(?*const i32, null), it.nextPtr());

        var mut_ptr_to_array: *[2]i32 = &array;
        var mut_it = reverseIterator(mut_ptr_to_array);
        mut_it.nextPtr().?.* += 1;
        mut_it.nextPtr().?.* += 2;
        try testing.expectEqual([2]i32{ 5, 8 }, array);
    }
}

/// In-place rotation of the values in an array ([0 1 2 3] becomes [1 2 3 0] if we rotate by 1)
/// Assumes 0 <= amount <= items.len
pub fn rotate(comptime T: type, items: []T, amount: usize) void {
    reverse(T, items[0..amount]);
    reverse(T, items[amount..]);
    reverse(T, items);
}

test "rotate" {
    var arr = [_]i32{ 5, 3, 1, 2, 4 };
    rotate(i32, arr[0..], 2);

    try testing.expect(eql(i32, &arr, &[_]i32{ 1, 2, 4, 5, 3 }));
}

/// Replace needle with replacement as many times as possible, writing to an output buffer which is assumed to be of
/// appropriate size. Use replacementSize to calculate an appropriate buffer size.
/// The needle must not be empty.
/// Returns the number of replacements made.
pub fn replace(comptime T: type, input: []const T, needle: []const T, replacement: []const T, output: []T) usize {
    // Empty needle will loop until output buffer overflows.
    assert(needle.len > 0);

    var i: usize = 0;
    var slide: usize = 0;
    var replacements: usize = 0;
    while (slide < input.len) {
        if (mem.startsWith(T, input[slide..], needle)) {
            @memcpy(output[i..][0..replacement.len], replacement);
            i += replacement.len;
            slide += needle.len;
            replacements += 1;
        } else {
            output[i] = input[slide];
            i += 1;
            slide += 1;
        }
    }

    return replacements;
}

test "replace" {
    var output: [29]u8 = undefined;
    var replacements = replace(u8, "All your base are belong to us", "base", "Zig", output[0..]);
    var expected: []const u8 = "All your Zig are belong to us";
    try testing.expect(replacements == 1);
    try testing.expectEqualStrings(expected, output[0..expected.len]);

    replacements = replace(u8, "Favor reading code over writing code.", "code", "", output[0..]);
    expected = "Favor reading  over writing .";
    try testing.expect(replacements == 2);
    try testing.expectEqualStrings(expected, output[0..expected.len]);

    // Empty needle is not allowed but input may be empty.
    replacements = replace(u8, "", "x", "y", output[0..0]);
    expected = "";
    try testing.expect(replacements == 0);
    try testing.expectEqualStrings(expected, output[0..expected.len]);

    // Adjacent replacements.

    replacements = replace(u8, "\\n\\n", "\\n", "\n", output[0..]);
    expected = "\n\n";
    try testing.expect(replacements == 2);
    try testing.expectEqualStrings(expected, output[0..expected.len]);

    replacements = replace(u8, "abbba", "b", "cd", output[0..]);
    expected = "acdcdcda";
    try testing.expect(replacements == 3);
    try testing.expectEqualStrings(expected, output[0..expected.len]);
}

/// Replace all occurrences of `needle` with `replacement`.
pub fn replaceScalar(comptime T: type, slice: []T, needle: T, replacement: T) void {
    for (slice, 0..) |e, i| {
        if (e == needle) {
            slice[i] = replacement;
        }
    }
}

/// Collapse consecutive duplicate elements into one entry.
pub fn collapseRepeatsLen(comptime T: type, slice: []T, elem: T) usize {
    if (slice.len == 0) return 0;
    var write_idx: usize = 1;
    var read_idx: usize = 1;
    while (read_idx < slice.len) : (read_idx += 1) {
        if (slice[read_idx - 1] != elem or slice[read_idx] != elem) {
            slice[write_idx] = slice[read_idx];
            write_idx += 1;
        }
    }
    return write_idx;
}

/// Collapse consecutive duplicate elements into one entry.
pub fn collapseRepeats(comptime T: type, slice: []T, elem: T) []T {
    return slice[0..collapseRepeatsLen(T, slice, elem)];
}

fn testCollapseRepeats(str: []const u8, elem: u8, expected: []const u8) !void {
    const mutable = try std.testing.allocator.dupe(u8, str);
    defer std.testing.allocator.free(mutable);
    try testing.expect(std.mem.eql(u8, collapseRepeats(u8, mutable, elem), expected));
}
test "collapseRepeats" {
    try testCollapseRepeats("", '/', "");
    try testCollapseRepeats("a", '/', "a");
    try testCollapseRepeats("/", '/', "/");
    try testCollapseRepeats("//", '/', "/");
    try testCollapseRepeats("/a", '/', "/a");
    try testCollapseRepeats("//a", '/', "/a");
    try testCollapseRepeats("a/", '/', "a/");
    try testCollapseRepeats("a//", '/', "a/");
    try testCollapseRepeats("a/a", '/', "a/a");
    try testCollapseRepeats("a//a", '/', "a/a");
    try testCollapseRepeats("//a///a////", '/', "/a/a/");
}

