|
const builtin = @import("builtin"); const std = @import("std"); const mem = std.mem; const fs = std.fs; const assert = std.debug.assert; const panic = std.debug.panic; const ArrayList = std.ArrayList; const StringHashMap = std.StringHashMap; const Sha256 = std.crypto.hash.sha2.Sha256; const Allocator = mem.Allocator; const Step = std.Build.Step; const LazyPath = std.Build.LazyPath; const PkgConfigPkg = std.Build.PkgConfigPkg; const PkgConfigError = std.Build.PkgConfigError; const RunError = std.Build.RunError; const Module = std.Build.Module; const InstallDir = std.Build.InstallDir; const GeneratedFile = std.Build.GeneratedFile; const Compile = @This(); |
base_id:Set via options; intended to be read-only after that. |
pub const base_id: Step.Id = .compile; |
ExpectedCompileErrorsThis step is used to create an include tree that dependent modules can add to their include search paths. Installed headers are copied to this step. This step is created the first time a module links with this artifact and is not created otherwise. |
step: Step, root_module: Module, |
EntryBehavior of automatic detection of include directories when compiling .rc files. any: Use MSVC if available, fall back to MinGW. msvc: Use MSVC include paths (must be present on the system). gnu: Use MinGW include paths (distributed with Zig). none: Do not use any autodetected include paths. |
|
defineCMacro()(Windows) .manifest file to embed in the compilation Set via options; intended to be read-only after that. |
name: []const u8, linker_script: ?LazyPath = null, version_script: ?LazyPath = null, out_filename: []const u8, out_lib_filename: []const u8, linkage: ?std.builtin.LinkMode = null, version: ?std.SemanticVersion, kind: Kind, major_only_filename: ?[]const u8, name_only_filename: ?[]const u8, formatted_panics: ?bool = null, // keep in sync with src/link.zig:CompressDebugSections compress_debug_sections: enum { none, zlib, zstd } = .none, verbose_link: bool, verbose_cc: bool, bundle_compiler_rt: ?bool = null, rdynamic: bool, import_memory: bool = false, export_memory: bool = false, /// For WebAssembly targets, this will allow for undefined symbols to /// be imported from the host environment. import_symbols: bool = false, import_table: bool = false, export_table: bool = false, initial_memory: ?u64 = null, max_memory: ?u64 = null, shared_memory: bool = false, global_base: ?u64 = null, /// Set via options; intended to be read-only after that. zig_lib_dir: ?LazyPath, exec_cmd_args: ?[]const ?[]const u8, filters: []const []const u8, test_runner: ?LazyPath, test_server_mode: bool, wasi_exec_model: ?std.builtin.WasiExecModel = null, |
KindBase address for an executable image. |
installed_headers: ArrayList(HeaderInstallation), |
HeaderInstallationOn ELF targets, this will emit a link section called ".note.gnu.build-id" which can be used to coordinate a stripped binary with its debug symbols. As an example, the bloaty project refuses to work unless its inputs have build ids, in order to prevent accidental mismatches. The default is to not include this section because it slows down linking. |
/// This step is used to create an include tree that dependent modules can add to their include /// search paths. Installed headers are copied to this step. /// This step is created the first time a module links with this artifact and is not /// created otherwise. installed_headers_include_tree: ?*Step.WriteFile = null, |
FileCreate a .eh_frame_hdr section and a PT_GNU_EH_FRAME segment in the ELF file. |
// keep in sync with src/Compilation.zig:RcIncludes /// Behavior of automatic detection of include directories when compiling .rc files. /// any: Use MSVC if available, fall back to MinGW. /// msvc: Use MSVC include paths (must be present on the system). /// gnu: Use MinGW include paths (distributed with Zig). /// none: Do not use any autodetected include paths. rc_includes: enum { any, msvc, gnu, none } = .any, |
dupe()Place every function in its own section so that unused ones may be safely garbage-collected during the linking phase. |
/// (Windows) .manifest file to embed in the compilation /// Set via options; intended to be read-only after that. win32_manifest: ?LazyPath = null, |
DirectoryPlace every data in its own section so that unused ones may be safely garbage-collected during the linking phase. |
installed_path: ?[]const u8, |
OptionsRemove functions and data that are unreachable by the entry point or exported symbols. |
/// Base address for an executable image. image_base: ?u64 = null, |
dupe()(Windows) Whether or not to enable ASLR. Maps to the /DYNAMICBASE[:NO] linker argument. |
libc_file: ?LazyPath = null, |
dupe()Allow version scripts to refer to undefined symbols. |
each_lib_rpath: ?bool = null, /// On ELF targets, this will emit a link section called ".note.gnu.build-id" /// which can be used to coordinate a stripped binary with its debug symbols. /// As an example, the bloaty project refuses to work unless its inputs have /// build ids, in order to prevent accidental mismatches. /// The default is to not include this section because it slows down linking. build_id: ?std.zig.BuildId = null, |
getSource()Permit read-only relocations in read-only segments. Disallowed by default. |
/// Create a .eh_frame_hdr section and a PT_GNU_EH_FRAME segment in the ELF /// file. link_eh_frame_hdr: bool = false, link_emit_relocs: bool = false, |
dupe()Force all relocations to be read-only after processing. |
/// Place every function in its own section so that unused ones may be /// safely garbage-collected during the linking phase. link_function_sections: bool = false, |
create()Allow relocations to be lazily processed after load. |
/// Place every data in its own section so that unused ones may be /// safely garbage-collected during the linking phase. link_data_sections: bool = false, |
installHeader()Common page size |
/// Remove functions and data that are unreachable by the entry point or /// exported symbols. link_gc_sections: ?bool = null, |
installHeadersDirectory()Maximum page size |
/// (Windows) Whether or not to enable ASLR. Maps to the /DYNAMICBASE[:NO] linker argument. linker_dynamicbase: bool = true, |
installConfigHeader()(Darwin) Install name for the dylib |
linker_allow_shlib_undefined: ?bool = null, |
installLibraryHeaders()(Darwin) Path to entitlements file |
/// Allow version scripts to refer to undefined symbols. linker_allow_undefined_version: ?bool = null, |
getEmittedIncludeTree()(Darwin) Size of the pagezero segment. |
// Enable (or disable) the new DT_RUNPATH tag in the dynamic section. linker_enable_new_dtags: ?bool = null, |
addObjCopy()(Darwin) Set size of the padding between the end of load commands
and start of |
/// Permit read-only relocations in read-only segments. Disallowed by default. link_z_notext: bool = false, |
run(Darwin) Automatically Set size of the padding between the end of load commands
and start of |
/// Force all relocations to be read-only after processing. link_z_relro: bool = true, |
install(Darwin) Remove dylibs that are unreachable by the entry point or exported symbols. |
/// Allow relocations to be lazily processed after load. link_z_lazy: bool = false, |
checkObject()(Darwin) Force load all members of static archives that implement an Objective-C class or category |
/// Common page size link_z_common_page_size: ?u64 = null, |
setLinkerScriptPathPosition Independent Executable |
/// Maximum page size link_z_max_page_size: ?u64 = null, |
setLinkerScript()(Windows) When targeting the MinGW ABI, use the unicode entry point (wmain/wWinMain) |
/// (Darwin) Install name for the dylib install_name: ?[]const u8 = null, |
setVersionScript()How the linker must handle the entry point of the executable. |
/// (Darwin) Path to entitlements file entitlements: ?[]const u8 = null, |
forceUndefinedSymbol()List of symbols forced as undefined in the symbol table
thus forcing their resolution by the linker.
