zig/lib/std / rand.zig

The engines provided here should be initialized from an external source. For a thread-local cryptographically secure pseudo random number generator, use std.crypto.random. Be sure to use a CSPRNG when required, otherwise using a normal PRNG will be faster and use substantially less stack space. TODO(tiehuis): Benchmark these against other reference implementations.

//! The engines provided here should be initialized from an external source.
//! For a thread-local cryptographically secure pseudo random number generator,
//! use `std.crypto.random`.
//! Be sure to use a CSPRNG when required, otherwise using a normal PRNG will
//! be faster and use substantially less stack space.
//!
//! TODO(tiehuis): Benchmark these against other reference implementations.

DefaultPrng

Fast unbiased random numbers.


const std = @import("std.zig");
const builtin = @import("builtin");
const assert = std.debug.assert;
const mem = std.mem;
const math = std.math;
const maxInt = std.math.maxInt;

DefaultCsprng

Cryptographically secure random numbers.


/// Fast unbiased random numbers.
pub const DefaultPrng = Xoshiro256;

Ascon

rand/Ascon.zig

Read random bytes into the specified buffer until full.


/// Cryptographically secure random numbers.
pub const DefaultCsprng = ChaCha;

ChaCha

rand/ChaCha.zig

Returns a random value from an enum, evenly distributed. Note that this will not yield consistent results across all targets due to dependence on the representation of usize as an index. See enumValueWithIndex for further commentary.


pub const Ascon = @import("rand/Ascon.zig");
pub const ChaCha = @import("rand/ChaCha.zig");

Isaac64

rand/Isaac64.zig

Returns a random value from an enum, evenly distributed. An index into an array of all named values is generated using the specified Index type to determine the return value. This allows for results to be independent of usize representation. Prefer enumValue if this isn't important. See uintLessThan, which this function uses in most cases, for commentary on the runtime of this function.


pub const Isaac64 = @import("rand/Isaac64.zig");

Pcg

rand/Pcg.zig

Returns a random int i such that minInt(T) <= i <= maxInt(T). i is evenly distributed.

pub const Pcg = @import("rand/Pcg.zig");

Xoroshiro128

rand/Xoroshiro128.zig

Constant-time implementation off uintLessThan. The results of this function may be biased.

pub const Xoroshiro128 = @import("rand/Xoroshiro128.zig");

Xoshiro256

rand/Xoshiro256.zig

Returns an evenly distributed random unsigned integer 0 <= i < less_than. This function assumes that the underlying fillFn produces evenly distributed values. Within this assumption, the runtime of this function is exponentially distributed. If fillFn were backed by a true random generator, the runtime of this function would technically be unbounded. However, if fillFn is backed by any evenly distributed pseudo random number generator, this function is guaranteed to return. If you need deterministic runtime bounds, use uintLessThanBiased.

pub const Xoshiro256 = @import("rand/Xoshiro256.zig");

Sfc64

rand/Sfc64.zig

Constant-time implementation off uintAtMost. The results of this function may be biased.

pub const Sfc64 = @import("rand/Sfc64.zig");

RomuTrio

rand/RomuTrio.zig

Returns an evenly distributed random unsigned integer 0 <= i <= at_most. See uintLessThan, which this function uses in most cases, for commentary on the runtime of this function.

pub const RomuTrio = @import("rand/RomuTrio.zig");

ziggurat

rand/ziggurat.zig

Constant-time implementation off intRangeLessThan. The results of this function may be biased.

pub const ziggurat = @import("rand/ziggurat.zig");

Random

Returns an evenly distributed random integer at_least <= i < less_than. See uintLessThan, which this function uses in most cases, for commentary on the runtime of this function.


pub const Random = struct {
    ptr: *anyopaque,
    fillFn: *const fn (ptr: *anyopaque, buf: []u8) void,

init()

Constant-time implementation off intRangeAtMostBiased. The results of this function may be biased.


    pub fn init(pointer: anytype, comptime fillFn: fn (ptr: @TypeOf(pointer), buf: []u8) void) Random {
        const Ptr = @TypeOf(pointer);
        assert(@typeInfo(Ptr) == .Pointer); // Must be a pointer
        assert(@typeInfo(Ptr).Pointer.size == .One); // Must be a single-item pointer
        assert(@typeInfo(@typeInfo(Ptr).Pointer.child) == .Struct); // Must point to a struct
        const gen = struct {
            fn fill(ptr: *anyopaque, buf: []u8) void {
                const self: Ptr = @ptrCast(@alignCast(ptr));
                fillFn(self, buf);
            }
        };

bytes()

Returns an evenly distributed random integer at_least <= i <= at_most. See uintLessThan, which this function uses in most cases, for commentary on the runtime of this function.


        return .{
            .ptr = pointer,
            .fillFn = gen.fill,
        };
    }

boolean()

Return a floating point value evenly distributed in the range [0, 1).