/// Calculate the size needed in an output buffer to perform a replacement.
/// The needle must not be empty.
pub fn replacementSize(comptime T: type, input: []const T, needle: []const T, replacement: []const T) usize {
    // Empty needle will loop forever.
    assert(needle.len > 0);

    var i: usize = 0;
    var size: usize = input.len;
    while (i < input.len) {
        if (mem.startsWith(T, input[i..], needle)) {
            size = size - needle.len + replacement.len;
            i += needle.len;
        } else {
            i += 1;
        }
    }

    return size;
}

test "replacementSize" {
    try testing.expect(replacementSize(u8, "All your base are belong to us", "base", "Zig") == 29);
    try testing.expect(replacementSize(u8, "Favor reading code over writing code.", "code", "") == 29);
    try testing.expect(replacementSize(u8, "Only one obvious way to do things.", "things.", "things in Zig.") == 41);

    // Empty needle is not allowed but input may be empty.
    try testing.expect(replacementSize(u8, "", "x", "y") == 0);

    // Adjacent replacements.
    try testing.expect(replacementSize(u8, "\\n\\n", "\\n", "\n") == 2);
    try testing.expect(replacementSize(u8, "abbba", "b", "cd") == 8);
}

/// Perform a replacement on an allocated buffer of pre-determined size. Caller must free returned memory.
pub fn replaceOwned(comptime T: type, allocator: Allocator, input: []const T, needle: []const T, replacement: []const T) Allocator.Error![]T {
    var output = try allocator.alloc(T, replacementSize(T, input, needle, replacement));
    _ = replace(T, input, needle, replacement, output);
    return output;
}

test "replaceOwned" {
    const gpa = std.testing.allocator;

    const base_replace = replaceOwned(u8, gpa, "All your base are belong to us", "base", "Zig") catch @panic("out of memory");
    defer gpa.free(base_replace);
    try testing.expect(eql(u8, base_replace, "All your Zig are belong to us"));

    const zen_replace = replaceOwned(u8, gpa, "Favor reading code over writing code.", " code", "") catch @panic("out of memory");
    defer gpa.free(zen_replace);
    try testing.expect(eql(u8, zen_replace, "Favor reading over writing."));
}

/// Converts a little-endian integer to host endianness.
pub fn littleToNative(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => x,
        .Big => @byteSwap(x),
    };
}

/// Converts a big-endian integer to host endianness.
pub fn bigToNative(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => @byteSwap(x),
        .Big => x,
    };
}

/// Converts an integer from specified endianness to host endianness.
pub fn toNative(comptime T: type, x: T, endianness_of_x: Endian) T {
    return switch (endianness_of_x) {
        .Little => littleToNative(T, x),
        .Big => bigToNative(T, x),
    };
}

/// Converts an integer which has host endianness to the desired endianness.
pub fn nativeTo(comptime T: type, x: T, desired_endianness: Endian) T {
    return switch (desired_endianness) {
        .Little => nativeToLittle(T, x),
        .Big => nativeToBig(T, x),
    };
}

/// Converts an integer which has host endianness to little endian.
pub fn nativeToLittle(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => x,
        .Big => @byteSwap(x),
    };
}

/// Converts an integer which has host endianness to big endian.
pub fn nativeToBig(comptime T: type, x: T) T {
    return switch (native_endian) {
        .Little => @byteSwap(x),
        .Big => x,
    };
}

/// Returns the number of elements that, if added to the given pointer, align it
/// to a multiple of the given quantity, or `null` if one of the following
/// conditions is met:
/// - The aligned pointer would not fit the address space,
/// - The delta required to align the pointer is not a multiple of the pointee's
///   type.
pub fn alignPointerOffset(ptr: anytype, align_to: usize) ?usize {
    assert(isValidAlign(align_to));

    const T = @TypeOf(ptr);
    const info = @typeInfo(T);
    if (info != .Pointer or info.Pointer.size != .Many)
        @compileError("expected many item pointer, got " ++ @typeName(T));

    // Do nothing if the pointer is already well-aligned.
    if (align_to <= info.Pointer.alignment)
        return 0;

    // Calculate the aligned base address with an eye out for overflow.
    const addr = @intFromPtr(ptr);
    var ov = @addWithOverflow(addr, align_to - 1);
    if (ov[1] != 0) return null;
    ov[0] &= ~@as(usize, align_to - 1);

    // The delta is expressed in terms of bytes, turn it into a number of child
    // type elements.
    const delta = ov[0] - addr;
    const pointee_size = @sizeOf(info.Pointer.child);
    if (delta % pointee_size != 0) return null;
    return delta / pointee_size;
}

/// Aligns a given pointer value to a specified alignment factor.
/// Returns an aligned pointer or null if one of the following conditions is
/// met:
/// - The aligned pointer would not fit the address space,
/// - The delta required to align the pointer is not a multiple of the pointee's
///   type.
pub fn alignPointer(ptr: anytype, align_to: usize) ?@TypeOf(ptr) {
    const adjust_off = alignPointerOffset(ptr, align_to) orelse return null;
    // Avoid the use of ptrFromInt to avoid losing the pointer provenance info.
    return @alignCast(ptr + adjust_off);
}

test "alignPointer" {
    const S = struct {
        fn checkAlign(comptime T: type, base: usize, align_to: usize, expected: usize) !void {
            var ptr = @as(T, @ptrFromInt(base));
            var aligned = alignPointer(ptr, align_to);
            try testing.expectEqual(expected, @intFromPtr(aligned));
        }
    };