Corresponds to |
/// (Darwin) Size of the pagezero segment. pagezero_size: ?u64 = null, |
dependsOnSystemLibrary()Overrides the default stack size |
/// (Darwin) Set size of the padding between the end of load commands /// and start of `__TEXT,__text` section. headerpad_size: ?u32 = null, |
isDynamicLibrary()This is an advanced setting that can change the intent of this Compile step. If this value is non-null, it means that this Compile step exists to check for compile errors and return *success* if they match, and failure otherwise. |
/// (Darwin) Automatically Set size of the padding between the end of load commands /// and start of `__TEXT,__text` section to a value fitting all paths expanded to MAXPATHLEN. headerpad_max_install_names: bool = false, |
isStaticLibrary()The maximum number of distinct errors within a compilation step
Defaults to |
/// (Darwin) Remove dylibs that are unreachable by the entry point or exported symbols. dead_strip_dylibs: bool = false, |
producesPdbFile()Computed during make(). |
/// (Darwin) Force load all members of static archives that implement an Objective-C class or category force_load_objc: bool = false, |
producesImplib()Computed during make(). |
/// Position Independent Executable pie: ?bool = null, |
linkLibC()Let the compiler decide whether to make an entry point and what to name it. |
dll_export_fns: ?bool = null, |
linkLibCpp()The executable will have no entry point. |
subsystem: ?std.Target.SubSystem = null, |
defineCMacro()The executable will have an entry point with the default symbol name. |
/// (Windows) When targeting the MinGW ABI, use the unicode entry point (wmain/wWinMain) mingw_unicode_entry_point: bool = false, |
linkSystemLibrary()The executable will have an entry point with the specified symbol name. |
/// How the linker must handle the entry point of the executable. entry: Entry = .default, |
linkSystemLibrary2()Embed a |
/// List of symbols forced as undefined in the symbol table /// thus forcing their resolution by the linker. /// Corresponds to `-u <symbol>` for ELF/MachO and `/include:<symbol>` for COFF/PE. force_undefined_symbols: std.StringHashMap(void), |
linkFramework()File paths that end in any of these suffixes will be excluded from installation. |
/// Overrides the default stack size stack_size: ?u64 = null, |
linkFrameworkNeeded()Only file paths that end in any of these suffixes will be included in installation.
|
want_lto: ?bool = null, use_llvm: ?bool, use_lld: ?bool, |
linkFrameworkWeak()Marks the specified header for installation alongside this artifact. When a module links with this artifact, all headers marked for installation are added to that module's include search path. |
/// This is an advanced setting that can change the intent of this Compile step. /// If this value is non-null, it means that this Compile step exists to /// check for compile errors and return *success* if they match, and failure /// otherwise. expect_errors: ?ExpectedCompileErrors = null, |
addCSourceFiles()Marks headers from the specified directory for installation alongside this artifact. When a module links with this artifact, all headers marked for installation are added to that module's include search path. |
emit_directory: ?*GeneratedFile, |
addCSourceFile()Marks the specified config header for installation alongside this artifact. When a module links with this artifact, all headers marked for installation are added to that module's include search path. |
generated_docs: ?*GeneratedFile, generated_asm: ?*GeneratedFile, generated_bin: ?*GeneratedFile, generated_pdb: ?*GeneratedFile, generated_implib: ?*GeneratedFile, generated_llvm_bc: ?*GeneratedFile, generated_llvm_ir: ?*GeneratedFile, generated_h: ?*GeneratedFile, |
addWin32ResourceFile()Forwards all headers marked for installation from |
/// The maximum number of distinct errors within a compilation step /// Defaults to `std.math.maxInt(u16)` error_limit: ?u32 = null, |
setVerboseLink()This function would run in the context of the package that created the executable, which is undesirable when running an executable provided by a dependency package. |
/// Computed during make(). is_linking_libc: bool = false, /// Computed during make(). is_linking_libcpp: bool = false, |
setVerboseCC()This function would install in the context of the package that created the artifact, which is undesirable when installing an artifact provided by a dependency package. |
pub const ExpectedCompileErrors = union(enum) { contains: []const u8, exact: []const []const u8, }; |
setLibCFile()deprecated: use |
pub const Entry = union(enum) { /// Let the compiler decide whether to make an entry point and what to name /// it. default, /// The executable will have no entry point. disabled, /// The executable will have an entry point with the default symbol name. enabled, /// The executable will have an entry point with the specified symbol name. symbol_name: []const u8, }; |
getEmittedBinDirectory()Returns whether the library, executable, or object depends on a particular system library. Includes transitive dependencies. |
pub const Options = struct { name: []const u8, root_module: Module.CreateOptions, kind: Kind, linkage: ?std.builtin.LinkMode = null, version: ?std.SemanticVersion = null, max_rss: usize = 0, filters: []const []const u8 = &.{}, test_runner: ?LazyPath = null, use_llvm: ?bool = null, use_lld: ?bool = null, zig_lib_dir: ?LazyPath = null, /// Embed a `.manifest` file in the compilation if the object format supports it. /// https://learn.microsoft.com/en-us/windows/win32/sbscs/manifest-files-reference /// Manifest files must have the extension `.manifest`. /// Can be set regardless of target. The `.manifest` file will be ignored /// if the target object format does not support embedded manifests. win32_manifest: ?LazyPath = null, }; |
