zig/lib/std / net.zig

Parse the given IP address string into an Address value. It is recommended to use resolveIp instead, to handle IPv6 link-local unix addresses.

const std = @import("std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const net = @This();
const mem = std.mem;
const os = std.os;
const fs = std.fs;
const io = std.io;
const native_endian = builtin.target.cpu.arch.endian();

has_unix_sockets

Returns the port in native endian. Asserts that the address is ip4 or ip6.


// Windows 10 added support for unix sockets in build 17063, redstone 4 is the
// first release to support them.
pub const has_unix_sockets = @hasDecl(os.sockaddr, "un") and
    (builtin.target.os.tag != .windows or
    builtin.os.version_range.windows.isAtLeast(.win10_rs4) orelse false);

Address

port is native-endian. Asserts that the address is ip4 or ip6.


pub const Address = extern union {
    any: os.sockaddr,
    in: Ip4Address,
    in6: Ip6Address,
    un: if (has_unix_sockets) os.sockaddr.un else void,

parseIp()

Asserts that addr is an IP address. This function will read past the end of the pointer, with a size depending on the address family.


    /// Parse the given IP address string into an Address value.
    /// It is recommended to use `resolveIp` instead, to handle
    /// IPv6 link-local unix addresses.
    pub fn parseIp(name: []const u8, port: u16) !Address {
        if (parseIp4(name, port)) |ip4| return ip4 else |err| switch (err) {
            error.Overflow,
            error.InvalidEnd,
            error.InvalidCharacter,
            error.Incomplete,
            error.NonCanonical,
            => {},
        }

resolveIp()

Returns the port in native endian. Asserts that the address is ip4 or ip6.


        if (parseIp6(name, port)) |ip6| return ip6 else |err| switch (err) {
            error.Overflow,
            error.InvalidEnd,
            error.InvalidCharacter,
            error.Incomplete,
            error.InvalidIpv4Mapping,
            => {},
        }

parseExpectingFamily()

port is native-endian. Asserts that the address is ip4 or ip6.


        return error.InvalidIPAddressFormat;
    }

parseIp6()

Parse a given IPv6 address string into an Address. Assumes the Scope ID of the address is fully numeric. For non-numeric addresses, see resolveIp6.


    pub fn resolveIp(name: []const u8, port: u16) !Address {
        if (parseIp4(name, port)) |ip4| return ip4 else |err| switch (err) {
            error.Overflow,
            error.InvalidEnd,
            error.InvalidCharacter,
            error.Incomplete,
            error.NonCanonical,
            => {},
        }

resolveIp6()

Returns the port in native endian. Asserts that the address is ip4 or ip6.


        if (resolveIp6(name, port)) |ip6| return ip6 else |err| switch (err) {
            error.Overflow,
            error.InvalidEnd,
            error.InvalidCharacter,
            error.Incomplete,
            error.InvalidIpv4Mapping,
            => {},
            else => return err,
        }

parseIp4()

port is native-endian. Asserts that the address is ip4 or ip6.


        return error.InvalidIPAddressFormat;
    }

initIp4()

All memory allocated with allocator will be freed before this function returns.


    pub fn parseExpectingFamily(name: []const u8, family: os.sa_family_t, port: u16) !Address {
        switch (family) {
            os.AF.INET => return parseIp4(name, port),
            os.AF.INET6 => return parseIp6(name, port),
            os.AF.UNSPEC => return parseIp(name, port),
            else => unreachable,
        }
    }

initIp6()

Call AddressList.deinit on the result.


    pub fn parseIp6(buf: []const u8, port: u16) !Address {
        return Address{ .in6 = try Ip6Address.parse(buf, port) };
    }

initUnix()

Ignores lines longer than 512 bytes. TODO: https://github.com/ziglang/zig/issues/2765 and https://github.com/ziglang/zig/issues/2761


    pub fn resolveIp6(buf: []const u8, port: u16) !Address {
        return Address{ .in6 = try Ip6Address.resolve(buf, port) };
    }

getPort()

Returns the number of bytes read. If the number read is smaller than buffer.len, it means the stream reached the end. Reaching the end of a stream is not an error condition.


    pub fn parseIp4(buf: []const u8, port: u16) !Address {
        return Address{ .in = try Ip4Address.parse(buf, port) };
    }

setPort()

Returns the number of bytes read, calling the underlying read function the minimal number of times until the buffer has at least len bytes filled. If the number read is less than len it means the stream reached the end. Reaching the end of the stream is not an error condition.


    pub fn initIp4(addr: [4]u8, port: u16) Address {
        return Address{ .in = Ip4Address.init(addr, port) };
    }

initPosix()

TODO in evented I/O mode, this implementation incorrectly uses the event loop's file system thread instead of non-blocking. It needs to be reworked to properly use non-blocking I/O.


    pub fn initIp6(addr: [16]u8, port: u16, flowinfo: u32, scope_id: u32) Address {
        return Address{ .in6 = Ip6Address.init(addr, port, flowinfo, scope_id) };
    }

format()

See https://github.com/ziglang/zig/issues/7699 See equivalent function: std.fs.File.writev.


    pub fn initUnix(path: []const u8) !Address {
        var sock_addr = os.sockaddr.un{
            .family = os.AF.UNIX,
            .path = undefined,
        };

eql()

The iovecs parameter is mutable because this function needs to mutate the fields in order to handle partial writes from the underlying OS layer. See https://github.com/ziglang/zig/issues/7699 See equivalent function: std.fs.File.writevAll.


        // Add 1 to ensure a terminating 0 is present in the path array for maximum portability.
        if (path.len + 1 > sock_addr.path.len) return error.NameTooLong;

getOsSockLen()

Copied from Options on init.


        @memset(&sock_addr.path, 0);
        @memcpy(sock_addr.path[0..path.len], path);

Ip4Address

undefined until listen returns successfully.


        return Address{ .un = sock_addr };
    }

parse()

How many connections the kernel will accept on the application's behalf. If more than this many connections pool in the kernel, clients will start seeing "Connection refused".


    /// Returns the port in native endian.
    /// Asserts that the address is ip4 or ip6.
    pub fn getPort(self: Address) u16 {
        return switch (self.any.family) {
            os.AF.INET => self.in.getPort(),
            os.AF.INET6 => self.in6.getPort(),
            else => unreachable,
        };
    }

resolveIp()

Enable SO.REUSEADDR on the socket.


    /// `port` is native-endian.
    /// Asserts that the address is ip4 or ip6.
    pub fn setPort(self: *Address, port: u16) void {
        switch (self.any.family) {
            os.AF.INET => self.in.setPort(port),
            os.AF.INET6 => self.in6.setPort(port),
            else => unreachable,
        }
    }

init()

Enable SO.REUSEPORT on the socket.


    /// Asserts that `addr` is an IP address.
    /// This function will read past the end of the pointer, with a size depending
    /// on the address family.
    pub fn initPosix(addr: *align(4) const os.sockaddr) Address {
        switch (addr.family) {
            os.AF.INET => return Address{ .in = Ip4Address{ .sa = @as(*const os.sockaddr.in, @ptrCast(addr)).* } },
            os.AF.INET6 => return Address{ .in6 = Ip6Address{ .sa = @as(*const os.sockaddr.in6, @ptrCast(addr)).* } },
            else => unreachable,
        }
    }

getPort()

After this call succeeds, resources have been acquired and must be released with deinit.


format()

Release all resources. The StreamServer memory becomes undefined.

    pub fn format(
        self: Address,
        comptime fmt: []const u8,
        options: std.fmt.FormatOptions,
        out_stream: anytype,
    ) !void {
        if (fmt.len != 0) std.fmt.invalidFmtError(fmt, self);
        switch (self.any.family) {
            os.AF.INET => try self.in.format(fmt, options, out_stream),
            os.AF.INET6 => try self.in6.format(fmt, options, out_stream),
            os.AF.UNIX => {
                if (!has_unix_sockets) {
                    unreachable;
                }

format()

Stop listening. It is still necessary to call deinit after stopping listening. Calling deinit will automatically call close. It is safe to call close when not listening.


                try std.fmt.format(out_stream, "{s}", .{std.mem.sliceTo(&self.un.path, 0)});
            },
            else => unreachable,
        }
    }

getOsSockLen()

The per-process limit on the number of open file descriptors has been reached.


    pub fn eql(a: Address, b: Address) bool {
        const a_bytes = @as([*]const u8, @ptrCast(&a.any))[0..a.getOsSockLen()];
        const b_bytes = @as([*]const u8, @ptrCast(&b.any))[0..b.getOsSockLen()];
        return mem.eql(u8, a_bytes, b_bytes);
    }

Ip6Address

The system-wide limit on the total number of open files has been reached.


    pub fn getOsSockLen(self: Address) os.socklen_t {
        switch (self.any.family) {
            os.AF.INET => return self.in.getOsSockLen(),
            os.AF.INET6 => return self.in6.getOsSockLen(),
            os.AF.UNIX => {
                if (!has_unix_sockets) {
                    unreachable;
                }

parse()

Not enough free memory. This often means that the memory allocation is limited by the socket buffer limits, not by the system memory.