    try S.checkAlign([*]u8, 0x123, 0x200, 0x200);
    try S.checkAlign([*]align(4) u8, 0x10, 2, 0x10);
    try S.checkAlign([*]u32, 0x10, 2, 0x10);
    try S.checkAlign([*]u32, 0x4, 16, 0x10);
    // Misaligned.
    try S.checkAlign([*]align(1) u32, 0x3, 2, 0);
    // Overflow.
    try S.checkAlign([*]u32, math.maxInt(usize) - 3, 8, 0);
}

fn CopyPtrAttrs(
    comptime source: type,
    comptime size: std.builtin.Type.Pointer.Size,
    comptime child: type,
) type {
    const info = @typeInfo(source).Pointer;
    return @Type(.{
        .Pointer = .{
            .size = size,
            .is_const = info.is_const,
            .is_volatile = info.is_volatile,
            .is_allowzero = info.is_allowzero,
            .alignment = info.alignment,
            .address_space = info.address_space,
            .child = child,
            .sentinel = null,
        },
    });
}

fn AsBytesReturnType(comptime P: type) type {
    if (!trait.isSingleItemPtr(P))
        @compileError("expected single item pointer, passed " ++ @typeName(P));

    const size = @sizeOf(meta.Child(P));

    return CopyPtrAttrs(P, .One, [size]u8);
}

/// Given a pointer to a single item, returns a slice of the underlying bytes, preserving pointer attributes.
pub fn asBytes(ptr: anytype) AsBytesReturnType(@TypeOf(ptr)) {
    return @ptrCast(@alignCast(ptr));
}

test "asBytes" {
    const deadbeef = @as(u32, 0xDEADBEEF);
    const deadbeef_bytes = switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xEF\xBE\xAD\xDE",
    };

    try testing.expect(eql(u8, asBytes(&deadbeef), deadbeef_bytes));

    var codeface = @as(u32, 0xC0DEFACE);
    for (asBytes(&codeface)) |*b|
        b.* = 0;
    try testing.expect(codeface == 0);

    const S = packed struct {
        a: u8,
        b: u8,
        c: u8,
        d: u8,
    };

    const inst = S{
        .a = 0xBE,
        .b = 0xEF,
        .c = 0xDE,
        .d = 0xA1,
    };
    switch (native_endian) {
        .Little => {
            try testing.expect(eql(u8, asBytes(&inst), "\xBE\xEF\xDE\xA1"));
        },
        .Big => {
            try testing.expect(eql(u8, asBytes(&inst), "\xA1\xDE\xEF\xBE"));
        },
    }

    const ZST = struct {};
    const zero = ZST{};
    try testing.expect(eql(u8, asBytes(&zero), ""));
}

test "asBytes preserves pointer attributes" {
    const inArr: u32 align(16) = 0xDEADBEEF;
    const inPtr = @as(*align(16) const volatile u32, @ptrCast(&inArr));
    const outSlice = asBytes(inPtr);

    const in = @typeInfo(@TypeOf(inPtr)).Pointer;
    const out = @typeInfo(@TypeOf(outSlice)).Pointer;

    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}

/// Given any value, returns a copy of its bytes in an array.
pub fn toBytes(value: anytype) [@sizeOf(@TypeOf(value))]u8 {
    return asBytes(&value).*;
}

test "toBytes" {
    var my_bytes = toBytes(@as(u32, 0x12345678));
    switch (native_endian) {
        .Big => try testing.expect(eql(u8, &my_bytes, "\x12\x34\x56\x78")),
        .Little => try testing.expect(eql(u8, &my_bytes, "\x78\x56\x34\x12")),
    }

    my_bytes[0] = '\x99';
    switch (native_endian) {
        .Big => try testing.expect(eql(u8, &my_bytes, "\x99\x34\x56\x78")),
        .Little => try testing.expect(eql(u8, &my_bytes, "\x99\x56\x34\x12")),
    }
}

fn BytesAsValueReturnType(comptime T: type, comptime B: type) type {
    const size = @as(usize, @sizeOf(T));

    if (comptime !trait.is(.Pointer)(B) or
        (meta.Child(B) != [size]u8 and meta.Child(B) != [size:0]u8))
    {
        @compileError(std.fmt.comptimePrint("expected *[{}]u8, passed " ++ @typeName(B), .{size}));
    }

    return CopyPtrAttrs(B, .One, T);
}

/// Given a pointer to an array of bytes, returns a pointer to a value of the specified type
/// backed by those bytes, preserving pointer attributes.
pub fn bytesAsValue(comptime T: type, bytes: anytype) BytesAsValueReturnType(T, @TypeOf(bytes)) {
    return @as(BytesAsValueReturnType(T, @TypeOf(bytes)), @ptrCast(bytes));
}

test "bytesAsValue" {
    const deadbeef = @as(u32, 0xDEADBEEF);
    const deadbeef_bytes = switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xEF\xBE\xAD\xDE",
    };

    try testing.expect(deadbeef == bytesAsValue(u32, deadbeef_bytes).*);

    var codeface_bytes: [4]u8 = switch (native_endian) {
        .Big => "\xC0\xDE\xFA\xCE",
        .Little => "\xCE\xFA\xDE\xC0",
    }.*;
    var codeface = bytesAsValue(u32, &codeface_bytes);
    try testing.expect(codeface.* == 0xC0DEFACE);
    codeface.* = 0;
    for (codeface_bytes) |b|
        try testing.expect(b == 0);

    const S = packed struct {
        a: u8,
        b: u8,
        c: u8,
        d: u8,
    };