    /// Read random bytes into the specified buffer until full.
    pub fn bytes(r: Random, buf: []u8) void {
        r.fillFn(r.ptr, buf);
    }

enumValue()

Return a floating point value normally distributed with mean = 0, stddev = 1. To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.


    pub fn boolean(r: Random) bool {
        return r.int(u1) != 0;
    }

enumValueWithIndex()

Return an exponentially distributed float with a rate parameter of 1. To use a different rate parameter, use: floatExp(...) / desiredRate.


    /// Returns a random value from an enum, evenly distributed.
    ///
    /// Note that this will not yield consistent results across all targets
    /// due to dependence on the representation of `usize` as an index.
    /// See `enumValueWithIndex` for further commentary.
    pub inline fn enumValue(r: Random, comptime EnumType: type) EnumType {
        return r.enumValueWithIndex(EnumType, usize);
    }

int()

Shuffle a slice into a random order. Note that this will not yield consistent results across all targets due to dependence on the representation of usize as an index. See shuffleWithIndex for further commentary.


    /// Returns a random value from an enum, evenly distributed.
    ///
    /// An index into an array of all named values is generated using the
    /// specified `Index` type to determine the return value.
    /// This allows for results to be independent of `usize` representation.
    ///
    /// Prefer `enumValue` if this isn't important.
    ///
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn enumValueWithIndex(r: Random, comptime EnumType: type, comptime Index: type) EnumType {
        comptime assert(@typeInfo(EnumType) == .Enum);

uintLessThanBiased()

Shuffle a slice into a random order, using an index of a specified type to maintain distribution across targets. Asserts the index type can represent buf.len. Indexes into the slice are generated using the specified Index type, which determines distribution properties. This allows for results to be independent of usize representation. Prefer shuffle if this isn't important. See intRangeLessThan, which this function uses, for commentary on the runtime of this function.


        // We won't use int -> enum casting because enum elements can have
        //  arbitrary values.  Instead we'll randomly pick one of the type's values.
        const values = comptime std.enums.values(EnumType);
        comptime assert(values.len > 0); // can't return anything
        comptime assert(maxInt(Index) >= values.len - 1); // can't access all values
        comptime if (values.len == 1) return values[0];

uintLessThan()

Randomly selects an index into proportions, where the likelihood of each index is weighted by that proportion. It is more likely for the index of the last proportion to be returned than the index of the first proportion in the slice, and vice versa. This is useful for selecting an item from a slice where weights are not equal. T must be a numeric type capable of holding the sum of proportions.


        const index = if (comptime values.len - 1 == maxInt(Index))
            r.int(Index)
        else
            r.uintLessThan(Index, values.len);

uintAtMostBiased()

Returns the smallest of Index and usize.


        const MinInt = MinArrayIndex(Index);
        return values[@as(MinInt, @intCast(index))];
    }

uintAtMost()

Convert a random integer 0 <= random_int <= maxValue(T), into an integer 0 <= result < less_than. This function introduces a minor bias.


    /// Returns a random int `i` such that `minInt(T) <= i <= maxInt(T)`.
    /// `i` is evenly distributed.
    pub fn int(r: Random, comptime T: type) T {
        const bits = @typeInfo(T).Int.bits;
        const UnsignedT = std.meta.Int(.unsigned, bits);
        const ByteAlignedT = std.meta.Int(.unsigned, @divTrunc(bits + 7, 8) * 8);

intRangeLessThanBiased()


        var rand_bytes: [@sizeOf(ByteAlignedT)]u8 = undefined;
        r.bytes(rand_bytes[0..]);

intRangeLessThan()


        // use LE instead of native endian for better portability maybe?
        // TODO: endian portability is pointless if the underlying prng isn't endian portable.
        // TODO: document the endian portability of this library.
        const byte_aligned_result = mem.readIntSliceLittle(ByteAlignedT, &rand_bytes);
        const unsigned_result = @as(UnsignedT, @truncate(byte_aligned_result));
        return @as(T, @bitCast(unsigned_result));
    }

intRangeAtMostBiased()