                // Using the full length of the structure here is more portable than returning
                // the number of bytes actually used by the currently stored path.
                // This also is correct regardless if we are passing a socket address to the kernel
                // (e.g. in bind, connect, sendto) since we ensure the path is 0 terminated in
                // initUnix() or if we are receiving a socket address from the kernel and must
                // provide the full buffer size (e.g. getsockname, getpeername, recvfrom, accept).
                //
                // To access the path, std.mem.sliceTo(&address.un.path, 0) should be used.
                return @as(os.socklen_t, @intCast(@sizeOf(os.sockaddr.un)));
            },

resolve()

Socket is not listening for new connections.


            else => unreachable,
        }
    }
};

init()

Firewall rules forbid connection.


pub const Ip4Address = extern struct {
    sa: os.sockaddr.in,

getPort()

If this function succeeds, the returned Connection is a caller-managed resource.


    pub fn parse(buf: []const u8, port: u16) !Ip4Address {
        var result = Ip4Address{
            .sa = .{
                .port = mem.nativeToBig(u16, port),
                .addr = undefined,
            },
        };
        const out_ptr = mem.asBytes(&result.sa.addr);

setPort()


        var x: u8 = 0;
        var index: u8 = 0;
        var saw_any_digits = false;
        var has_zero_prefix = false;
        for (buf) |c| {
            if (c == '.') {
                if (!saw_any_digits) {
                    return error.InvalidCharacter;
                }
                if (index == 3) {
                    return error.InvalidEnd;
                }
                out_ptr[index] = x;
                index += 1;
                x = 0;
                saw_any_digits = false;
                has_zero_prefix = false;
            } else if (c >= '0' and c <= '9') {
                if (c == '0' and !saw_any_digits) {
                    has_zero_prefix = true;
                } else if (has_zero_prefix) {
                    return error.NonCanonical;
                }
                saw_any_digits = true;
                x = try std.math.mul(u8, x, 10);
                x = try std.math.add(u8, x, c - '0');
            } else {
                return error.InvalidCharacter;
            }
        }
        if (index == 3 and saw_any_digits) {
            out_ptr[index] = x;
            return result;
        }

format()


        return error.Incomplete;
    }

getOsSockLen()


    pub fn resolveIp(name: []const u8, port: u16) !Ip4Address {
        if (parse(name, port)) |ip4| return ip4 else |err| switch (err) {
            error.Overflow,
            error.InvalidEnd,
            error.InvalidCharacter,
            error.Incomplete,
            => {},
        }
        return error.InvalidIPAddressFormat;
    }

connectUnixSocket()


    pub fn init(addr: [4]u8, port: u16) Ip4Address {
        return Ip4Address{
            .sa = os.sockaddr.in{
                .port = mem.nativeToBig(u16, port),
                .addr = @as(*align(1) const u32, @ptrCast(&addr)).*,
            },
        };
    }

AddressList


    /// Returns the port in native endian.
    /// Asserts that the address is ip4 or ip6.
    pub fn getPort(self: Ip4Address) u16 {
        return mem.bigToNative(u16, self.sa.port);
    }

deinit()


    /// `port` is native-endian.
    /// Asserts that the address is ip4 or ip6.
    pub fn setPort(self: *Ip4Address, port: u16) void {
        self.sa.port = mem.nativeToBig(u16, port);
    }

TcpConnectToHostError


    pub fn format(
        self: Ip4Address,
        comptime fmt: []const u8,
        options: std.fmt.FormatOptions,
        out_stream: anytype,
    ) !void {
        if (fmt.len != 0) std.fmt.invalidFmtError(fmt, self);
        _ = options;
        const bytes = @as(*const [4]u8, @ptrCast(&self.sa.addr));
        try std.fmt.format(out_stream, "{}.{}.{}.{}:{}", .{
            bytes[0],
            bytes[1],
            bytes[2],
            bytes[3],
            self.getPort(),
        });
    }

tcpConnectToHost()


    pub fn getOsSockLen(self: Ip4Address) os.socklen_t {
        _ = self;
        return @sizeOf(os.sockaddr.in);
    }
};

TcpConnectToAddressError


pub const Ip6Address = extern struct {
    sa: os.sockaddr.in6,

tcpConnectToAddress()


    /// Parse a given IPv6 address string into an Address.
    /// Assumes the Scope ID of the address is fully numeric.
    /// For non-numeric addresses, see `resolveIp6`.
    pub fn parse(buf: []const u8, port: u16) !Ip6Address {
        var result = Ip6Address{
            .sa = os.sockaddr.in6{
                .scope_id = 0,
                .port = mem.nativeToBig(u16, port),
                .flowinfo = 0,
                .addr = undefined,
            },
        };
        var ip_slice: *[16]u8 = result.sa.addr[0..];

getAddressList()


        var tail: [16]u8 = undefined;

isValidHostName()


        var x: u16 = 0;
        var saw_any_digits = false;
        var index: u8 = 0;
        var scope_id = false;
        var abbrv = false;
        for (buf, 0..) |c, i| {
            if (scope_id) {
                if (c >= '0' and c <= '9') {
                    const digit = c - '0';
                    {
                        const ov = @mulWithOverflow(result.sa.scope_id, 10);
                        if (ov[1] != 0) return error.Overflow;
                        result.sa.scope_id = ov[0];
                    }
                    {
                        const ov = @addWithOverflow(result.sa.scope_id, digit);
                        if (ov[1] != 0) return error.Overflow;
                        result.sa.scope_id = ov[0];
                    }
                } else {
                    return error.InvalidCharacter;
                }
            } else if (c == ':') {
                if (!saw_any_digits) {
                    if (abbrv) return error.InvalidCharacter; // ':::'
                    if (i != 0) abbrv = true;
                    @memset(ip_slice[index..], 0);
                    ip_slice = tail[0..];
                    index = 0;
                    continue;
                }
                if (index == 14) {
                    return error.InvalidEnd;
                }
                ip_slice[index] = @as(u8, @truncate(x >> 8));
                index += 1;
                ip_slice[index] = @as(u8, @truncate(x));
                index += 1;

Stream


                x = 0;
                saw_any_digits = false;
            } else if (c == '%') {
                if (!saw_any_digits) {
                    return error.InvalidCharacter;
                }
                scope_id = true;
                saw_any_digits = false;
            } else if (c == '.') {
                if (!abbrv or ip_slice[0] != 0xff or ip_slice[1] != 0xff) {
                    // must start with '::ffff:'
                    return error.InvalidIpv4Mapping;
                }
                const start_index = mem.lastIndexOfScalar(u8, buf[0..i], ':').? + 1;
                const addr = (Ip4Address.parse(buf[start_index..], 0) catch {
                    return error.InvalidIpv4Mapping;
                }).sa.addr;
                ip_slice = result.sa.addr[0..];
                ip_slice[10] = 0xff;
                ip_slice[11] = 0xff;

close()


                const ptr = mem.sliceAsBytes(@as(*const [1]u32, &addr)[0..]);

ReadError


                ip_slice[12] = ptr[0];
                ip_slice[13] = ptr[1];
                ip_slice[14] = ptr[2];
                ip_slice[15] = ptr[3];
                return result;
            } else {
                const digit = try std.fmt.charToDigit(c, 16);
                {
                    const ov = @mulWithOverflow(x, 16);
                    if (ov[1] != 0) return error.Overflow;
                    x = ov[0];
                }
                {
                    const ov = @addWithOverflow(x, digit);
                    if (ov[1] != 0) return error.Overflow;
                    x = ov[0];
                }
                saw_any_digits = true;
            }
        }

WriteError


        if (!saw_any_digits and !abbrv) {
            return error.Incomplete;
        }

Reader


        if (index == 14) {
            ip_slice[14] = @as(u8, @truncate(x >> 8));
            ip_slice[15] = @as(u8, @truncate(x));
            return result;
        } else {
            ip_slice[index] = @as(u8, @truncate(x >> 8));
            index += 1;
            ip_slice[index] = @as(u8, @truncate(x));
            index += 1;
            @memcpy(result.sa.addr[16 - index ..][0..index], ip_slice[0..index]);
            return result;
        }
    }