    const inst = S{
        .a = 0xBE,
        .b = 0xEF,
        .c = 0xDE,
        .d = 0xA1,
    };
    const inst_bytes = switch (native_endian) {
        .Little => "\xBE\xEF\xDE\xA1",
        .Big => "\xA1\xDE\xEF\xBE",
    };
    const inst2 = bytesAsValue(S, inst_bytes);
    try testing.expect(meta.eql(inst, inst2.*));
}

test "bytesAsValue preserves pointer attributes" {
    const inArr align(16) = [4]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
    const inSlice = @as(*align(16) const volatile [4]u8, @ptrCast(&inArr))[0..];
    const outPtr = bytesAsValue(u32, inSlice);

    const in = @typeInfo(@TypeOf(inSlice)).Pointer;
    const out = @typeInfo(@TypeOf(outPtr)).Pointer;

    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}

/// Given a pointer to an array of bytes, returns a value of the specified type backed by a
/// copy of those bytes.
pub fn bytesToValue(comptime T: type, bytes: anytype) T {
    return bytesAsValue(T, bytes).*;
}
test "bytesToValue" {
    const deadbeef_bytes = switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xEF\xBE\xAD\xDE",
    };

    const deadbeef = bytesToValue(u32, deadbeef_bytes);
    try testing.expect(deadbeef == @as(u32, 0xDEADBEEF));
}

fn BytesAsSliceReturnType(comptime T: type, comptime bytesType: type) type {
    if (!(trait.isSlice(bytesType) or trait.isPtrTo(.Array)(bytesType)) or meta.Elem(bytesType) != u8) {
        @compileError("expected []u8 or *[_]u8, passed " ++ @typeName(bytesType));
    }

    if (trait.isPtrTo(.Array)(bytesType) and @typeInfo(meta.Child(bytesType)).Array.len % @sizeOf(T) != 0) {
        @compileError("number of bytes in " ++ @typeName(bytesType) ++ " is not divisible by size of " ++ @typeName(T));
    }

    return CopyPtrAttrs(bytesType, .Slice, T);
}

/// Given a slice of bytes, returns a slice of the specified type
/// backed by those bytes, preserving pointer attributes.
pub fn bytesAsSlice(comptime T: type, bytes: anytype) BytesAsSliceReturnType(T, @TypeOf(bytes)) {
    // let's not give an undefined pointer to @ptrCast
    // it may be equal to zero and fail a null check
    if (bytes.len == 0) {
        return &[0]T{};
    }

    const cast_target = CopyPtrAttrs(@TypeOf(bytes), .Many, T);

    return @as(cast_target, @ptrCast(bytes))[0..@divExact(bytes.len, @sizeOf(T))];
}

test "bytesAsSlice" {
    {
        const bytes = [_]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
        const slice = bytesAsSlice(u16, bytes[0..]);
        try testing.expect(slice.len == 2);
        try testing.expect(bigToNative(u16, slice[0]) == 0xDEAD);
        try testing.expect(bigToNative(u16, slice[1]) == 0xBEEF);
    }
    {
        const bytes = [_]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
        var runtime_zero: usize = 0;
        const slice = bytesAsSlice(u16, bytes[runtime_zero..]);
        try testing.expect(slice.len == 2);
        try testing.expect(bigToNative(u16, slice[0]) == 0xDEAD);
        try testing.expect(bigToNative(u16, slice[1]) == 0xBEEF);
    }
}

test "bytesAsSlice keeps pointer alignment" {
    {
        var bytes = [_]u8{ 0x01, 0x02, 0x03, 0x04 };
        const numbers = bytesAsSlice(u32, bytes[0..]);
        try comptime testing.expect(@TypeOf(numbers) == []align(@alignOf(@TypeOf(bytes))) u32);
    }
    {
        var bytes = [_]u8{ 0x01, 0x02, 0x03, 0x04 };
        var runtime_zero: usize = 0;
        const numbers = bytesAsSlice(u32, bytes[runtime_zero..]);
        try comptime testing.expect(@TypeOf(numbers) == []align(@alignOf(@TypeOf(bytes))) u32);
    }
}

test "bytesAsSlice on a packed struct" {
    const F = packed struct {
        a: u8,
    };

    var b = [1]u8{9};
    var f = bytesAsSlice(F, &b);
    try testing.expect(f[0].a == 9);
}

test "bytesAsSlice with specified alignment" {
    var bytes align(4) = [_]u8{
        0x33,
        0x33,
        0x33,
        0x33,
    };
    const slice: []u32 = std.mem.bytesAsSlice(u32, bytes[0..]);
    try testing.expect(slice[0] == 0x33333333);
}

test "bytesAsSlice preserves pointer attributes" {
    const inArr align(16) = [4]u8{ 0xDE, 0xAD, 0xBE, 0xEF };
    const inSlice = @as(*align(16) const volatile [4]u8, @ptrCast(&inArr))[0..];
    const outSlice = bytesAsSlice(u16, inSlice);

    const in = @typeInfo(@TypeOf(inSlice)).Pointer;
    const out = @typeInfo(@TypeOf(outSlice)).Pointer;

    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}

fn SliceAsBytesReturnType(comptime sliceType: type) type {
    if (!trait.isSlice(sliceType) and !trait.isPtrTo(.Array)(sliceType)) {
        @compileError("expected []T or *[_]T, passed " ++ @typeName(sliceType));
    }

    return CopyPtrAttrs(sliceType, .Slice, u8);
}

/// Given a slice, returns a slice of the underlying bytes, preserving pointer attributes.
pub fn sliceAsBytes(slice: anytype) SliceAsBytesReturnType(@TypeOf(slice)) {
    const Slice = @TypeOf(slice);