getEmittedBin()Deprecated. Use |
pub const Kind = enum { exe, lib, obj, @"test", }; |
getEmittedImplib()Run pkg-config for the given library name and parse the output, returning the arguments that should be passed to zig to link the given library. |
pub const HeaderInstallation = union(enum) { file: File, directory: Directory, |
getEmittedH()Deprecated. Use |
pub const File = struct { source: LazyPath, dest_rel_path: []const u8, |
getEmittedPdb()Deprecated. Use |
pub fn dupe(self: File, b: *std.Build) File { return .{ .source = self.source.dupe(b), .dest_rel_path = b.dupePath(self.dest_rel_path), }; } }; |
getEmittedDocs()Handy when you have many C/C++ source files and want them all to have the same flags. |
pub const Directory = struct { source: LazyPath, dest_rel_path: []const u8, options: Directory.Options, |
getEmittedAsm()Resource files must have the extension |
pub const Options = struct { /// File paths that end in any of these suffixes will be excluded from installation. exclude_extensions: []const []const u8 = &.{}, /// Only file paths that end in any of these suffixes will be included in installation. /// `null` means that all suffixes will be included. /// `exclude_extensions` takes precedence over `include_extensions`. include_extensions: ?[]const []const u8 = &.{".h"}, |
getEmittedLlvmIr()Returns the path to the directory that contains the emitted binary file. |
pub fn dupe(self: Directory.Options, b: *std.Build) Directory.Options { return .{ .exclude_extensions = b.dupeStrings(self.exclude_extensions), .include_extensions = if (self.include_extensions) |incs| b.dupeStrings(incs) else null, }; } }; |
getEmittedLlvmBc()Returns the path to the generated executable, library or object file.
To run an executable built with zig build, use |
pub fn dupe(self: Directory, b: *std.Build) Directory { return .{ .source = self.source.dupe(b), .dest_rel_path = b.dupePath(self.dest_rel_path), .options = self.options.dupe(b), }; } }; |
addAssemblyFile()Returns the path to the generated import library. This function can only be called for libraries. |
pub fn getSource(self: HeaderInstallation) LazyPath { return switch (self) { inline .file, .directory => |x| x.source, }; } |
addObjectFile()Returns the path to the generated header file. This function can only be called for libraries or objects. |
pub fn dupe(self: HeaderInstallation, b: *std.Build) HeaderInstallation { return switch (self) { .file => |f| .{ .file = f.dupe(b) }, .directory => |d| .{ .directory = d.dupe(b) }, }; } }; |
addObject()Returns the generated PDB file. If the compilation does not produce a PDB file, this causes a FileNotFound error at build time. |
pub fn create(owner: *std.Build, options: Options) *Compile { const name = owner.dupe(options.name); if (mem.indexOf(u8, name, "/") != null or mem.indexOf(u8, name, "\\") != null) { panic("invalid name: '{s}'. It looks like a file path, but it is supposed to be the library or application name.", .{name}); } |
linkLibrary()Returns the path to the generated documentation directory. |
// Avoid the common case of the step name looking like "zig test test". const name_adjusted = if (options.kind == .@"test" and mem.eql(u8, name, "test")) "" else owner.fmt("{s} ", .{name}); |
addAfterIncludePath()Returns the path to the generated assembly code. |
const resolved_target = options.root_module.target.?; const target = resolved_target.result; |
addSystemIncludePath()Returns the path to the generated LLVM IR. |
const step_name = owner.fmt("{s} {s}{s} {s}", .{ switch (options.kind) { .exe => "zig build-exe", .lib => "zig build-lib", .obj => "zig build-obj", .@"test" => "zig test", }, name_adjusted, @tagName(options.root_module.optimize orelse .Debug), resolved_target.query.zigTriple(owner.allocator) catch @panic("OOM"), }); |
addIncludePath()Returns the path to the generated LLVM BC. |
const out_filename = std.zig.binNameAlloc(owner.allocator, .{ .root_name = name, .target = target, .output_mode = switch (options.kind) { .lib => .Lib, .obj => .Obj, .exe, .@"test" => .Exe, }, .link_mode = options.linkage, .version = options.version, }) catch @panic("OOM"); |
addConfigHeader()Traverse the whole dependency graph and give every module a unique name, ideally one named after what it's called somewhere in the graph. It will help here to have both a mapping from module to name and a set of all the currently-used names. |
const self = owner.allocator.create(Compile) catch @panic("OOM"); self.* = .{ .root_module = undefined, .verbose_link = false, .verbose_cc = false, .linkage = options.linkage, .kind = options.kind, .name = name, .step = Step.init(.{ .id = base_id, .name = step_name, .owner = owner, .makeFn = make, .max_rss = options.max_rss, }), .version = options.version, .out_filename = out_filename, .out_lib_filename = undefined, .major_only_filename = null, .name_only_filename = null, .installed_headers = ArrayList(HeaderInstallation).init(owner.allocator), .zig_lib_dir = null, .exec_cmd_args = null, .filters = options.filters, .test_runner = null, .test_server_mode = options.test_runner == null, .rdynamic = false, .installed_path = null, .force_undefined_symbols = StringHashMap(void).init(owner.allocator), |
addLibraryPath() |