Writer


    pub fn resolve(buf: []const u8, port: u16) !Ip6Address {
        // TODO: Unify the implementations of resolveIp6 and parseIp6.
        var result = Ip6Address{
            .sa = os.sockaddr.in6{
                .scope_id = 0,
                .port = mem.nativeToBig(u16, port),
                .flowinfo = 0,
                .addr = undefined,
            },
        };
        var ip_slice: *[16]u8 = result.sa.addr[0..];

reader()


        var tail: [16]u8 = undefined;

writer()


        var x: u16 = 0;
        var saw_any_digits = false;
        var index: u8 = 0;
        var abbrv = false;

read()


        var scope_id = false;
        var scope_id_value: [os.IFNAMESIZE - 1]u8 = undefined;
        var scope_id_index: usize = 0;

readv()


        for (buf, 0..) |c, i| {
            if (scope_id) {
                // Handling of percent-encoding should be for an URI library.
                if ((c >= '0' and c <= '9') or
                    (c >= 'A' and c <= 'Z') or
                    (c >= 'a' and c <= 'z') or
                    (c == '-') or (c == '.') or (c == '_') or (c == '~'))
                {
                    if (scope_id_index >= scope_id_value.len) {
                        return error.Overflow;
                    }

readAll()


                    scope_id_value[scope_id_index] = c;
                    scope_id_index += 1;
                } else {
                    return error.InvalidCharacter;
                }
            } else if (c == ':') {
                if (!saw_any_digits) {
                    if (abbrv) return error.InvalidCharacter; // ':::'
                    if (i != 0) abbrv = true;
                    @memset(ip_slice[index..], 0);
                    ip_slice = tail[0..];
                    index = 0;
                    continue;
                }
                if (index == 14) {
                    return error.InvalidEnd;
                }
                ip_slice[index] = @as(u8, @truncate(x >> 8));
                index += 1;
                ip_slice[index] = @as(u8, @truncate(x));
                index += 1;

readAtLeast()


                x = 0;
                saw_any_digits = false;
            } else if (c == '%') {
                if (!saw_any_digits) {
                    return error.InvalidCharacter;
                }
                scope_id = true;
                saw_any_digits = false;
            } else if (c == '.') {
                if (!abbrv or ip_slice[0] != 0xff or ip_slice[1] != 0xff) {
                    // must start with '::ffff:'
                    return error.InvalidIpv4Mapping;
                }
                const start_index = mem.lastIndexOfScalar(u8, buf[0..i], ':').? + 1;
                const addr = (Ip4Address.parse(buf[start_index..], 0) catch {
                    return error.InvalidIpv4Mapping;
                }).sa.addr;
                ip_slice = result.sa.addr[0..];
                ip_slice[10] = 0xff;
                ip_slice[11] = 0xff;

write()


                const ptr = mem.sliceAsBytes(@as(*const [1]u32, &addr)[0..]);

writeAll()


                ip_slice[12] = ptr[0];
                ip_slice[13] = ptr[1];
                ip_slice[14] = ptr[2];
                ip_slice[15] = ptr[3];
                return result;
            } else {
                const digit = try std.fmt.charToDigit(c, 16);
                {
                    const ov = @mulWithOverflow(x, 16);
                    if (ov[1] != 0) return error.Overflow;
                    x = ov[0];
                }
                {
                    const ov = @addWithOverflow(x, digit);
                    if (ov[1] != 0) return error.Overflow;
                    x = ov[0];
                }
                saw_any_digits = true;
            }
        }

writev()


        if (!saw_any_digits and !abbrv) {
            return error.Incomplete;
        }

writevAll()


        if (scope_id and scope_id_index == 0) {
            return error.Incomplete;
        }

StreamServer


        var resolved_scope_id: u32 = 0;
        if (scope_id_index > 0) {
            const scope_id_str = scope_id_value[0..scope_id_index];
            resolved_scope_id = std.fmt.parseInt(u32, scope_id_str, 10) catch |err| blk: {
                if (err != error.InvalidCharacter) return err;
                break :blk try if_nametoindex(scope_id_str);
            };
        }

Options


        result.sa.scope_id = resolved_scope_id;

init()


        if (index == 14) {
            ip_slice[14] = @as(u8, @truncate(x >> 8));
            ip_slice[15] = @as(u8, @truncate(x));
            return result;
        } else {
            ip_slice[index] = @as(u8, @truncate(x >> 8));
            index += 1;
            ip_slice[index] = @as(u8, @truncate(x));
            index += 1;
            @memcpy(result.sa.addr[16 - index ..][0..index], ip_slice[0..index]);
            return result;
        }
    }

deinit()


    pub fn init(addr: [16]u8, port: u16, flowinfo: u32, scope_id: u32) Ip6Address {
        return Ip6Address{
            .sa = os.sockaddr.in6{
                .addr = addr,
                .port = mem.nativeToBig(u16, port),
                .flowinfo = flowinfo,
                .scope_id = scope_id,
            },
        };
    }

listen()


    /// Returns the port in native endian.
    /// Asserts that the address is ip4 or ip6.
    pub fn getPort(self: Ip6Address) u16 {
        return mem.bigToNative(u16, self.sa.port);
    }

close()


    /// `port` is native-endian.
    /// Asserts that the address is ip4 or ip6.
    pub fn setPort(self: *Ip6Address, port: u16) void {
        self.sa.port = mem.nativeToBig(u16, port);
    }

AcceptError


    pub fn format(
        self: Ip6Address,
        comptime fmt: []const u8,
        options: std.fmt.FormatOptions,
        out_stream: anytype,
    ) !void {
        if (fmt.len != 0) std.fmt.invalidFmtError(fmt, self);
        _ = options;
        const port = mem.bigToNative(u16, self.sa.port);
        if (mem.eql(u8, self.sa.addr[0..12], &[_]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff })) {
            try std.fmt.format(out_stream, "[::ffff:{}.{}.{}.{}]:{}", .{
                self.sa.addr[12],
                self.sa.addr[13],
                self.sa.addr[14],
                self.sa.addr[15],
                port,
            });
            return;
        }
        const big_endian_parts = @as(*align(1) const [8]u16, @ptrCast(&self.sa.addr));
        const native_endian_parts = switch (native_endian) {
            .Big => big_endian_parts.*,
            .Little => blk: {
                var buf: [8]u16 = undefined;
                for (big_endian_parts, 0..) |part, i| {
                    buf[i] = mem.bigToNative(u16, part);
                }
                break :blk buf;
            },
        };
        try out_stream.writeAll("[");
        var i: usize = 0;
        var abbrv = false;
        while (i < native_endian_parts.len) : (i += 1) {
            if (native_endian_parts[i] == 0) {
                if (!abbrv) {
                    try out_stream.writeAll(if (i == 0) "::" else ":");
                    abbrv = true;
                }
                continue;
            }
            try std.fmt.format(out_stream, "{x}", .{native_endian_parts[i]});
            if (i != native_endian_parts.len - 1) {
                try out_stream.writeAll(":");
            }
        }
        try std.fmt.format(out_stream, "]:{}", .{port});
    }

Connection


    pub fn getOsSockLen(self: Ip6Address) os.socklen_t {
        _ = self;
        return @sizeOf(os.sockaddr.in6);
    }
};

accept()


pub fn connectUnixSocket(path: []const u8) !Stream {
    const opt_non_block = if (std.io.is_async) os.SOCK.NONBLOCK else 0;
    const sockfd = try os.socket(
        os.AF.UNIX,
        os.SOCK.STREAM | os.SOCK.CLOEXEC | opt_non_block,
        0,
    );
    errdefer os.closeSocket(sockfd);

    var addr = try std.net.Address.initUnix(path);

    if (std.io.is_async) {
        const loop = std.event.Loop.instance orelse return error.WouldBlock;
        try loop.connect(sockfd, &addr.any, addr.getOsSockLen());
    } else {
        try os.connect(sockfd, &addr.any, addr.getOsSockLen());
    }

    return Stream{
        .handle = sockfd,
    };
}

fn if_nametoindex(name: []const u8) !u32 {
    if (builtin.target.os.tag == .linux) {
        var ifr: os.ifreq = undefined;
        var sockfd = try os.socket(os.AF.UNIX, os.SOCK.DGRAM | os.SOCK.CLOEXEC, 0);
        defer os.closeSocket(sockfd);

        @memcpy(ifr.ifrn.name[0..name.len], name);
        ifr.ifrn.name[name.len] = 0;

        // TODO investigate if this needs to be integrated with evented I/O.
        try os.ioctl_SIOCGIFINDEX(sockfd, &ifr);

        return @as(u32, @bitCast(ifr.ifru.ivalue));
    }

    if (comptime builtin.target.os.tag.isDarwin()) {
        if (name.len >= os.IFNAMESIZE)
            return error.NameTooLong;

        var if_name: [os.IFNAMESIZE:0]u8 = undefined;
        @memcpy(if_name[0..name.len], name);
        if_name[name.len] = 0;
        const if_slice = if_name[0..name.len :0];
        const index = os.system.if_nametoindex(if_slice);
        if (index == 0)
            return error.InterfaceNotFound;
        return @as(u32, @bitCast(index));
    }

    @compileError("std.net.if_nametoindex unimplemented for this OS");
}

pub const AddressList = struct {
    arena: std.heap.ArenaAllocator,
    addrs: []Address,
    canon_name: ?[]u8,

    pub fn deinit(self: *AddressList) void {
        // Here we copy the arena allocator into stack memory, because
        // otherwise it would destroy itself while it was still working.
        var arena = self.arena;
        arena.deinit();
        // self is destroyed
    }
};

pub const TcpConnectToHostError = GetAddressListError || TcpConnectToAddressError;

/// All memory allocated with `allocator` will be freed before this function returns.
pub fn tcpConnectToHost(allocator: mem.Allocator, name: []const u8, port: u16) TcpConnectToHostError!Stream {
    const list = try getAddressList(allocator, name, port);
    defer list.deinit();

    if (list.addrs.len == 0) return error.UnknownHostName;

    for (list.addrs) |addr| {
        return tcpConnectToAddress(addr) catch |err| switch (err) {
            error.ConnectionRefused => {
                continue;
            },
            else => return err,
        };
    }
    return std.os.ConnectError.ConnectionRefused;
}

pub const TcpConnectToAddressError = std.os.SocketError || std.os.ConnectError;

pub fn tcpConnectToAddress(address: Address) TcpConnectToAddressError!Stream {
    const nonblock = if (std.io.is_async) os.SOCK.NONBLOCK else 0;
    const sock_flags = os.SOCK.STREAM | nonblock |
        (if (builtin.target.os.tag == .windows) 0 else os.SOCK.CLOEXEC);
    const sockfd = try os.socket(address.any.family, sock_flags, os.IPPROTO.TCP);
    errdefer os.closeSocket(sockfd);

    if (std.io.is_async) {
        const loop = std.event.Loop.instance orelse return error.WouldBlock;
        try loop.connect(sockfd, &address.any, address.getOsSockLen());
    } else {
        try os.connect(sockfd, &address.any, address.getOsSockLen());
    }

    return Stream{ .handle = sockfd };
}

const GetAddressListError = std.mem.Allocator.Error || std.fs.File.OpenError || std.fs.File.ReadError || std.os.SocketError || std.os.BindError || std.os.SetSockOptError || error{
    // TODO: break this up into error sets from the various underlying functions