    // let's not give an undefined pointer to @ptrCast
    // it may be equal to zero and fail a null check
    if (slice.len == 0 and comptime meta.sentinel(Slice) == null) {
        return &[0]u8{};
    }

    const cast_target = CopyPtrAttrs(Slice, .Many, u8);

    return @as(cast_target, @ptrCast(slice))[0 .. slice.len * @sizeOf(meta.Elem(Slice))];
}

test "sliceAsBytes" {
    const bytes = [_]u16{ 0xDEAD, 0xBEEF };
    const slice = sliceAsBytes(bytes[0..]);
    try testing.expect(slice.len == 4);
    try testing.expect(eql(u8, slice, switch (native_endian) {
        .Big => "\xDE\xAD\xBE\xEF",
        .Little => "\xAD\xDE\xEF\xBE",
    }));
}

test "sliceAsBytes with sentinel slice" {
    const empty_string: [:0]const u8 = "";
    const bytes = sliceAsBytes(empty_string);
    try testing.expect(bytes.len == 0);
}

test "sliceAsBytes packed struct at runtime and comptime" {
    const Foo = packed struct {
        a: u4,
        b: u4,
    };
    const S = struct {
        fn doTheTest() !void {
            var foo: Foo = undefined;
            var slice = sliceAsBytes(@as(*[1]Foo, &foo)[0..1]);
            slice[0] = 0x13;
            try testing.expect(foo.a == 0x3);
            try testing.expect(foo.b == 0x1);
        }
    };
    try S.doTheTest();
    try comptime S.doTheTest();
}

test "sliceAsBytes and bytesAsSlice back" {
    try testing.expect(@sizeOf(i32) == 4);

    var big_thing_array = [_]i32{ 1, 2, 3, 4 };
    const big_thing_slice: []i32 = big_thing_array[0..];

    const bytes = sliceAsBytes(big_thing_slice);
    try testing.expect(bytes.len == 4 * 4);

    bytes[4] = 0;
    bytes[5] = 0;
    bytes[6] = 0;
    bytes[7] = 0;
    try testing.expect(big_thing_slice[1] == 0);

    const big_thing_again = bytesAsSlice(i32, bytes);
    try testing.expect(big_thing_again[2] == 3);

    big_thing_again[2] = -1;
    try testing.expect(bytes[8] == math.maxInt(u8));
    try testing.expect(bytes[9] == math.maxInt(u8));
    try testing.expect(bytes[10] == math.maxInt(u8));
    try testing.expect(bytes[11] == math.maxInt(u8));
}

test "sliceAsBytes preserves pointer attributes" {
    const inArr align(16) = [2]u16{ 0xDEAD, 0xBEEF };
    const inSlice = @as(*align(16) const volatile [2]u16, @ptrCast(&inArr))[0..];
    const outSlice = sliceAsBytes(inSlice);

    const in = @typeInfo(@TypeOf(inSlice)).Pointer;
    const out = @typeInfo(@TypeOf(outSlice)).Pointer;

    try testing.expectEqual(in.is_const, out.is_const);
    try testing.expectEqual(in.is_volatile, out.is_volatile);
    try testing.expectEqual(in.is_allowzero, out.is_allowzero);
    try testing.expectEqual(in.alignment, out.alignment);
}

/// Round an address up to the next (or current) aligned address.
/// The alignment must be a power of 2 and greater than 0.
/// Asserts that rounding up the address does not cause integer overflow.
pub fn alignForward(comptime T: type, addr: T, alignment: T) T {
    assert(isValidAlignGeneric(T, alignment));
    return alignBackward(T, addr + (alignment - 1), alignment);
}

pub fn alignForwardLog2(addr: usize, log2_alignment: u8) usize {
    const alignment = @as(usize, 1) << @as(math.Log2Int(usize), @intCast(log2_alignment));
    return alignForward(usize, addr, alignment);
}

pub const alignForwardGeneric = @compileError("renamed to alignForward");

/// Force an evaluation of the expression; this tries to prevent
/// the compiler from optimizing the computation away even if the
/// result eventually gets discarded.
// TODO: use @declareSideEffect() when it is available - https://github.com/ziglang/zig/issues/6168
pub fn doNotOptimizeAway(val: anytype) void {
    var a: u8 = 0;
    if (@typeInfo(@TypeOf(.{a})).Struct.fields[0].is_comptime) return;

    const max_gp_register_bits = @bitSizeOf(c_long);
    const t = @typeInfo(@TypeOf(val));
    switch (t) {
        .Void, .Null, .ComptimeInt, .ComptimeFloat => return,
        .Enum => doNotOptimizeAway(@intFromEnum(val)),
        .Bool => doNotOptimizeAway(@intFromBool(val)),
        .Int => {
            const bits = t.Int.bits;
            if (bits <= max_gp_register_bits and builtin.zig_backend != .stage2_c) {
                const val2 = @as(
                    std.meta.Int(t.Int.signedness, @max(8, std.math.ceilPowerOfTwoAssert(u16, bits))),
                    val,
                );
                asm volatile (""
                    :
                    : [val2] "r" (val2),
                );
            } else doNotOptimizeAway(&val);
        },
        .Float => {
            if ((t.Float.bits == 32 or t.Float.bits == 64) and builtin.zig_backend != .stage2_c) {
                asm volatile (""
                    :
                    : [val] "rm" (val),
                );
            } else doNotOptimizeAway(&val);
        },
        .Pointer => {
            if (builtin.zig_backend == .stage2_c) {
                doNotOptimizeAwayC(val);
            } else {
                asm volatile (""
                    :
                    : [val] "m" (val),
                    : "memory"
                );
            }
        },
        .Array => {
            if (t.Array.len * @sizeOf(t.Array.child) <= 64) {
                for (val) |v| doNotOptimizeAway(v);
            } else doNotOptimizeAway(&val);
        },
        else => doNotOptimizeAway(&val),
    }
}