    /// Constant-time implementation off `uintLessThan`.
    /// The results of this function may be biased.
    pub fn uintLessThanBiased(r: Random, comptime T: type, less_than: T) T {
        comptime assert(@typeInfo(T).Int.signedness == .unsigned);
        const bits = @typeInfo(T).Int.bits;
        comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
        assert(0 < less_than);
        if (bits <= 32) {
            return @as(T, @intCast(limitRangeBiased(u32, r.int(u32), less_than)));
        } else {
            return @as(T, @intCast(limitRangeBiased(u64, r.int(u64), less_than)));
        }
    }

intRangeAtMost()


    /// Returns an evenly distributed random unsigned integer `0 <= i < less_than`.
    /// This function assumes that the underlying `fillFn` produces evenly distributed values.
    /// Within this assumption, the runtime of this function is exponentially distributed.
    /// If `fillFn` were backed by a true random generator,
    /// the runtime of this function would technically be unbounded.
    /// However, if `fillFn` is backed by any evenly distributed pseudo random number generator,
    /// this function is guaranteed to return.
    /// If you need deterministic runtime bounds, use `uintLessThanBiased`.
    pub fn uintLessThan(r: Random, comptime T: type, less_than: T) T {
        comptime assert(@typeInfo(T).Int.signedness == .unsigned);
        const bits = @typeInfo(T).Int.bits;
        comptime assert(bits <= 64); // TODO: workaround: LLVM ERROR: Unsupported library call operation!
        assert(0 < less_than);
        // Small is typically u32
        const small_bits = @divTrunc(bits + 31, 32) * 32;
        const Small = std.meta.Int(.unsigned, small_bits);
        // Large is typically u64
        const Large = std.meta.Int(.unsigned, small_bits * 2);

float()


        // adapted from:
        //   http://www.pcg-random.org/posts/bounded-rands.html
        //   "Lemire's (with an extra tweak from me)"
        var x: Small = r.int(Small);
        var m: Large = @as(Large, x) * @as(Large, less_than);
        var l: Small = @as(Small, @truncate(m));
        if (l < less_than) {
            var t: Small = -%less_than;

floatNorm()


            if (t >= less_than) {
                t -= less_than;
                if (t >= less_than) {
                    t %= less_than;
                }
            }
            while (l < t) {
                x = r.int(Small);
                m = @as(Large, x) * @as(Large, less_than);
                l = @as(Small, @truncate(m));
            }
        }
        return @as(T, @intCast(m >> small_bits));
    }

floatExp()


    /// Constant-time implementation off `uintAtMost`.
    /// The results of this function may be biased.
    pub fn uintAtMostBiased(r: Random, comptime T: type, at_most: T) T {
        assert(@typeInfo(T).Int.signedness == .unsigned);
        if (at_most == maxInt(T)) {
            // have the full range
            return r.int(T);
        }
        return r.uintLessThanBiased(T, at_most + 1);
    }

shuffle()


    /// Returns an evenly distributed random unsigned integer `0 <= i <= at_most`.
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn uintAtMost(r: Random, comptime T: type, at_most: T) T {
        assert(@typeInfo(T).Int.signedness == .unsigned);
        if (at_most == maxInt(T)) {
            // have the full range
            return r.int(T);
        }
        return r.uintLessThan(T, at_most + 1);
    }

shuffleWithIndex()


    /// Constant-time implementation off `intRangeLessThan`.
    /// The results of this function may be biased.
    pub fn intRangeLessThanBiased(r: Random, comptime T: type, at_least: T, less_than: T) T {
        assert(at_least < less_than);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @as(UnsignedT, @bitCast(at_least));
            const hi = @as(UnsignedT, @bitCast(less_than));
            const result = lo +% r.uintLessThanBiased(UnsignedT, hi -% lo);
            return @as(T, @bitCast(result));
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintLessThanBiased(T, less_than - at_least);
        }
    }

weightedIndex()


    /// Returns an evenly distributed random integer `at_least <= i < less_than`.
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn intRangeLessThan(r: Random, comptime T: type, at_least: T, less_than: T) T {
        assert(at_least < less_than);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @as(UnsignedT, @bitCast(at_least));
            const hi = @as(UnsignedT, @bitCast(less_than));
            const result = lo +% r.uintLessThan(UnsignedT, hi -% lo);
            return @as(T, @bitCast(result));
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintLessThan(T, less_than - at_least);
        }
    }

limitRangeBiased()