    TemporaryNameServerFailure,
    NameServerFailure,
    AddressFamilyNotSupported,
    UnknownHostName,
    ServiceUnavailable,
    Unexpected,

    HostLacksNetworkAddresses,

    InvalidCharacter,
    InvalidEnd,
    NonCanonical,
    Overflow,
    Incomplete,
    InvalidIpv4Mapping,
    InvalidIPAddressFormat,

    InterfaceNotFound,
    FileSystem,
};

/// Call `AddressList.deinit` on the result.
pub fn getAddressList(allocator: mem.Allocator, name: []const u8, port: u16) GetAddressListError!*AddressList {
    const result = blk: {
        var arena = std.heap.ArenaAllocator.init(allocator);
        errdefer arena.deinit();

        const result = try arena.allocator().create(AddressList);
        result.* = AddressList{
            .arena = arena,
            .addrs = undefined,
            .canon_name = null,
        };
        break :blk result;
    };
    const arena = result.arena.allocator();
    errdefer result.deinit();

    if (builtin.target.os.tag == .windows) {
        const name_c = try allocator.dupeZ(u8, name);
        defer allocator.free(name_c);

        const port_c = try std.fmt.allocPrintZ(allocator, "{}", .{port});
        defer allocator.free(port_c);

        const ws2_32 = os.windows.ws2_32;
        const hints = os.addrinfo{
            .flags = ws2_32.AI.NUMERICSERV,
            .family = os.AF.UNSPEC,
            .socktype = os.SOCK.STREAM,
            .protocol = os.IPPROTO.TCP,
            .canonname = null,
            .addr = null,
            .addrlen = 0,
            .next = null,
        };
        var res: ?*os.addrinfo = null;
        var first = true;
        while (true) {
            const rc = ws2_32.getaddrinfo(name_c.ptr, port_c.ptr, &hints, &res);
            switch (@as(os.windows.ws2_32.WinsockError, @enumFromInt(@as(u16, @intCast(rc))))) {
                @as(os.windows.ws2_32.WinsockError, @enumFromInt(0)) => break,
                .WSATRY_AGAIN => return error.TemporaryNameServerFailure,
                .WSANO_RECOVERY => return error.NameServerFailure,
                .WSAEAFNOSUPPORT => return error.AddressFamilyNotSupported,
                .WSA_NOT_ENOUGH_MEMORY => return error.OutOfMemory,
                .WSAHOST_NOT_FOUND => return error.UnknownHostName,
                .WSATYPE_NOT_FOUND => return error.ServiceUnavailable,
                .WSAEINVAL => unreachable,
                .WSAESOCKTNOSUPPORT => unreachable,
                .WSANOTINITIALISED => {
                    if (!first) return error.Unexpected;
                    first = false;
                    try os.windows.callWSAStartup();
                    continue;
                },
                else => |err| return os.windows.unexpectedWSAError(err),
            }
        }
        defer ws2_32.freeaddrinfo(res);

        const addr_count = blk: {
            var count: usize = 0;
            var it = res;
            while (it) |info| : (it = info.next) {
                if (info.addr != null) {
                    count += 1;
                }
            }
            break :blk count;
        };
        result.addrs = try arena.alloc(Address, addr_count);

        var it = res;
        var i: usize = 0;
        while (it) |info| : (it = info.next) {
            const addr = info.addr orelse continue;
            result.addrs[i] = Address.initPosix(@alignCast(addr));

            if (info.canonname) |n| {
                if (result.canon_name == null) {
                    result.canon_name = try arena.dupe(u8, mem.sliceTo(n, 0));
                }
            }
            i += 1;
        }

        return result;
    }

    if (builtin.link_libc) {
        const name_c = try allocator.dupeZ(u8, name);
        defer allocator.free(name_c);

        const port_c = try std.fmt.allocPrintZ(allocator, "{}", .{port});
        defer allocator.free(port_c);

        const sys = if (builtin.target.os.tag == .windows) os.windows.ws2_32 else os.system;
        const hints = os.addrinfo{
            .flags = sys.AI.NUMERICSERV,
            .family = os.AF.UNSPEC,
            .socktype = os.SOCK.STREAM,
            .protocol = os.IPPROTO.TCP,
            .canonname = null,
            .addr = null,
            .addrlen = 0,
            .next = null,
        };
        var res: ?*os.addrinfo = null;
        switch (sys.getaddrinfo(name_c.ptr, port_c.ptr, &hints, &res)) {
            @as(sys.EAI, @enumFromInt(0)) => {},
            .ADDRFAMILY => return error.HostLacksNetworkAddresses,
            .AGAIN => return error.TemporaryNameServerFailure,
            .BADFLAGS => unreachable, // Invalid hints
            .FAIL => return error.NameServerFailure,
            .FAMILY => return error.AddressFamilyNotSupported,
            .MEMORY => return error.OutOfMemory,
            .NODATA => return error.HostLacksNetworkAddresses,
            .NONAME => return error.UnknownHostName,
            .SERVICE => return error.ServiceUnavailable,
            .SOCKTYPE => unreachable, // Invalid socket type requested in hints
            .SYSTEM => switch (os.errno(-1)) {
                else => |e| return os.unexpectedErrno(e),
            },
            else => unreachable,
        }
        defer if (res) |some| sys.freeaddrinfo(some);

        const addr_count = blk: {
            var count: usize = 0;
            var it = res;
            while (it) |info| : (it = info.next) {
                if (info.addr != null) {
                    count += 1;
                }
            }
            break :blk count;
        };
        result.addrs = try arena.alloc(Address, addr_count);

        var it = res;
        var i: usize = 0;
        while (it) |info| : (it = info.next) {
            const addr = info.addr orelse continue;
            result.addrs[i] = Address.initPosix(@alignCast(addr));

            if (info.canonname) |n| {
                if (result.canon_name == null) {
                    result.canon_name = try arena.dupe(u8, mem.sliceTo(n, 0));
                }
            }
            i += 1;
        }

        return result;
    }

    if (builtin.target.os.tag == .linux) {
        const flags = std.c.AI.NUMERICSERV;
        const family = os.AF.UNSPEC;
        var lookup_addrs = std.ArrayList(LookupAddr).init(allocator);
        defer lookup_addrs.deinit();

        var canon = std.ArrayList(u8).init(arena);
        defer canon.deinit();

        try linuxLookupName(&lookup_addrs, &canon, name, family, flags, port);

        result.addrs = try arena.alloc(Address, lookup_addrs.items.len);
        if (canon.items.len != 0) {
            result.canon_name = try canon.toOwnedSlice();
        }

        for (lookup_addrs.items, 0..) |lookup_addr, i| {
            result.addrs[i] = lookup_addr.addr;
            assert(result.addrs[i].getPort() == port);
        }

        return result;
    }
    @compileError("std.net.getAddressList unimplemented for this OS");
}

const LookupAddr = struct {
    addr: Address,
    sortkey: i32 = 0,
};

const DAS_USABLE = 0x40000000;
const DAS_MATCHINGSCOPE = 0x20000000;
const DAS_MATCHINGLABEL = 0x10000000;
const DAS_PREC_SHIFT = 20;
const DAS_SCOPE_SHIFT = 16;
const DAS_PREFIX_SHIFT = 8;
const DAS_ORDER_SHIFT = 0;

fn linuxLookupName(
    addrs: *std.ArrayList(LookupAddr),
    canon: *std.ArrayList(u8),
    opt_name: ?[]const u8,
    family: os.sa_family_t,
    flags: u32,
    port: u16,
) !void {
    if (opt_name) |name| {
        // reject empty name and check len so it fits into temp bufs
        canon.items.len = 0;
        try canon.appendSlice(name);
        if (Address.parseExpectingFamily(name, family, port)) |addr| {
            try addrs.append(LookupAddr{ .addr = addr });
        } else |name_err| if ((flags & std.c.AI.NUMERICHOST) != 0) {
            return name_err;
        } else {
            try linuxLookupNameFromHosts(addrs, canon, name, family, port);
            if (addrs.items.len == 0) {
                // RFC 6761 Section 6.3.3
                // Name resolution APIs and libraries SHOULD recognize localhost
                // names as special and SHOULD always return the IP loopback address
                // for address queries and negative responses for all other query
                // types.