/// .stage2_c doesn't support asm blocks yet, so use volatile stores instead
var deopt_target: if (builtin.zig_backend == .stage2_c) u8 else void = undefined;
fn doNotOptimizeAwayC(ptr: anytype) void {
    const dest = @as(*volatile u8, @ptrCast(&deopt_target));
    for (asBytes(ptr)) |b| {
        dest.* = b;
    }
    dest.* = 0;
}

test "doNotOptimizeAway" {
    comptime doNotOptimizeAway("test");

    doNotOptimizeAway(null);
    doNotOptimizeAway(true);
    doNotOptimizeAway(0);
    doNotOptimizeAway(0.0);
    doNotOptimizeAway(@as(u1, 0));
    doNotOptimizeAway(@as(u3, 0));
    doNotOptimizeAway(@as(u8, 0));
    doNotOptimizeAway(@as(u16, 0));
    doNotOptimizeAway(@as(u32, 0));
    doNotOptimizeAway(@as(u64, 0));
    doNotOptimizeAway(@as(u128, 0));
    doNotOptimizeAway(@as(u13, 0));
    doNotOptimizeAway(@as(u37, 0));
    doNotOptimizeAway(@as(u96, 0));
    doNotOptimizeAway(@as(u200, 0));
    doNotOptimizeAway(@as(f32, 0.0));
    doNotOptimizeAway(@as(f64, 0.0));
    doNotOptimizeAway([_]u8{0} ** 4);
    doNotOptimizeAway([_]u8{0} ** 100);
    doNotOptimizeAway(@as(std.builtin.Endian, .Little));
}

test "alignForward" {
    try testing.expect(alignForward(usize, 1, 1) == 1);
    try testing.expect(alignForward(usize, 2, 1) == 2);
    try testing.expect(alignForward(usize, 1, 2) == 2);
    try testing.expect(alignForward(usize, 2, 2) == 2);
    try testing.expect(alignForward(usize, 3, 2) == 4);
    try testing.expect(alignForward(usize, 4, 2) == 4);
    try testing.expect(alignForward(usize, 7, 8) == 8);
    try testing.expect(alignForward(usize, 8, 8) == 8);
    try testing.expect(alignForward(usize, 9, 8) == 16);
    try testing.expect(alignForward(usize, 15, 8) == 16);
    try testing.expect(alignForward(usize, 16, 8) == 16);
    try testing.expect(alignForward(usize, 17, 8) == 24);
}

/// Round an address down to the previous (or current) aligned address.
/// Unlike `alignBackward`, `alignment` can be any positive number, not just a power of 2.
pub fn alignBackwardAnyAlign(i: usize, alignment: usize) usize {
    if (isValidAlign(alignment))
        return alignBackward(usize, i, alignment);
    assert(alignment != 0);
    return i - @mod(i, alignment);
}

/// Round an address down to the previous (or current) aligned address.
/// The alignment must be a power of 2 and greater than 0.
pub fn alignBackward(comptime T: type, addr: T, alignment: T) T {
    assert(isValidAlignGeneric(T, alignment));
    // 000010000 // example alignment
    // 000001111 // subtract 1
    // 111110000 // binary not
    return addr & ~(alignment - 1);
}

pub const alignBackwardGeneric = @compileError("renamed to alignBackward");

/// Returns whether `alignment` is a valid alignment, meaning it is
/// a positive power of 2.
pub fn isValidAlign(alignment: usize) bool {
    return isValidAlignGeneric(usize, alignment);
}

/// Returns whether `alignment` is a valid alignment, meaning it is
/// a positive power of 2.
pub fn isValidAlignGeneric(comptime T: type, alignment: T) bool {
    return alignment > 0 and std.math.isPowerOfTwo(alignment);
}

pub fn isAlignedAnyAlign(i: usize, alignment: usize) bool {
    if (isValidAlign(alignment))
        return isAligned(i, alignment);
    assert(alignment != 0);
    return 0 == @mod(i, alignment);
}

pub fn isAlignedLog2(addr: usize, log2_alignment: u8) bool {
    return @ctz(addr) >= log2_alignment;
}