.emit_directory = null, .generated_docs = null, .generated_asm = null, .generated_bin = null, .generated_pdb = null, .generated_implib = null, .generated_llvm_bc = null, .generated_llvm_ir = null, .generated_h = null, |
addRPath() |
.use_llvm = options.use_llvm, .use_lld = options.use_lld, }; |
addSystemFrameworkPath() |
self.root_module.init(owner, options.root_module, self); |
addFrameworkPath() |
if (options.zig_lib_dir) |lp| { self.zig_lib_dir = lp.dupe(self.step.owner); lp.addStepDependencies(&self.step); } |
setExecCmd() |
if (options.test_runner) |lp| { self.test_runner = lp.dupe(self.step.owner); lp.addStepDependencies(&self.step); } |
doAtomicSymLinks() |
// Only the PE/COFF format has a Resource Table which is where the manifest // gets embedded, so for any other target the manifest file is just ignored. if (target.ofmt == .coff) { if (options.win32_manifest) |lp| { self.win32_manifest = lp.dupe(self.step.owner); lp.addStepDependencies(&self.step); } } |
rootModuleTarget() |
if (self.kind == .lib) { if (self.linkage != null and self.linkage.? == .static) { self.out_lib_filename = self.out_filename; } else if (self.version) |version| { if (target.isDarwin()) { self.major_only_filename = owner.fmt("lib{s}.{d}.dylib", .{ self.name, version.major, }); self.name_only_filename = owner.fmt("lib{s}.dylib", .{self.name}); self.out_lib_filename = self.out_filename; } else if (target.os.tag == .windows) { self.out_lib_filename = owner.fmt("{s}.lib", .{self.name}); } else { self.major_only_filename = owner.fmt("lib{s}.so.{d}", .{ self.name, version.major }); self.name_only_filename = owner.fmt("lib{s}.so", .{self.name}); self.out_lib_filename = self.out_filename; } } else { if (target.isDarwin()) { self.out_lib_filename = self.out_filename; } else if (target.os.tag == .windows) { self.out_lib_filename = owner.fmt("{s}.lib", .{self.name}); } else { self.out_lib_filename = self.out_filename; } } } return self; } /// Marks the specified header for installation alongside this artifact. /// When a module links with this artifact, all headers marked for installation are added to that /// module's include search path. pub fn installHeader(cs: *Compile, source: LazyPath, dest_rel_path: []const u8) void { const b = cs.step.owner; const installation: HeaderInstallation = .{ .file = .{ .source = source.dupe(b), .dest_rel_path = b.dupePath(dest_rel_path), } }; cs.installed_headers.append(installation) catch @panic("OOM"); cs.addHeaderInstallationToIncludeTree(installation); installation.getSource().addStepDependencies(&cs.step); } /// Marks headers from the specified directory for installation alongside this artifact. /// When a module links with this artifact, all headers marked for installation are added to that /// module's include search path. pub fn installHeadersDirectory( cs: *Compile, source: LazyPath, dest_rel_path: []const u8, options: HeaderInstallation.Directory.Options, ) void { const b = cs.step.owner; const installation: HeaderInstallation = .{ .directory = .{ .source = source.dupe(b), .dest_rel_path = b.dupePath(dest_rel_path), .options = options.dupe(b), } }; cs.installed_headers.append(installation) catch @panic("OOM"); cs.addHeaderInstallationToIncludeTree(installation); installation.getSource().addStepDependencies(&cs.step); } /// Marks the specified config header for installation alongside this artifact. /// When a module links with this artifact, all headers marked for installation are added to that /// module's include search path. pub fn installConfigHeader(cs: *Compile, config_header: *Step.ConfigHeader) void { cs.installHeader(config_header.getOutput(), config_header.include_path); } /// Forwards all headers marked for installation from `lib` to this artifact. /// When a module links with this artifact, all headers marked for installation are added to that /// module's include search path. pub fn installLibraryHeaders(cs: *Compile, lib: *Compile) void { assert(lib.kind == .lib); for (lib.installed_headers.items) |installation| { const installation_copy = installation.dupe(lib.step.owner); cs.installed_headers.append(installation_copy) catch @panic("OOM"); cs.addHeaderInstallationToIncludeTree(installation_copy); installation_copy.getSource().addStepDependencies(&cs.step); } } fn addHeaderInstallationToIncludeTree(cs: *Compile, installation: HeaderInstallation) void { if (cs.installed_headers_include_tree) |wf| switch (installation) { .file => |file| { _ = wf.addCopyFile(file.source, file.dest_rel_path); }, .directory => |dir| { _ = wf.addCopyDirectory(dir.source, dir.dest_rel_path, .{ .exclude_extensions = dir.options.exclude_extensions, .include_extensions = dir.options.include_extensions, }); }, }; } pub fn getEmittedIncludeTree(cs: *Compile) LazyPath { if (cs.installed_headers_include_tree) |wf| return wf.getDirectory(); const b = cs.step.owner; const wf = b.addWriteFiles(); cs.installed_headers_include_tree = wf; for (cs.installed_headers.items) |installation| { cs.addHeaderInstallationToIncludeTree(installation); } // The compile step itself does not need to depend on the write files step, // only dependent modules do. return wf.getDirectory(); } pub fn addObjCopy(cs: *Compile, options: Step.ObjCopy.Options) *Step.ObjCopy { const b = cs.step.owner; var copy = options; if (copy.basename == null) { if (options.format) |f| { copy.basename = b.fmt("{s}.{s}", .