    /// Constant-time implementation off `intRangeAtMostBiased`.
    /// The results of this function may be biased.
    pub fn intRangeAtMostBiased(r: Random, comptime T: type, at_least: T, at_most: T) T {
        assert(at_least <= at_most);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @as(UnsignedT, @bitCast(at_least));
            const hi = @as(UnsignedT, @bitCast(at_most));
            const result = lo +% r.uintAtMostBiased(UnsignedT, hi -% lo);
            return @as(T, @bitCast(result));
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintAtMostBiased(T, at_most - at_least);
        }
    }

SplitMix64


    /// Returns an evenly distributed random integer `at_least <= i <= at_most`.
    /// See `uintLessThan`, which this function uses in most cases,
    /// for commentary on the runtime of this function.
    pub fn intRangeAtMost(r: Random, comptime T: type, at_least: T, at_most: T) T {
        assert(at_least <= at_most);
        const info = @typeInfo(T).Int;
        if (info.signedness == .signed) {
            // Two's complement makes this math pretty easy.
            const UnsignedT = std.meta.Int(.unsigned, info.bits);
            const lo = @as(UnsignedT, @bitCast(at_least));
            const hi = @as(UnsignedT, @bitCast(at_most));
            const result = lo +% r.uintAtMost(UnsignedT, hi -% lo);
            return @as(T, @bitCast(result));
        } else {
            // The signed implementation would work fine, but we can use stricter arithmetic operators here.
            return at_least + r.uintAtMost(T, at_most - at_least);
        }
    }

init()


    /// Return a floating point value evenly distributed in the range [0, 1).
    pub fn float(r: Random, comptime T: type) T {
        // Generate a uniformly random value for the mantissa.
        // Then generate an exponentially biased random value for the exponent.
        // This covers every possible value in the range.
        switch (T) {
            f32 => {
                // Use 23 random bits for the mantissa, and the rest for the exponent.
                // If all 41 bits are zero, generate additional random bits, until a
                // set bit is found, or 126 bits have been generated.
                const rand = r.int(u64);
                var rand_lz = @clz(rand);
                if (rand_lz >= 41) {
                    // TODO: when #5177 or #489 is implemented,
                    // tell the compiler it is unlikely (1/2^41) to reach this point.
                    // (Same for the if branch and the f64 calculations below.)
                    rand_lz = 41 + @clz(r.int(u64));
                    if (rand_lz == 41 + 64) {
                        // It is astronomically unlikely to reach this point.
                        rand_lz += @clz(r.int(u32) | 0x7FF);
                    }
                }
                const mantissa = @as(u23, @truncate(rand));
                const exponent = @as(u32, 126 - rand_lz) << 23;
                return @as(f32, @bitCast(exponent | mantissa));
            },
            f64 => {
                // Use 52 random bits for the mantissa, and the rest for the exponent.
                // If all 12 bits are zero, generate additional random bits, until a
                // set bit is found, or 1022 bits have been generated.
                const rand = r.int(u64);
                var rand_lz: u64 = @clz(rand);
                if (rand_lz >= 12) {
                    rand_lz = 12;
                    while (true) {
                        // It is astronomically unlikely for this loop to execute more than once.
                        const addl_rand_lz = @clz(r.int(u64));
                        rand_lz += addl_rand_lz;
                        if (addl_rand_lz != 64) {
                            break;
                        }
                        if (rand_lz >= 1022) {
                            rand_lz = 1022;
                            break;
                        }
                    }
                }
                const mantissa = rand & 0xFFFFFFFFFFFFF;
                const exponent = (1022 - rand_lz) << 52;
                return @as(f64, @bitCast(exponent | mantissa));
            },
            else => @compileError("unknown floating point type"),
        }
    }

next()


    /// Return a floating point value normally distributed with mean = 0, stddev = 1.
    ///
    /// To use different parameters, use: floatNorm(...) * desiredStddev + desiredMean.
    pub fn floatNorm(r: Random, comptime T: type) T {
        const value = ziggurat.next_f64(r, ziggurat.NormDist);
        switch (T) {
            f32 => return @as(f32, @floatCast(value)),
            f64 => return value,
            else => @compileError("unknown floating point type"),
        }
    }

    /// Return an exponentially distributed float with a rate parameter of 1.
    ///
    /// To use a different rate parameter, use: floatExp(...) / desiredRate.
    pub fn floatExp(r: Random, comptime T: type) T {
        const value = ziggurat.next_f64(r, ziggurat.ExpDist);
        switch (T) {
            f32 => return @as(f32, @floatCast(value)),
            f64 => return value,
            else => @compileError("unknown floating point type"),
        }
    }