/// Given an address and an alignment, return true if the address is a multiple of the alignment
/// The alignment must be a power of 2 and greater than 0.
pub fn isAligned(addr: usize, alignment: usize) bool {
    return isAlignedGeneric(u64, addr, alignment);
}

pub fn isAlignedGeneric(comptime T: type, addr: T, alignment: T) bool {
    return alignBackward(T, addr, alignment) == addr;
}

test "isAligned" {
    try testing.expect(isAligned(0, 4));
    try testing.expect(isAligned(1, 1));
    try testing.expect(isAligned(2, 1));
    try testing.expect(isAligned(2, 2));
    try testing.expect(!isAligned(2, 4));
    try testing.expect(isAligned(3, 1));
    try testing.expect(!isAligned(3, 2));
    try testing.expect(!isAligned(3, 4));
    try testing.expect(isAligned(4, 4));
    try testing.expect(isAligned(4, 2));
    try testing.expect(isAligned(4, 1));
    try testing.expect(!isAligned(4, 8));
    try testing.expect(!isAligned(4, 16));
}

test "freeing empty string with null-terminated sentinel" {
    const empty_string = try testing.allocator.dupeZ(u8, "");
    testing.allocator.free(empty_string);
}

/// Returns a slice with the given new alignment,
/// all other pointer attributes copied from `AttributeSource`.
fn AlignedSlice(comptime AttributeSource: type, comptime new_alignment: usize) type {
    const info = @typeInfo(AttributeSource).Pointer;
    return @Type(.{
        .Pointer = .{
            .size = .Slice,
            .is_const = info.is_const,
            .is_volatile = info.is_volatile,
            .is_allowzero = info.is_allowzero,
            .alignment = new_alignment,
            .address_space = info.address_space,
            .child = info.child,
            .sentinel = null,
        },
    });
}

/// Returns the largest slice in the given bytes that conforms to the new alignment,
/// or `null` if the given bytes contain no conforming address.
pub fn alignInBytes(bytes: []u8, comptime new_alignment: usize) ?[]align(new_alignment) u8 {
    const begin_address = @intFromPtr(bytes.ptr);
    const end_address = begin_address + bytes.len;

    const begin_address_aligned = mem.alignForward(usize, begin_address, new_alignment);
    const new_length = std.math.sub(usize, end_address, begin_address_aligned) catch |e| switch (e) {
        error.Overflow => return null,
    };
    const alignment_offset = begin_address_aligned - begin_address;
    return @alignCast(bytes[alignment_offset .. alignment_offset + new_length]);
}

/// Returns the largest sub-slice within the given slice that conforms to the new alignment,
/// or `null` if the given slice contains no conforming address.
pub fn alignInSlice(slice: anytype, comptime new_alignment: usize) ?AlignedSlice(@TypeOf(slice), new_alignment) {
    const bytes = sliceAsBytes(slice);
    const aligned_bytes = alignInBytes(bytes, new_alignment) orelse return null;

    const Element = @TypeOf(slice[0]);
    const slice_length_bytes = aligned_bytes.len - (aligned_bytes.len % @sizeOf(Element));
    const aligned_slice = bytesAsSlice(Element, aligned_bytes[0..slice_length_bytes]);
    return @alignCast(aligned_slice);
}

test "read/write(Var)PackedInt" {
    if (builtin.zig_backend == .stage2_c) return error.SkipZigTest;

    switch (builtin.cpu.arch) {
        // This test generates too much code to execute on WASI.
        // LLVM backend fails with "too many locals: locals exceed maximum"
        .wasm32, .wasm64 => return error.SkipZigTest,
        else => {},
    }

    const foreign_endian: Endian = if (native_endian == .Big) .Little else .Big;
    const expect = std.testing.expect;
    var prng = std.rand.DefaultPrng.init(1234);
    const random = prng.random();

    @setEvalBranchQuota(10_000);
    inline for ([_]type{ u8, u16, u32, u128 }) |BackingType| {
        for ([_]BackingType{
            @as(BackingType, 0), // all zeros
            -%@as(BackingType, 1), // all ones
            random.int(BackingType), // random
            random.int(BackingType), // random
            random.int(BackingType), // random
        }) |init_value| {
            const uTs = [_]type{ u1, u3, u7, u8, u9, u10, u15, u16, u86 };
            const iTs = [_]type{ i1, i3, i7, i8, i9, i10, i15, i16, i86 };
            inline for (uTs ++ iTs) |PackedType| {
                if (@bitSizeOf(PackedType) > @bitSizeOf(BackingType))
                    continue;

                const iPackedType = std.meta.Int(.signed, @bitSizeOf(PackedType));
                const uPackedType = std.meta.Int(.unsigned, @bitSizeOf(PackedType));
                const Log2T = std.math.Log2Int(BackingType);

                const offset_at_end = @bitSizeOf(BackingType) - @bitSizeOf(PackedType);
                for ([_]usize{ 0, 1, 7, 8, 9, 10, 15, 16, 86, offset_at_end }) |offset| {
                    if (offset > offset_at_end or offset == @bitSizeOf(BackingType))
                        continue;

                    for ([_]PackedType{
                        ~@as(PackedType, 0), // all ones: -1 iN / maxInt uN
                        @as(PackedType, 0), // all zeros: 0 iN / 0 uN
                        @as(PackedType, @bitCast(@as(iPackedType, math.maxInt(iPackedType)))), // maxInt iN
                        @as(PackedType, @bitCast(@as(iPackedType, math.minInt(iPackedType)))), // maxInt iN
                        random.int(PackedType), // random
                        random.int(PackedType), // random
                    }) |write_value| {
                        { // Fixed-size Read/Write (Native-endian)

                            // Initialize Value
                            var value: BackingType = init_value;

                            // Read
                            const read_value1 = readPackedInt(PackedType, asBytes(&value), offset, native_endian);
                            try expect(read_value1 == @as(PackedType, @bitCast(@as(uPackedType, @truncate(value >> @as(Log2T, @intCast(offset)))))));