{ cs.name, @tagName(f) }); } else { copy.basename = cs.name; } } return b.addObjCopy(cs.getEmittedBin(), copy); } /// This function would run in the context of the package that created the executable, /// which is undesirable when running an executable provided by a dependency package. pub const run = @compileError("deprecated; use std.Build.addRunArtifact"); /// This function would install in the context of the package that created the artifact, /// which is undesirable when installing an artifact provided by a dependency package. pub const install = @compileError("deprecated; use std.Build.installArtifact"); pub fn checkObject(self: *Compile) *Step.CheckObject { return Step.CheckObject.create(self.step.owner, self.getEmittedBin(), self.rootModuleTarget().ofmt); } /// deprecated: use `setLinkerScript` pub const setLinkerScriptPath = setLinkerScript; pub fn setLinkerScript(self: *Compile, source: LazyPath) void { const b = self.step.owner; self.linker_script = source.dupe(b); source.addStepDependencies(&self.step); } pub fn setVersionScript(self: *Compile, source: LazyPath) void { const b = self.step.owner; self.version_script = source.dupe(b); source.addStepDependencies(&self.step); } pub fn forceUndefinedSymbol(self: *Compile, symbol_name: []const u8) void { const b = self.step.owner; self.force_undefined_symbols.put(b.dupe(symbol_name), {}) catch @panic("OOM"); } /// Returns whether the library, executable, or object depends on a particular system library. /// Includes transitive dependencies. pub fn dependsOnSystemLibrary(self: *const Compile, name: []const u8) bool { var is_linking_libc = false; var is_linking_libcpp = false; var it = self.root_module.iterateDependencies(self, true); while (it.next()) |module| { for (module.link_objects.items) |link_object| { switch (link_object) { .system_lib => |lib| if (mem.eql(u8, lib.name, name)) return true, else => continue, } } is_linking_libc = is_linking_libc or module.link_libcpp == true; is_linking_libcpp = is_linking_libcpp or module.link_libcpp == true; } if (self.rootModuleTarget().is_libc_lib_name(name)) { return is_linking_libc; } if (self.rootModuleTarget().is_libcpp_lib_name(name)) { return is_linking_libcpp; } return false; } pub fn isDynamicLibrary(self: *const Compile) bool { return self.kind == .lib and self.linkage == .dynamic; } pub fn isStaticLibrary(self: *const Compile) bool { return self.kind == .lib and self.linkage != .dynamic; } pub fn producesPdbFile(self: *Compile) bool { const target = self.rootModuleTarget(); // TODO: Is this right? Isn't PDB for *any* PE/COFF file? // TODO: just share this logic with the compiler, silly! switch (target.os.tag) { .windows, .uefi => {}, else => return false, } if (target.ofmt == .c) return false; if (self.root_module.strip == true or (self.root_module.strip == null and self.root_module.optimize == .ReleaseSmall)) { return false; } return self.isDynamicLibrary() or self.kind == .exe or self.kind == .@"test"; } pub fn producesImplib(self: *Compile) bool { return self.isDynamicLibrary() and self.rootModuleTarget().os.tag == .windows; } pub fn linkLibC(self: *Compile) void { self.root_module.link_libc = true; } pub fn linkLibCpp(self: *Compile) void { self.root_module.link_libcpp = true; } /// Deprecated. Use `c.root_module.addCMacro`. pub fn defineCMacro(c: *Compile, name: []const u8, value: ?[]const u8) void { c.root_module.addCMacro(name, value orelse "1"); } const PkgConfigResult = struct { cflags: []const []const u8, libs: []const []const u8, }; /// Run pkg-config for the given library name and parse the output, returning the arguments /// that should be passed to zig to link the given library. fn runPkgConfig(self: *Compile, lib_name: []const u8) !PkgConfigResult { const b = self.step.owner; const pkg_name = match: { // First we have to map the library name to pkg config name. Unfortunately, // there are several examples where this is not straightforward: // -lSDL2 -> pkg-config sdl2 // -lgdk-3 -> pkg-config gdk-3.0 // -latk-1.0 -> pkg-config atk const pkgs = try getPkgConfigList(b); // Exact match means instant winner. for (pkgs) |pkg| { if (mem.eql(u8, pkg.name, lib_name)) { break :match pkg.name; } } // Next we'll try ignoring case. for (pkgs) |pkg| { if (std.ascii.eqlIgnoreCase(pkg.name, lib_name)) { break :match pkg.name; } } // Now try appending ".0". for (pkgs) |pkg| { if (std.ascii.indexOfIgnoreCase(pkg.name, lib_name)) |pos| { if (pos != 0) continue; if (mem.eql(u8, pkg.name[lib_name.len..], ".0")) { break :match pkg.name; } } } // Trimming "-1.0". if (mem.endsWith(u8, lib_name, "-1.0")) { const trimmed_lib_name = lib_name[0 .. lib_name.len - "-1.0".len]; for (pkgs) |pkg| { if (std.ascii.eqlIgnoreCase(pkg.name, trimmed_lib_name)) { break :match pkg.name; } } } return error.PackageNotFound; }; var code: u8 = undefined; const stdout = if (b.runAllowFail(&[_][]const u8{ "pkg-config", pkg_name, "--cflags", "--libs", }, &code, .Ignore)) |stdout| stdout else |err| switch (err) { error.ProcessTerminated => return error.PkgConfigCrashed, error.ExecNotSupported => return error.PkgConfigFailed, error.ExitCodeFailure => return error.PkgConfigFailed, error.FileNotFound => return error.PkgConfigNotInstalled, else => return err, }; var zig_cflags = ArrayList([]const u8).init(b.allocator); defer zig_cflags.deinit(); var zig_libs = ArrayList([]const u8).init(b.allocator); defer zig_libs.deinit(); var it = mem.tokenizeAny(u8, stdout, " \r\n\t"); while (it.next()) |tok| { if (mem.eql(u8, tok, "-I")) { const dir = it.next() orelse return error.PkgConfigInvalidOutput; try zig_cflags.appendSlice(&[_][]const u8{ "-I", dir }); } else if (mem.startsWith(u8, tok, "-I")) { try zig_cflags.append(tok); } else if (mem.eql(u8, tok, "-L")) { const dir = it.next() orelse return error.PkgConfigInvalidOutput; try zig_libs.appendSlice(&[_][]const u8{ "-L", dir }); } else if (mem.startsWith(u8, tok, "-L")) { try zig_libs.append(tok); } else if (mem.eql(u8, tok, "-l")) { const lib = it.next() orelse return error.PkgConfigInvalidOutput; try zig_libs.appendSlice(&[_][]const u8{ "-l", lib }); } else if (mem.startsWith(u8, tok, "-l")) { try zig_libs.append(tok); } else if (mem.eql(u8, tok, "-D")) { const macro = it.next() orelse return error.PkgConfigInvalidOutput; try zig_cflags.appendSlice(&[_][]const u8{ "-D", macro }); } else if (mem.startsWith(u8, tok, "-D")) { try zig_cflags.append(tok); } else if (b.debug_pkg_config) { return self.step.fail("unknown pkg-config flag '{s}'", .