    /// Shuffle a slice into a random order.
    ///
    /// Note that this will not yield consistent results across all targets
    /// due to dependence on the representation of `usize` as an index.
    /// See `shuffleWithIndex` for further commentary.
    pub inline fn shuffle(r: Random, comptime T: type, buf: []T) void {
        r.shuffleWithIndex(T, buf, usize);
    }

    /// Shuffle a slice into a random order, using an index of a
    /// specified type to maintain distribution across targets.
    /// Asserts the index type can represent `buf.len`.
    ///
    /// Indexes into the slice are generated using the specified `Index`
    /// type, which determines distribution properties. This allows for
    /// results to be independent of `usize` representation.
    ///
    /// Prefer `shuffle` if this isn't important.
    ///
    /// See `intRangeLessThan`, which this function uses,
    /// for commentary on the runtime of this function.
    pub fn shuffleWithIndex(r: Random, comptime T: type, buf: []T, comptime Index: type) void {
        const MinInt = MinArrayIndex(Index);
        if (buf.len < 2) {
            return;
        }

        // `i <= j < max <= maxInt(MinInt)`
        const max = @as(MinInt, @intCast(buf.len));
        var i: MinInt = 0;
        while (i < max - 1) : (i += 1) {
            const j = @as(MinInt, @intCast(r.intRangeLessThan(Index, i, max)));
            mem.swap(T, &buf[i], &buf[j]);
        }
    }

    /// Randomly selects an index into `proportions`, where the likelihood of each
    /// index is weighted by that proportion.
    /// It is more likely for the index of the last proportion to be returned
    /// than the index of the first proportion in the slice, and vice versa.
    ///
    /// This is useful for selecting an item from a slice where weights are not equal.
    /// `T` must be a numeric type capable of holding the sum of `proportions`.
    pub fn weightedIndex(r: std.rand.Random, comptime T: type, proportions: []const T) usize {
        // This implementation works by summing the proportions and picking a random
        //  point in [0, sum).  We then loop over the proportions, accumulating
        //  until our accumulator is greater than the random point.

        var sum: T = 0;
        for (proportions) |v| {
            sum += v;
        }

        const point = if (comptime std.meta.trait.isSignedInt(T))
            r.intRangeLessThan(T, 0, sum)
        else if (comptime std.meta.trait.isUnsignedInt(T))
            r.uintLessThan(T, sum)
        else if (comptime std.meta.trait.isFloat(T))
            // take care that imprecision doesn't lead to a value slightly greater than sum
            @min(r.float(T) * sum, sum - std.math.floatEps(T))
        else
            @compileError("weightedIndex does not support proportions of type " ++ @typeName(T));

        std.debug.assert(point < sum);

        var accumulator: T = 0;
        for (proportions, 0..) |p, index| {
            accumulator += p;
            if (point < accumulator) return index;
        }

        unreachable;
    }

    /// Returns the smallest of `Index` and `usize`.
    fn MinArrayIndex(comptime Index: type) type {
        const index_info = @typeInfo(Index).Int;
        assert(index_info.signedness == .unsigned);
        return if (index_info.bits >= @typeInfo(usize).Int.bits) usize else Index;
    }
};

/// Convert a random integer 0 <= random_int <= maxValue(T),
/// into an integer 0 <= result < less_than.
/// This function introduces a minor bias.
pub fn limitRangeBiased(comptime T: type, random_int: T, less_than: T) T {
    comptime assert(@typeInfo(T).Int.signedness == .unsigned);
    const bits = @typeInfo(T).Int.bits;
    const T2 = std.meta.Int(.unsigned, bits * 2);

    // adapted from:
    //   http://www.pcg-random.org/posts/bounded-rands.html
    //   "Integer Multiplication (Biased)"
    var m: T2 = @as(T2, random_int) * @as(T2, less_than);
    return @as(T, @intCast(m >> bits));
}

// Generator to extend 64-bit seed values into longer sequences.
//
// The number of cycles is thus limited to 64-bits regardless of the engine, but this
// is still plenty for practical purposes.
pub const SplitMix64 = struct {
    s: u64,

    pub fn init(seed: u64) SplitMix64 {
        return SplitMix64{ .s = seed };
    }

    pub fn next(self: *SplitMix64) u64 {
        self.s +%= 0x9e3779b97f4a7c15;

        var z = self.s;
        z = (z ^ (z >> 30)) *% 0xbf58476d1ce4e5b9;
        z = (z ^ (z >> 27)) *% 0x94d049bb133111eb;
        return z ^ (z >> 31);
    }
};

test {
    std.testing.refAllDecls(@This());
    _ = @import("rand/test.zig");
}