                // Check for equal to "localhost(.)" or ends in ".localhost(.)"
                const localhost = if (name[name.len - 1] == '.') "localhost." else "localhost";
                if (mem.endsWith(u8, name, localhost) and (name.len == localhost.len or name[name.len - localhost.len] == '.')) {
                    try addrs.append(LookupAddr{ .addr = .{ .in = Ip4Address.parse("127.0.0.1", port) catch unreachable } });
                    try addrs.append(LookupAddr{ .addr = .{ .in6 = Ip6Address.parse("::1", port) catch unreachable } });
                    return;
                }

                try linuxLookupNameFromDnsSearch(addrs, canon, name, family, port);
            }
        }
    } else {
        try canon.resize(0);
        try linuxLookupNameFromNull(addrs, family, flags, port);
    }
    if (addrs.items.len == 0) return error.UnknownHostName;

    // No further processing is needed if there are fewer than 2
    // results or if there are only IPv4 results.
    if (addrs.items.len == 1 or family == os.AF.INET) return;
    const all_ip4 = for (addrs.items) |addr| {
        if (addr.addr.any.family != os.AF.INET) break false;
    } else true;
    if (all_ip4) return;

    // The following implements a subset of RFC 3484/6724 destination
    // address selection by generating a single 31-bit sort key for
    // each address. Rules 3, 4, and 7 are omitted for having
    // excessive runtime and code size cost and dubious benefit.
    // So far the label/precedence table cannot be customized.
    // This implementation is ported from musl libc.
    // A more idiomatic "ziggy" implementation would be welcome.
    for (addrs.items, 0..) |*addr, i| {
        var key: i32 = 0;
        var sa6: os.sockaddr.in6 = undefined;
        @memset(@as([*]u8, @ptrCast(&sa6))[0..@sizeOf(os.sockaddr.in6)], 0);
        var da6 = os.sockaddr.in6{
            .family = os.AF.INET6,
            .scope_id = addr.addr.in6.sa.scope_id,
            .port = 65535,
            .flowinfo = 0,
            .addr = [1]u8{0} ** 16,
        };
        var sa4: os.sockaddr.in = undefined;
        @memset(@as([*]u8, @ptrCast(&sa4))[0..@sizeOf(os.sockaddr.in)], 0);
        var da4 = os.sockaddr.in{
            .family = os.AF.INET,
            .port = 65535,
            .addr = 0,
            .zero = [1]u8{0} ** 8,
        };
        var sa: *align(4) os.sockaddr = undefined;
        var da: *align(4) os.sockaddr = undefined;
        var salen: os.socklen_t = undefined;
        var dalen: os.socklen_t = undefined;
        if (addr.addr.any.family == os.AF.INET6) {
            da6.addr = addr.addr.in6.sa.addr;
            da = @ptrCast(&da6);
            dalen = @sizeOf(os.sockaddr.in6);
            sa = @ptrCast(&sa6);
            salen = @sizeOf(os.sockaddr.in6);
        } else {
            sa6.addr[0..12].* = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff".*;
            da6.addr[0..12].* = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff".*;
            mem.writeIntNative(u32, da6.addr[12..], addr.addr.in.sa.addr);
            da4.addr = addr.addr.in.sa.addr;
            da = @ptrCast(&da4);
            dalen = @sizeOf(os.sockaddr.in);
            sa = @ptrCast(&sa4);
            salen = @sizeOf(os.sockaddr.in);
        }
        const dpolicy = policyOf(da6.addr);
        const dscope: i32 = scopeOf(da6.addr);
        const dlabel = dpolicy.label;
        const dprec: i32 = dpolicy.prec;
        const MAXADDRS = 3;
        var prefixlen: i32 = 0;
        const sock_flags = os.SOCK.DGRAM | os.SOCK.CLOEXEC;
        if (os.socket(addr.addr.any.family, sock_flags, os.IPPROTO.UDP)) |fd| syscalls: {
            defer os.closeSocket(fd);
            os.connect(fd, da, dalen) catch break :syscalls;
            key |= DAS_USABLE;
            os.getsockname(fd, sa, &salen) catch break :syscalls;
            if (addr.addr.any.family == os.AF.INET) {
                // TODO sa6.addr[12..16] should return *[4]u8, making this cast unnecessary.
                mem.writeIntNative(u32, @as(*[4]u8, @ptrCast(&sa6.addr[12])), sa4.addr);
            }
            if (dscope == @as(i32, scopeOf(sa6.addr))) key |= DAS_MATCHINGSCOPE;
            if (dlabel == labelOf(sa6.addr)) key |= DAS_MATCHINGLABEL;
            prefixlen = prefixMatch(sa6.addr, da6.addr);
        } else |_| {}
        key |= dprec << DAS_PREC_SHIFT;
        key |= (15 - dscope) << DAS_SCOPE_SHIFT;
        key |= prefixlen << DAS_PREFIX_SHIFT;
        key |= (MAXADDRS - @as(i32, @intCast(i))) << DAS_ORDER_SHIFT;
        addr.sortkey = key;
    }
    mem.sort(LookupAddr, addrs.items, {}, addrCmpLessThan);
}

const Policy = struct {
    addr: [16]u8,
    len: u8,
    mask: u8,
    prec: u8,
    label: u8,
};

const defined_policies = [_]Policy{
    Policy{
        .addr = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01".*,
        .len = 15,
        .mask = 0xff,
        .prec = 50,
        .label = 0,
    },
    Policy{
        .addr = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\x00\x00\x00\x00".*,
        .len = 11,
        .mask = 0xff,
        .prec = 35,
        .label = 4,
    },
    Policy{
        .addr = "\x20\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".*,
        .len = 1,
        .mask = 0xff,
        .prec = 30,
        .label = 2,
    },
    Policy{
        .addr = "\x20\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".*,
        .len = 3,
        .mask = 0xff,
        .prec = 5,
        .label = 5,
    },
    Policy{
        .addr = "\xfc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".*,
        .len = 0,
        .mask = 0xfe,
        .prec = 3,
        .label = 13,
    },
    //  These are deprecated and/or returned to the address
    //  pool, so despite the RFC, treating them as special
    //  is probably wrong.
    // { "", 11, 0xff, 1, 3 },
    // { "\xfe\xc0", 1, 0xc0, 1, 11 },
    // { "\x3f\xfe", 1, 0xff, 1, 12 },
    // Last rule must match all addresses to stop loop.
    Policy{
        .addr = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00".*,
        .len = 0,
        .mask = 0,
        .prec = 40,
        .label = 1,
    },
};

fn policyOf(a: [16]u8) *const Policy {
    for (&defined_policies) |*policy| {
        if (!mem.eql(u8, a[0..policy.len], policy.addr[0..policy.len])) continue;
        if ((a[policy.len] & policy.mask) != policy.addr[policy.len]) continue;
        return policy;
    }
    unreachable;
}

fn scopeOf(a: [16]u8) u8 {
    if (IN6_IS_ADDR_MULTICAST(a)) return a[1] & 15;
    if (IN6_IS_ADDR_LINKLOCAL(a)) return 2;
    if (IN6_IS_ADDR_LOOPBACK(a)) return 2;
    if (IN6_IS_ADDR_SITELOCAL(a)) return 5;
    return 14;
}

fn prefixMatch(s: [16]u8, d: [16]u8) u8 {
    // TODO: This FIXME inherited from porting from musl libc.
    // I don't want this to go into zig std lib 1.0.0.

    // FIXME: The common prefix length should be limited to no greater
    // than the nominal length of the prefix portion of the source
    // address. However the definition of the source prefix length is
    // not clear and thus this limiting is not yet implemented.
    var i: u8 = 0;
    while (i < 128 and ((s[i / 8] ^ d[i / 8]) & (@as(u8, 128) >> @as(u3, @intCast(i % 8)))) == 0) : (i += 1) {}
    return i;
}

fn labelOf(a: [16]u8) u8 {
    return policyOf(a).label;
}

fn IN6_IS_ADDR_MULTICAST(a: [16]u8) bool {
    return a[0] == 0xff;
}

fn IN6_IS_ADDR_LINKLOCAL(a: [16]u8) bool {
    return a[0] == 0xfe and (a[1] & 0xc0) == 0x80;
}

fn IN6_IS_ADDR_LOOPBACK(a: [16]u8) bool {
    return a[0] == 0 and a[1] == 0 and
        a[2] == 0 and
        a[12] == 0 and a[13] == 0 and
        a[14] == 0 and a[15] == 1;
}

fn IN6_IS_ADDR_SITELOCAL(a: [16]u8) bool {
    return a[0] == 0xfe and (a[1] & 0xc0) == 0xc0;
}