{tok}); } } return .{ .cflags = try zig_cflags.toOwnedSlice(), .libs = try zig_libs.toOwnedSlice(), }; } pub fn linkSystemLibrary(self: *Compile, name: []const u8) void { return self.root_module.linkSystemLibrary(name, .{}); } pub fn linkSystemLibrary2( self: *Compile, name: []const u8, options: Module.LinkSystemLibraryOptions, ) void { return self.root_module.linkSystemLibrary(name, options); } pub fn linkFramework(c: *Compile, name: []const u8) void { c.root_module.linkFramework(name, .{}); } /// Deprecated. Use `c.root_module.linkFramework`. pub fn linkFrameworkNeeded(c: *Compile, name: []const u8) void { c.root_module.linkFramework(name, .{ .needed = true }); } /// Deprecated. Use `c.root_module.linkFramework`. pub fn linkFrameworkWeak(c: *Compile, name: []const u8) void { c.root_module.linkFramework(name, .{ .weak = true }); } /// Handy when you have many C/C++ source files and want them all to have the same flags. pub fn addCSourceFiles(self: *Compile, options: Module.AddCSourceFilesOptions) void { self.root_module.addCSourceFiles(options); } pub fn addCSourceFile(self: *Compile, source: Module.CSourceFile) void { self.root_module.addCSourceFile(source); } /// Resource files must have the extension `.rc`. /// Can be called regardless of target. The .rc file will be ignored /// if the target object format does not support embedded resources. pub fn addWin32ResourceFile(self: *Compile, source: Module.RcSourceFile) void { self.root_module.addWin32ResourceFile(source); } pub fn setVerboseLink(self: *Compile, value: bool) void { self.verbose_link = value; } pub fn setVerboseCC(self: *Compile, value: bool) void { self.verbose_cc = value; } pub fn setLibCFile(self: *Compile, libc_file: ?LazyPath) void { const b = self.step.owner; self.libc_file = if (libc_file) |f| f.dupe(b) else null; } fn getEmittedFileGeneric(self: *Compile, output_file: *?*GeneratedFile) LazyPath { if (output_file.*) |g| { return .{ .generated = g }; } const arena = self.step.owner.allocator; const generated_file = arena.create(GeneratedFile) catch @panic("OOM"); generated_file.* = .{ .step = &self.step }; output_file.* = generated_file; return .{ .generated = generated_file }; } /// Returns the path to the directory that contains the emitted binary file. pub fn getEmittedBinDirectory(self: *Compile) LazyPath { _ = self.getEmittedBin(); return self.getEmittedFileGeneric(&self.emit_directory); } /// Returns the path to the generated executable, library or object file. /// To run an executable built with zig build, use `run`, or create an install step and invoke it. pub fn getEmittedBin(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_bin); } /// Returns the path to the generated import library. /// This function can only be called for libraries. pub fn getEmittedImplib(self: *Compile) LazyPath { assert(self.kind == .lib); return self.getEmittedFileGeneric(&self.generated_implib); } /// Returns the path to the generated header file. /// This function can only be called for libraries or objects. pub fn getEmittedH(self: *Compile) LazyPath { assert(self.kind != .exe and self.kind != .@"test"); return self.getEmittedFileGeneric(&self.generated_h); } /// Returns the generated PDB file. /// If the compilation does not produce a PDB file, this causes a FileNotFound error /// at build time. pub fn getEmittedPdb(self: *Compile) LazyPath { _ = self.getEmittedBin(); return self.getEmittedFileGeneric(&self.generated_pdb); } /// Returns the path to the generated documentation directory. pub fn getEmittedDocs(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_docs); } /// Returns the path to the generated assembly code. pub fn getEmittedAsm(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_asm); } /// Returns the path to the generated LLVM IR. pub fn getEmittedLlvmIr(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_llvm_ir); } /// Returns the path to the generated LLVM BC. pub fn getEmittedLlvmBc(self: *Compile) LazyPath { return self.getEmittedFileGeneric(&self.generated_llvm_bc); } pub fn addAssemblyFile(self: *Compile, source: LazyPath) void { self.root_module.addAssemblyFile(source); } pub fn addObjectFile(self: *Compile, source: LazyPath) void { self.root_module.addObjectFile(source); } pub fn addObject(self: *Compile, object: *Compile) void { self.root_module.addObject(object); } pub fn linkLibrary(self: *Compile, library: *Compile) void { self.root_module.linkLibrary(library); } pub fn addAfterIncludePath(self: *Compile, lazy_path: LazyPath) void { self.root_module.addAfterIncludePath(lazy_path); } pub fn addSystemIncludePath(self: *Compile, lazy_path: LazyPath) void { self.root_module.addSystemIncludePath(lazy_path); } pub fn addIncludePath(self: *Compile, lazy_path: LazyPath) void { self.root_module.addIncludePath(lazy_path); } pub fn addConfigHeader(self: *Compile, config_header: *Step.ConfigHeader) void { self.root_module.addConfigHeader(config_header); } pub fn addLibraryPath(self: *Compile, directory_path: LazyPath) void { self.root_module.addLibraryPath(directory_path); } pub fn addRPath(self: *Compile, directory_path: LazyPath) void { self.root_module.addRPath(directory_path); } pub fn addSystemFrameworkPath(self: *Compile, directory_path: LazyPath) void { self.root_module.addSystemFrameworkPath(directory_path); } pub fn addFrameworkPath(self: *Compile, directory_path: LazyPath) void { self.root_module.addFrameworkPath(directory_path); } pub fn setExecCmd(self: *Compile, args: []const ?