                            // Write
                            writePackedInt(PackedType, asBytes(&value), offset, write_value, native_endian);
                            try expect(write_value == @as(PackedType, @bitCast(@as(uPackedType, @truncate(value >> @as(Log2T, @intCast(offset)))))));

                            // Read again
                            const read_value2 = readPackedInt(PackedType, asBytes(&value), offset, native_endian);
                            try expect(read_value2 == write_value);

                            // Verify bits outside of the target integer are unmodified
                            const diff_bits = init_value ^ value;
                            if (offset != offset_at_end)
                                try expect(diff_bits >> @as(Log2T, @intCast(offset + @bitSizeOf(PackedType))) == 0);
                            if (offset != 0)
                                try expect(diff_bits << @as(Log2T, @intCast(@bitSizeOf(BackingType) - offset)) == 0);
                        }

                        { // Fixed-size Read/Write (Foreign-endian)

                            // Initialize Value
                            var value: BackingType = @byteSwap(init_value);

                            // Read
                            const read_value1 = readPackedInt(PackedType, asBytes(&value), offset, foreign_endian);
                            try expect(read_value1 == @as(PackedType, @bitCast(@as(uPackedType, @truncate(@byteSwap(value) >> @as(Log2T, @intCast(offset)))))));

                            // Write
                            writePackedInt(PackedType, asBytes(&value), offset, write_value, foreign_endian);
                            try expect(write_value == @as(PackedType, @bitCast(@as(uPackedType, @truncate(@byteSwap(value) >> @as(Log2T, @intCast(offset)))))));

                            // Read again
                            const read_value2 = readPackedInt(PackedType, asBytes(&value), offset, foreign_endian);
                            try expect(read_value2 == write_value);

                            // Verify bits outside of the target integer are unmodified
                            const diff_bits = init_value ^ @byteSwap(value);
                            if (offset != offset_at_end)
                                try expect(diff_bits >> @as(Log2T, @intCast(offset + @bitSizeOf(PackedType))) == 0);
                            if (offset != 0)
                                try expect(diff_bits << @as(Log2T, @intCast(@bitSizeOf(BackingType) - offset)) == 0);
                        }

                        const signedness = @typeInfo(PackedType).Int.signedness;
                        const NextPowerOfTwoInt = std.meta.Int(signedness, try comptime std.math.ceilPowerOfTwo(u16, @bitSizeOf(PackedType)));
                        const ui64 = std.meta.Int(signedness, 64);
                        inline for ([_]type{ PackedType, NextPowerOfTwoInt, ui64 }) |U| {
                            { // Variable-size Read/Write (Native-endian)

                                if (@bitSizeOf(U) < @bitSizeOf(PackedType))
                                    continue;

                                // Initialize Value
                                var value: BackingType = init_value;

                                // Read
                                const read_value1 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), native_endian, signedness);
                                try expect(read_value1 == @as(PackedType, @bitCast(@as(uPackedType, @truncate(value >> @as(Log2T, @intCast(offset)))))));

                                // Write
                                writeVarPackedInt(asBytes(&value), offset, @bitSizeOf(PackedType), @as(U, write_value), native_endian);
                                try expect(write_value == @as(PackedType, @bitCast(@as(uPackedType, @truncate(value >> @as(Log2T, @intCast(offset)))))));

                                // Read again
                                const read_value2 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), native_endian, signedness);
                                try expect(read_value2 == write_value);

                                // Verify bits outside of the target integer are unmodified
                                const diff_bits = init_value ^ value;
                                if (offset != offset_at_end)
                                    try expect(diff_bits >> @as(Log2T, @intCast(offset + @bitSizeOf(PackedType))) == 0);
                                if (offset != 0)
                                    try expect(diff_bits << @as(Log2T, @intCast(@bitSizeOf(BackingType) - offset)) == 0);
                            }

                            { // Variable-size Read/Write (Foreign-endian)

                                if (@bitSizeOf(U) < @bitSizeOf(PackedType))
                                    continue;

                                // Initialize Value
                                var value: BackingType = @byteSwap(init_value);

                                // Read
                                const read_value1 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), foreign_endian, signedness);
                                try expect(read_value1 == @as(PackedType, @bitCast(@as(uPackedType, @truncate(@byteSwap(value) >> @as(Log2T, @intCast(offset)))))));

                                // Write
                                writeVarPackedInt(asBytes(&value), offset, @bitSizeOf(PackedType), @as(U, write_value), foreign_endian);
                                try expect(write_value == @as(PackedType, @bitCast(@as(uPackedType, @truncate(@byteSwap(value) >> @as(Log2T, @intCast(offset)))))));

                                // Read again
                                const read_value2 = readVarPackedInt(U, asBytes(&value), offset, @bitSizeOf(PackedType), foreign_endian, signedness);
                                try expect(read_value2 == write_value);

                                // Verify bits outside of the target integer are unmodified
                                const diff_bits = init_value ^ @byteSwap(value);
                                if (offset != offset_at_end)
                                    try expect(diff_bits >> @as(Log2T, @intCast(offset + @bitSizeOf(PackedType))) == 0);
                                if (offset != 0)
                                    try expect(diff_bits << @as(Log2T, @intCast(@bitSizeOf(BackingType) - offset)) == 0);
                            }
                        }
                    }
                }
            }
        }
    }
}