// Parameters `b` and `a` swapped to make this descending.
fn addrCmpLessThan(context: void, b: LookupAddr, a: LookupAddr) bool {
    _ = context;
    return a.sortkey < b.sortkey;
}

fn linuxLookupNameFromNull(
    addrs: *std.ArrayList(LookupAddr),
    family: os.sa_family_t,
    flags: u32,
    port: u16,
) !void {
    if ((flags & std.c.AI.PASSIVE) != 0) {
        if (family != os.AF.INET6) {
            (try addrs.addOne()).* = LookupAddr{
                .addr = Address.initIp4([1]u8{0} ** 4, port),
            };
        }
        if (family != os.AF.INET) {
            (try addrs.addOne()).* = LookupAddr{
                .addr = Address.initIp6([1]u8{0} ** 16, port, 0, 0),
            };
        }
    } else {
        if (family != os.AF.INET6) {
            (try addrs.addOne()).* = LookupAddr{
                .addr = Address.initIp4([4]u8{ 127, 0, 0, 1 }, port),
            };
        }
        if (family != os.AF.INET) {
            (try addrs.addOne()).* = LookupAddr{
                .addr = Address.initIp6(([1]u8{0} ** 15) ++ [1]u8{1}, port, 0, 0),
            };
        }
    }
}

fn linuxLookupNameFromHosts(
    addrs: *std.ArrayList(LookupAddr),
    canon: *std.ArrayList(u8),
    name: []const u8,
    family: os.sa_family_t,
    port: u16,
) !void {
    const file = fs.openFileAbsoluteZ("/etc/hosts", .{}) catch |err| switch (err) {
        error.FileNotFound,
        error.NotDir,
        error.AccessDenied,
        => return,
        else => |e| return e,
    };
    defer file.close();

    var buffered_reader = std.io.bufferedReader(file.reader());
    const reader = buffered_reader.reader();
    var line_buf: [512]u8 = undefined;
    while (reader.readUntilDelimiterOrEof(&line_buf, '\n') catch |err| switch (err) {
        error.StreamTooLong => blk: {
            // Skip to the delimiter in the reader, to fix parsing
            try reader.skipUntilDelimiterOrEof('\n');
            // Use the truncated line. A truncated comment or hostname will be handled correctly.
            break :blk &line_buf;
        },
        else => |e| return e,
    }) |line| {
        var split_it = mem.splitScalar(u8, line, '#');
        const no_comment_line = split_it.first();

        var line_it = mem.tokenizeAny(u8, no_comment_line, " \t");
        const ip_text = line_it.next() orelse continue;
        var first_name_text: ?[]const u8 = null;
        while (line_it.next()) |name_text| {
            if (first_name_text == null) first_name_text = name_text;
            if (mem.eql(u8, name_text, name)) {
                break;
            }
        } else continue;

        const addr = Address.parseExpectingFamily(ip_text, family, port) catch |err| switch (err) {
            error.Overflow,
            error.InvalidEnd,
            error.InvalidCharacter,
            error.Incomplete,
            error.InvalidIPAddressFormat,
            error.InvalidIpv4Mapping,
            error.NonCanonical,
            => continue,
        };
        try addrs.append(LookupAddr{ .addr = addr });

        // first name is canonical name
        const name_text = first_name_text.?;
        if (isValidHostName(name_text)) {
            canon.items.len = 0;
            try canon.appendSlice(name_text);
        }
    }
}

pub fn isValidHostName(hostname: []const u8) bool {
    if (hostname.len >= 254) return false;
    if (!std.unicode.utf8ValidateSlice(hostname)) return false;
    for (hostname) |byte| {
        if (!std.ascii.isASCII(byte) or byte == '.' or byte == '-' or std.ascii.isAlphanumeric(byte)) {
            continue;
        }
        return false;
    }
    return true;
}

fn linuxLookupNameFromDnsSearch(
    addrs: *std.ArrayList(LookupAddr),
    canon: *std.ArrayList(u8),
    name: []const u8,
    family: os.sa_family_t,
    port: u16,
) !void {
    var rc: ResolvConf = undefined;
    try getResolvConf(addrs.allocator, &rc);
    defer rc.deinit();

    // Count dots, suppress search when >=ndots or name ends in
    // a dot, which is an explicit request for global scope.
    var dots: usize = 0;
    for (name) |byte| {
        if (byte == '.') dots += 1;
    }

    const search = if (dots >= rc.ndots or mem.endsWith(u8, name, "."))
        ""
    else
        rc.search.items;

    var canon_name = name;

    // Strip final dot for canon, fail if multiple trailing dots.
    if (mem.endsWith(u8, canon_name, ".")) canon_name.len -= 1;
    if (mem.endsWith(u8, canon_name, ".")) return error.UnknownHostName;

    // Name with search domain appended is setup in canon[]. This both
    // provides the desired default canonical name (if the requested
    // name is not a CNAME record) and serves as a buffer for passing
    // the full requested name to name_from_dns.
    try canon.resize(canon_name.len);
    @memcpy(canon.items, canon_name);
    try canon.append('.');

    var tok_it = mem.tokenizeAny(u8, search, " \t");
    while (tok_it.next()) |tok| {
        canon.shrinkRetainingCapacity(canon_name.len + 1);
        try canon.appendSlice(tok);
        try linuxLookupNameFromDns(addrs, canon, canon.items, family, rc, port);
        if (addrs.items.len != 0) return;
    }

    canon.shrinkRetainingCapacity(canon_name.len);
    return linuxLookupNameFromDns(addrs, canon, name, family, rc, port);
}

const dpc_ctx = struct {
    addrs: *std.ArrayList(LookupAddr),
    canon: *std.ArrayList(u8),
    port: u16,
};

fn linuxLookupNameFromDns(
    addrs: *std.ArrayList(LookupAddr),
    canon: *std.ArrayList(u8),
    name: []const u8,
    family: os.sa_family_t,
    rc: ResolvConf,
    port: u16,
) !void {
    var ctx = dpc_ctx{
        .addrs = addrs,
        .canon = canon,
        .port = port,
    };
    const AfRr = struct {
        af: os.sa_family_t,
        rr: u8,
    };
    const afrrs = [_]AfRr{
        AfRr{ .af = os.AF.INET6, .rr = os.RR.A },
        AfRr{ .af = os.AF.INET, .rr = os.RR.AAAA },
    };
    var qbuf: [2][280]u8 = undefined;
    var abuf: [2][512]u8 = undefined;
    var qp: [2][]const u8 = undefined;
    const apbuf = [2][]u8{ &abuf[0], &abuf[1] };
    var nq: usize = 0;

    for (afrrs) |afrr| {
        if (family != afrr.af) {
            const len = os.res_mkquery(0, name, 1, afrr.rr, &[_]u8{}, null, &qbuf[nq]);
            qp[nq] = qbuf[nq][0..len];
            nq += 1;
        }
    }

    var ap = [2][]u8{ apbuf[0], apbuf[1] };
    ap[0].len = 0;
    ap[1].len = 0;

    try resMSendRc(qp[0..nq], ap[0..nq], apbuf[0..nq], rc);

    var i: usize = 0;
    while (i < nq) : (i += 1) {
        dnsParse(ap[i], ctx, dnsParseCallback) catch {};
    }

    if (addrs.items.len != 0) return;
    if (ap[0].len < 4 or (ap[0][3] & 15) == 2) return error.TemporaryNameServerFailure;
    if ((ap[0][3] & 15) == 0) return error.UnknownHostName;
    if ((ap[0][3] & 15) == 3) return;
    return error.NameServerFailure;
}

const ResolvConf = struct {
    attempts: u32,
    ndots: u32,
    timeout: u32,
    search: std.ArrayList(u8),
    ns: std.ArrayList(LookupAddr),

    fn deinit(rc: *ResolvConf) void {
        rc.ns.deinit();
        rc.search.deinit();
        rc.* = undefined;
    }
};

/// Ignores lines longer than 512 bytes.
/// TODO: https://github.com/ziglang/zig/issues/2765 and https://github.com/ziglang/zig/issues/2761
fn getResolvConf(allocator: mem.Allocator, rc: *ResolvConf) !void {
    rc.* = ResolvConf{
        .ns = std.ArrayList(LookupAddr).init(allocator),
        .search = std.ArrayList(u8).init(allocator),
        .ndots = 1,
        .timeout = 5,
        .attempts = 2,
    };
    errdefer rc.deinit();

    const file = fs.openFileAbsoluteZ("/etc/resolv.conf", .{}) catch |err| switch (err) {
        error.FileNotFound,
        error.NotDir,
        error.AccessDenied,
        => return linuxLookupNameFromNumericUnspec(&rc.ns, "127.0.0.1", 53),
        else => |e| return e,
    };
    defer file.close();

    var buf_reader = std.io.bufferedReader(file.reader());
    const stream = buf_reader.reader();
    var line_buf: [512]u8 = undefined;
    while (stream.readUntilDelimiterOrEof(&line_buf, '\n') catch |err| switch (err) {
        error.StreamTooLong => blk: {
            // Skip to the delimiter in the stream, to fix parsing
            try stream.skipUntilDelimiterOrEof('\n');
            // Give an empty line to the while loop, which will be skipped.
            break :blk line_buf[0..0];
        },
        else => |e| return e,
    }) |line| {
        const no_comment_line = no_comment_line: {
            var split = mem.splitScalar(u8, line, '#');
            break :no_comment_line split.first();
        };
        var line_it = mem.tokenizeAny(u8, no_comment_line, " \t");

        const token = line_it.next() orelse continue;
        if (mem.eql(u8, token, "options")) {
            while (line_it.next()) |sub_tok| {
                var colon_it = mem.splitScalar(u8, sub_tok, ':');
                const name = colon_it.first();
                const value_txt = colon_it.next() orelse continue;
                const value = std.fmt.parseInt(u8, value_txt, 10) catch |err| switch (err) {
                    // TODO https://github.com/ziglang/zig/issues/11812
                    error.Overflow => @as(u8, 255),
                    error.InvalidCharacter => continue,
                };
                if (mem.eql(u8, name, "ndots")) {
                    rc.ndots = @min(value, 15);
                } else if (mem.eql(u8, name, "attempts")) {
                    rc.attempts = @min(value, 10);
                } else if (mem.eql(u8, name, "timeout")) {
                    rc.timeout = @min(value, 60);
                }
            }
        } else if (mem.eql(u8, token, "nameserver")) {
            const ip_txt = line_it.next() orelse continue;
            try linuxLookupNameFromNumericUnspec(&rc.ns, ip_txt, 53);
        } else if (mem.eql(u8, token, "domain") or mem.eql(u8, token, "search")) {
            rc.search.items.len = 0;
            try rc.search.appendSlice(line_it.rest());
        }
    }