[]const u8) void { const b = self.step.owner; assert(self.kind == .@"test"); const duped_args = b.allocator.alloc(?[]u8, args.len) catch @panic("OOM"); for (args, 0..) |arg, i| { duped_args[i] = if (arg) |a| b.dupe(a) else null; } self.exec_cmd_args = duped_args; } const CliNamedModules = struct { modules: std.AutoArrayHashMapUnmanaged(*Module, void), names: std.StringArrayHashMapUnmanaged(void), /// Traverse the whole dependency graph and give every module a unique /// name, ideally one named after what it's called somewhere in the graph. /// It will help here to have both a mapping from module to name and a set /// of all the currently-used names. fn init(arena: Allocator, root_module: *Module) Allocator.Error!CliNamedModules { var self: CliNamedModules = .{ .modules = .{}, .names = .{}, }; var it = root_module.iterateDependencies(null, false); { const item = it.next().?; assert(root_module == item.module); try self.modules.put(arena, root_module, {}); try self.names.put(arena, "root", {}); } while (it.next()) |item| { var name = item.name; var n: usize = 0; while (true) { const gop = try self.names.getOrPut(arena, name); if (!gop.found_existing) { try self.modules.putNoClobber(arena, item.module, {}); break; } name = try std.fmt.allocPrint(arena, "{s}{d}", .{ item.name, n }); n += 1; } } return self; } }; fn getGeneratedFilePath(self: *Compile, comptime tag_name: []const u8, asking_step: ?*Step) []const u8 { const maybe_path: ?*GeneratedFile = @field(self, tag_name); const generated_file = maybe_path orelse { std.debug.getStderrMutex().lock(); const stderr = std.io.getStdErr(); std.Build.dumpBadGetPathHelp(&self.step, stderr, self.step.owner, asking_step) catch {}; @panic("missing emit option for " ++ tag_name); }; const path = generated_file.path orelse { std.debug.getStderrMutex().lock(); const stderr = std.io.getStdErr(); std.Build.dumpBadGetPathHelp(&self.step, stderr, self.step.owner, asking_step) catch {}; @panic(tag_name ++ " is null. Is there a missing step dependency?"); }; return path; } fn make(step: *Step, prog_node: *std.Progress.Node) !void { const b = step.owner; const arena = b.allocator; const self: *Compile = @fieldParentPtr("step", step); var zig_args = ArrayList([]const u8).init(arena); defer zig_args.deinit(); try zig_args.append(b.graph.zig_exe); const cmd = switch (self.kind) { .lib => "build-lib", .exe => "build-exe", .obj => "build-obj", .@"test" => "test", }; try zig_args.append(cmd); if (b.reference_trace) |some| { try zig_args.append(try std.fmt.allocPrint(arena, "-freference-trace={d}", .{some})); } try addFlag(&zig_args, "llvm", self.use_llvm); try addFlag(&zig_args, "lld", self.use_lld); if (self.root_module.resolved_target.?.query.ofmt) |ofmt| { try zig_args.append(try std.fmt.allocPrint(arena, "-ofmt={s}", .{@tagName(ofmt)})); } switch (self.entry) { .default => {}, .disabled => try zig_args.append("-fno-entry"), .enabled => try zig_args.append("-fentry"), .symbol_name => |entry_name| { try zig_args.append(try std.fmt.allocPrint(arena, "-fentry={s}", .{entry_name})); }, } { var it = self.force_undefined_symbols.keyIterator(); while (it.next()) |symbol_name| { try zig_args.append("--force_undefined"); try zig_args.append(symbol_name.*); } } if (self.stack_size) |stack_size| { try zig_args.append("--stack"); try zig_args.append(try std.fmt.allocPrint(arena, "{}", .{stack_size})); } { // Stores system libraries that have already been seen for at least one // module, along with any arguments that need to be passed to the // compiler for each module individually. var seen_system_libs: std.StringHashMapUnmanaged([]const []const u8) = .{}; var frameworks: std.StringArrayHashMapUnmanaged(Module.LinkFrameworkOptions) = .{}; var prev_has_cflags = false; var prev_has_rcflags = false; var prev_search_strategy: Module.SystemLib.SearchStrategy = .paths_first; var prev_preferred_link_mode: std.builtin.LinkMode = .dynamic; // Track the number of positional arguments so that a nice error can be // emitted if there is nothing to link. var total_linker_objects: usize = @intFromBool(self.root_module.root_source_file != null); { // Fully recursive iteration including dynamic libraries to detect // libc and libc++ linkage. var it = self.root_module.iterateDependencies(self, true); while (it.next()) |key| { if (key.module.link_libc == true) self.is_linking_libc = true; if (key.module.link_libcpp == true) self.is_linking_libcpp = true; } } var cli_named_modules = try CliNamedModules.init(arena, &self.root_module); // For this loop, don't chase dynamic libraries because their link // objects are already linked. var it = self.root_module.iterateDependencies(self, false); while (it.next()) |key| { const module = key.module; const compile = key.compile.?; // While walking transitive dependencies, if a given link object is // already included in a library, it should not redundantly be // placed on the linker line of the dependee. const my_responsibility = compile == self; const already_linked = !my_responsibility and compile.isDynamicLibrary(); // Inherit dependencies on darwin frameworks. if (!already_linked) { for (module.frameworks.keys(), module.frameworks.values()) |name, info| { try frameworks.put(arena, name, info); } } // Inherit dependencies on system libraries and static libraries. for (module.link_objects.items) |link_object| { switch (link_object) { .static_path => |static_path| { if (my_responsibility) { try zig_args.append(static_path.getPath2(module.owner, step)); total_linker_objects += 1; } }, .system_lib => |system_lib| { const system_lib_gop = try seen_system_libs.getOrPut(arena, system_lib.name); if (system_lib_gop.found_existing) { try zig_args.appendSlice(system_lib_gop.value_ptr.