    if (rc.ns.items.len == 0) {
        return linuxLookupNameFromNumericUnspec(&rc.ns, "127.0.0.1", 53);
    }
}

fn linuxLookupNameFromNumericUnspec(
    addrs: *std.ArrayList(LookupAddr),
    name: []const u8,
    port: u16,
) !void {
    const addr = try Address.resolveIp(name, port);
    (try addrs.addOne()).* = LookupAddr{ .addr = addr };
}

fn resMSendRc(
    queries: []const []const u8,
    answers: [][]u8,
    answer_bufs: []const []u8,
    rc: ResolvConf,
) !void {
    const timeout = 1000 * rc.timeout;
    const attempts = rc.attempts;

    var sl: os.socklen_t = @sizeOf(os.sockaddr.in);
    var family: os.sa_family_t = os.AF.INET;

    var ns_list = std.ArrayList(Address).init(rc.ns.allocator);
    defer ns_list.deinit();

    try ns_list.resize(rc.ns.items.len);
    const ns = ns_list.items;

    for (rc.ns.items, 0..) |iplit, i| {
        ns[i] = iplit.addr;
        assert(ns[i].getPort() == 53);
        if (iplit.addr.any.family != os.AF.INET) {
            family = os.AF.INET6;
        }
    }

    const flags = os.SOCK.DGRAM | os.SOCK.CLOEXEC | os.SOCK.NONBLOCK;
    const fd = os.socket(family, flags, 0) catch |err| switch (err) {
        error.AddressFamilyNotSupported => blk: {
            // Handle case where system lacks IPv6 support
            if (family == os.AF.INET6) {
                family = os.AF.INET;
                break :blk try os.socket(os.AF.INET, flags, 0);
            }
            return err;
        },
        else => |e| return e,
    };
    defer os.closeSocket(fd);

    // Past this point, there are no errors. Each individual query will
    // yield either no reply (indicated by zero length) or an answer
    // packet which is up to the caller to interpret.

    // Convert any IPv4 addresses in a mixed environment to v4-mapped
    if (family == os.AF.INET6) {
        try os.setsockopt(
            fd,
            os.SOL.IPV6,
            os.linux.IPV6.V6ONLY,
            &mem.toBytes(@as(c_int, 0)),
        );
        for (0..ns.len) |i| {
            if (ns[i].any.family != os.AF.INET) continue;
            mem.writeIntNative(u32, ns[i].in6.sa.addr[12..], ns[i].in.sa.addr);
            ns[i].in6.sa.addr[0..12].* = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff".*;
            ns[i].any.family = os.AF.INET6;
            ns[i].in6.sa.flowinfo = 0;
            ns[i].in6.sa.scope_id = 0;
        }
        sl = @sizeOf(os.sockaddr.in6);
    }

    // Get local address and open/bind a socket
    var sa: Address = undefined;
    @memset(@as([*]u8, @ptrCast(&sa))[0..@sizeOf(Address)], 0);
    sa.any.family = family;
    try os.bind(fd, &sa.any, sl);

    var pfd = [1]os.pollfd{os.pollfd{
        .fd = fd,
        .events = os.POLL.IN,
        .revents = undefined,
    }};
    const retry_interval = timeout / attempts;
    var next: u32 = 0;
    var t2: u64 = @as(u64, @bitCast(std.time.milliTimestamp()));
    var t0 = t2;
    var t1 = t2 - retry_interval;

    var servfail_retry: usize = undefined;

    outer: while (t2 - t0 < timeout) : (t2 = @as(u64, @bitCast(std.time.milliTimestamp()))) {
        if (t2 - t1 >= retry_interval) {
            // Query all configured nameservers in parallel
            var i: usize = 0;
            while (i < queries.len) : (i += 1) {
                if (answers[i].len == 0) {
                    var j: usize = 0;
                    while (j < ns.len) : (j += 1) {
                        if (std.io.is_async) {
                            _ = std.event.Loop.instance.?.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
                        } else {
                            _ = os.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
                        }
                    }
                }
            }
            t1 = t2;
            servfail_retry = 2 * queries.len;
        }

        // Wait for a response, or until time to retry
        const clamped_timeout = @min(@as(u31, std.math.maxInt(u31)), t1 + retry_interval - t2);
        const nevents = os.poll(&pfd, clamped_timeout) catch 0;
        if (nevents == 0) continue;

        while (true) {
            var sl_copy = sl;
            const rlen = if (std.io.is_async)
                std.event.Loop.instance.?.recvfrom(fd, answer_bufs[next], 0, &sa.any, &sl_copy) catch break
            else
                os.recvfrom(fd, answer_bufs[next], 0, &sa.any, &sl_copy) catch break;

            // Ignore non-identifiable packets
            if (rlen < 4) continue;

            // Ignore replies from addresses we didn't send to
            var j: usize = 0;
            while (j < ns.len and !ns[j].eql(sa)) : (j += 1) {}
            if (j == ns.len) continue;

            // Find which query this answer goes with, if any
            var i: usize = next;
            while (i < queries.len and (answer_bufs[next][0] != queries[i][0] or
                answer_bufs[next][1] != queries[i][1])) : (i += 1)
            {}

            if (i == queries.len) continue;
            if (answers[i].len != 0) continue;

            // Only accept positive or negative responses;
            // retry immediately on server failure, and ignore
            // all other codes such as refusal.
            switch (answer_bufs[next][3] & 15) {
                0, 3 => {},
                2 => if (servfail_retry != 0) {
                    servfail_retry -= 1;
                    if (std.io.is_async) {
                        _ = std.event.Loop.instance.?.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
                    } else {
                        _ = os.sendto(fd, queries[i], os.MSG.NOSIGNAL, &ns[j].any, sl) catch undefined;
                    }
                },
                else => continue,
            }

            // Store answer in the right slot, or update next
            // available temp slot if it's already in place.
            answers[i].len = rlen;
            if (i == next) {
                while (next < queries.len and answers[next].len != 0) : (next += 1) {}
            } else {
                @memcpy(answer_bufs[i][0..rlen], answer_bufs[next][0..rlen]);
            }

            if (next == queries.len) break :outer;
        }
    }
}

fn dnsParse(
    r: []const u8,
    ctx: anytype,
    comptime callback: anytype,
) !void {
    // This implementation is ported from musl libc.
    // A more idiomatic "ziggy" implementation would be welcome.
    if (r.len < 12) return error.InvalidDnsPacket;
    if ((r[3] & 15) != 0) return;
    var p = r.ptr + 12;
    var qdcount = r[4] * @as(usize, 256) + r[5];
    var ancount = r[6] * @as(usize, 256) + r[7];
    if (qdcount + ancount > 64) return error.InvalidDnsPacket;
    while (qdcount != 0) {
        qdcount -= 1;
        while (@intFromPtr(p) - @intFromPtr(r.ptr) < r.len and p[0] -% 1 < 127) p += 1;
        if (p[0] > 193 or (p[0] == 193 and p[1] > 254) or @intFromPtr(p) > @intFromPtr(r.ptr) + r.len - 6)
            return error.InvalidDnsPacket;
        p += @as(usize, 5) + @intFromBool(p[0] != 0);
    }
    while (ancount != 0) {
        ancount -= 1;
        while (@intFromPtr(p) - @intFromPtr(r.ptr) < r.len and p[0] -% 1 < 127) p += 1;
        if (p[0] > 193 or (p[0] == 193 and p[1] > 254) or @intFromPtr(p) > @intFromPtr(r.ptr) + r.len - 6)
            return error.InvalidDnsPacket;
        p += @as(usize, 1) + @intFromBool(p[0] != 0);
        const len = p[8] * @as(usize, 256) + p[9];
        if (@intFromPtr(p) + len > @intFromPtr(r.ptr) + r.len) return error.InvalidDnsPacket;
        try callback(ctx, p[1], p[10..][0..len], r);
        p += 10 + len;
    }
}

fn dnsParseCallback(ctx: dpc_ctx, rr: u8, data: []const u8, packet: []const u8) !void {
    switch (rr) {
        os.RR.A => {
            if (data.len != 4) return error.InvalidDnsARecord;
            const new_addr = try ctx.addrs.addOne();
            new_addr.* = LookupAddr{
                .addr = Address.initIp4(data[0..4].*, ctx.port),
            };
        },
        os.RR.AAAA => {
            if (data.len != 16) return error.InvalidDnsAAAARecord;
            const new_addr = try ctx.addrs.addOne();
            new_addr.* = LookupAddr{
                .addr = Address.initIp6(data[0..16].*, ctx.port, 0, 0),
            };
        },
        os.RR.CNAME => {
            var tmp: [256]u8 = undefined;
            // Returns len of compressed name. strlen to get canon name.
            _ = try os.dn_expand(packet, data, &tmp);
            const canon_name = mem.sliceTo(&tmp, 0);
            if (isValidHostName(canon_name)) {
                ctx.canon.items.len = 0;
                try ctx.canon.appendSlice(canon_name);
            }
        },
        else => return,
    }
}

pub const Stream = struct {
    // Underlying socket descriptor.
    // Note that on some platforms this may not be interchangeable with a
    // regular files descriptor.
    handle: os.socket_t,

    pub fn close(self: Stream) void {
        os.closeSocket(self.handle);
    }

    pub const ReadError = os.ReadError;
    pub const WriteError = os.WriteError;

    pub const Reader = io.Reader(Stream, ReadError, read);
    pub const Writer = io.Writer(Stream, WriteError, write);

    pub fn reader(self: Stream) Reader {
        return .{ .context = self };
    }

    pub fn writer(self: Stream) Writer {
        return .{ .context = self };
    }

    pub fn read(self: Stream, buffer: []u8) ReadError!usize {
        if (builtin.os.tag == .windows) {
            return os.windows.ReadFile(self.handle, buffer, null, io.default_mode);
        }

        if (std.io.is_async) {
            return std.event.Loop.instance.?.read(self.handle, buffer, false);
        } else {
            return os.read(self.handle, buffer);
        }
    }

    pub fn readv(s: Stream, iovecs: []const os.iovec) ReadError!usize {
        if (builtin.os.tag == .windows) {
            // TODO improve this to use ReadFileScatter
            if (iovecs.len == 0) return @as(usize, 0);
            const first = iovecs[0];
            return os.windows.ReadFile(s.handle, first.iov_base[0..first.iov_len], null, io.default_mode);
        }

        return os.readv(s.handle, iovecs);
    }

    /// Returns the number of bytes read. If the number read is smaller than
    /// `buffer.len`, it means the stream reached the end. Reaching the end of
    /// a stream is not an error condition.
    pub fn readAll(s: Stream, buffer: []u8) ReadError!usize {
        return readAtLeast(s, buffer, buffer.len);
    }

    /// Returns the number of bytes read, calling the underlying read function
    /// the minimal number of times until the buffer has at least `len` bytes
    /// filled. If the number read is less than `len` it means the stream
    /// reached the end. Reaching the end of the stream is not an error
    /// condition.
    pub fn readAtLeast(s: Stream, buffer: []u8, len: usize) ReadError!usize {
        assert(len <= buffer.len);
        var index: usize = 0;
        while (index < len) {
            const amt = try s.read(buffer[index..]);
            if (amt == 0) break;
            index += amt;
        }
        return index;
    }

    /// TODO in evented I/O mode, this implementation incorrectly uses the event loop's
    /// file system thread instead of non-blocking. It needs to be reworked to properly
    /// use non-blocking I/O.
    pub fn write(self: Stream, buffer: []const u8) WriteError!usize {
        if (builtin.os.tag == .windows) {
            return os.windows.WriteFile(self.handle, buffer, null, io.default_mode);
        }

        if (std.io.is_async) {
            return std.event.Loop.instance.?.write(self.handle, buffer, false);
        } else {
            return os.write(self.handle, buffer);
        }
    }

    pub fn writeAll(self: Stream, bytes: []const u8) WriteError!void {
        var index: usize = 0;
        while (index < bytes.len) {
            index += try self.write(bytes[index..]);
        }
    }

    /// See https://github.com/ziglang/zig/issues/7699
    /// See equivalent function: `std.fs.File.writev`.
    pub fn writev(self: Stream, iovecs: []const os.iovec_const) WriteError!usize {
        if (std.io.is_async) {
            // TODO improve to actually take advantage of writev syscall, if available.
            if (iovecs.len == 0) return 0;
            const first_buffer = iovecs[0].iov_base[0..iovecs[0].iov_len];
            try self.write(first_buffer);
            return first_buffer.len;
        } else {
            return os.writev(self.handle, iovecs);
        }
    }

    /// The `iovecs` parameter is mutable because this function needs to mutate the fields in
    /// order to handle partial writes from the underlying OS layer.
    /// See https://github.com/ziglang/zig/issues/7699
    /// See equivalent function: `std.fs.File.writevAll`.
    pub fn writevAll(self: Stream, iovecs: []os.iovec_const) WriteError!void {
        if (iovecs.len == 0) return;

        var i: usize = 0;
        while (true) {
            var amt = try self.writev(iovecs[i..]);
            while (amt >= iovecs[i].iov_len) {
                amt -= iovecs[i].iov_len;
                i += 1;
                if (i >= iovecs.len) return;
            }
            iovecs[i].iov_base += amt;
            iovecs[i].iov_len -= amt;
        }
    }
};

pub const StreamServer = struct {
    /// Copied from `Options` on `init`.
    kernel_backlog: u31,
    reuse_address: bool,
    reuse_port: bool,

    /// `undefined` until `listen` returns successfully.
    listen_address: Address,

    sockfd: ?os.socket_t,

    pub const Options = struct {
        /// How many connections the kernel will accept on the application's behalf.
        /// If more than this many connections pool in the kernel, clients will start
        /// seeing "Connection refused".
        kernel_backlog: u31 = 128,

        /// Enable SO.REUSEADDR on the socket.
        reuse_address: bool = false,

        /// Enable SO.REUSEPORT on the socket.
        reuse_port: bool = false,
    };

    /// After this call succeeds, resources have been acquired and must
    /// be released with `deinit`.
    pub fn init(options: Options) StreamServer {
        return StreamServer{
            .sockfd = null,
            .kernel_backlog = options.kernel_backlog,
            .reuse_address = options.reuse_address,
            .reuse_port = options.reuse_port,
            .listen_address = undefined,
        };
    }

    /// Release all resources. The `StreamServer` memory becomes `undefined`.
    pub fn deinit(self: *StreamServer) void {
        self.close();
        self.* = undefined;
    }

    pub fn listen(self: *StreamServer, address: Address) !void {
        const nonblock = if (std.io.is_async) os.SOCK.NONBLOCK else 0;
        const sock_flags = os.SOCK.STREAM | os.SOCK.CLOEXEC | nonblock;
        const proto = if (address.any.family == os.AF.UNIX) @as(u32, 0) else os.IPPROTO.TCP;

        const sockfd = try os.socket(address.any.family, sock_flags, proto);
        self.sockfd = sockfd;
        errdefer {
            os.closeSocket(sockfd);
            self.sockfd = null;
        }

        if (self.reuse_address) {
            try os.setsockopt(
                sockfd,
                os.SOL.SOCKET,
                os.SO.REUSEADDR,
                &mem.toBytes(@as(c_int, 1)),
            );
        }
        if (@hasDecl(os.SO, "REUSEPORT") and self.reuse_port) {
            try os.setsockopt(
                sockfd,
                os.SOL.SOCKET,
                os.SO.REUSEPORT,
                &mem.toBytes(@as(c_int, 1)),
            );
        }

        var socklen = address.getOsSockLen();
        try os.bind(sockfd, &address.any, socklen);
        try os.listen(sockfd, self.kernel_backlog);
        try os.getsockname(sockfd, &self.listen_address.any, &socklen);
    }

    /// Stop listening. It is still necessary to call `deinit` after stopping listening.
    /// Calling `deinit` will automatically call `close`. It is safe to call `close` when
    /// not listening.
    pub fn close(self: *StreamServer) void {
        if (self.sockfd) |fd| {
            os.closeSocket(fd);
            self.sockfd = null;
            self.listen_address = undefined;
        }
    }

    pub const AcceptError = error{
        ConnectionAborted,

        /// The per-process limit on the number of open file descriptors has been reached.
        ProcessFdQuotaExceeded,

        /// The system-wide limit on the total number of open files has been reached.
        SystemFdQuotaExceeded,

        /// Not enough free memory.  This often means that the memory allocation  is  limited
        /// by the socket buffer limits, not by the system memory.
        SystemResources,

        /// Socket is not listening for new connections.
        SocketNotListening,

        ProtocolFailure,

        /// Firewall rules forbid connection.
        BlockedByFirewall,

        FileDescriptorNotASocket,

        ConnectionResetByPeer,

        NetworkSubsystemFailed,

        OperationNotSupported,
    } || os.UnexpectedError;

    pub const Connection = struct {
        stream: Stream,
        address: Address,
    };

    /// If this function succeeds, the returned `Connection` is a caller-managed resource.
    pub fn accept(self: *StreamServer) AcceptError!Connection {
        var accepted_addr: Address = undefined;
        var adr_len: os.socklen_t = @sizeOf(Address);
        const accept_result = blk: {
            if (std.io.is_async) {
                const loop = std.event.Loop.instance orelse return error.UnexpectedError;
                break :blk loop.accept(self.sockfd.?, &accepted_addr.any, &adr_len, os.SOCK.CLOEXEC);
            } else {
                break :blk os.accept(self.sockfd.?, &accepted_addr.any, &adr_len, os.SOCK.CLOEXEC);
            }
        };

        if (accept_result) |fd| {
            return Connection{
                .stream = Stream{ .handle = fd },
                .address = accepted_addr,
            };
        } else |err| switch (err) {
            error.WouldBlock => unreachable,
            else => |e| return e,
        }
    }
};

test {
    _ = @import("net/test.zig");
}