*); continue; } else { system_lib_gop.value_ptr.* = &.{}; } if (already_linked) continue; if ((system_lib.search_strategy != prev_search_strategy or system_lib.preferred_link_mode != prev_preferred_link_mode) and self.linkage != .static) { switch (system_lib.search_strategy) { .no_fallback => switch (system_lib.preferred_link_mode) { .dynamic => try zig_args.append("-search_dylibs_only"), .static => try zig_args.append("-search_static_only"), }, .paths_first => switch (system_lib.preferred_link_mode) { .dynamic => try zig_args.append("-search_paths_first"), .static => try zig_args.append("-search_paths_first_static"), }, .mode_first => switch (system_lib.preferred_link_mode) { .dynamic => try zig_args.append("-search_dylibs_first"), .static => try zig_args.append("-search_static_first"), }, } prev_search_strategy = system_lib.search_strategy; prev_preferred_link_mode = system_lib.preferred_link_mode; } const prefix: []const u8 = prefix: { if (system_lib.needed) break :prefix "-needed-l"; if (system_lib.weak) break :prefix "-weak-l"; break :prefix "-l"; }; switch (system_lib.use_pkg_config) { .no => try zig_args.append(b.fmt("{s}{s}", .{ prefix, system_lib.name })), .yes, .force => { if (self.runPkgConfig(system_lib.name)) |result| { try zig_args.appendSlice(result.cflags); try zig_args.appendSlice(result.libs); try seen_system_libs.put(arena, system_lib.name, result.cflags); } else |err| switch (err) { error.PkgConfigInvalidOutput, error.PkgConfigCrashed, error.PkgConfigFailed, error.PkgConfigNotInstalled, error.PackageNotFound, => switch (system_lib.use_pkg_config) { .yes => { // pkg-config failed, so fall back to linking the library // by name directly. try zig_args.append(b.fmt("{s}{s}", .{ prefix, system_lib.name, })); }, .force => { panic("pkg-config failed for library {s}", .{system_lib.name}); }, .no => unreachable, }, else => |e| return e, } }, } }, .other_step => |other| { switch (other.kind) { .exe => return step.fail("cannot link with an executable build artifact", .{}), .@"test" => return step.fail("cannot link with a test", .{}), .obj => { const included_in_lib_or_obj = !my_responsibility and (compile.kind == .lib or compile.kind == .obj); if (!already_linked and !included_in_lib_or_obj) { try zig_args.append(other.getEmittedBin().getPath(b)); total_linker_objects += 1; } }, .lib => l: { const other_produces_implib = other.producesImplib(); const other_is_static = other_produces_implib or other.isStaticLibrary(); if (self.isStaticLibrary() and other_is_static) { // Avoid putting a static library inside a static library. break :l; } // For DLLs, we must link against the implib. // For everything else, we directly link // against the library file. const full_path_lib = if (other_produces_implib) other.getGeneratedFilePath("generated_implib", &self.step) else other.getGeneratedFilePath("generated_bin", &self.step); try zig_args.append(full_path_lib); total_linker_objects += 1; if (other.linkage == .dynamic and self.rootModuleTarget().os.tag != .windows) { if (fs.path.dirname(full_path_lib)) |dirname| { try zig_args.append("-rpath"); try zig_args.append(dirname); } } }, } }, .assembly_file => |asm_file| l: { if (!my_responsibility) break :l; if (prev_has_cflags) { try zig_args.append("-cflags"); try zig_args.append("--"); prev_has_cflags = false; } try zig_args.append(asm_file.getPath2(module.owner, step)); total_linker_objects += 1; }, .c_source_file => |c_source_file| l: { if (!my_responsibility) break :l; if (c_source_file.flags.len == 0) { if (prev_has_cflags) { try zig_args.append("-cflags"); try zig_args.append("--"); prev_has_cflags = false; } } else { try zig_args.append("-cflags"); for (c_source_file.flags) |arg| { try zig_args.append(arg); } try zig_args.append("--"); prev_has_cflags = true; } try zig_args.append(c_source_file.file.getPath2(module.owner, step)); total_linker_objects += 1; }, .c_source_files => |c_source_files| l: { if (!my_responsibility) break :l; if (c_source_files.flags.len == 0) { if (prev_has_cflags) { try zig_args.append("-cflags"); try zig_args.append("--"); prev_has_cflags = false; } } else { try zig_args.append("-cflags"); for (c_source_files.flags) |flag| { try zig_args.append(flag); } try zig_args.append("--"); prev_has_cflags = true; } const root_path = c_source_files.root.getPath2(module.owner, step); for (c_source_files.files) |file| { try zig_args.append(b.pathJoin(&.{ root_path, file })); } total_linker_objects += c_source_files.files.len; }, .win32_resource_file => |rc_source_file| l: { if (!my_responsibility) break :l; if (rc_source_file.flags.len == 0) { if (prev_has_rcflags) { try zig_args.append("-rcflags"); try zig_args.append("--"); prev_has_rcflags = false; } } else { try zig_args.append("-rcflags"); for (rc_source_file.flags) |arg| { try zig_args.append(arg); } try zig_args.append("--"); prev_has_rcflags = true; } try zig_args.append(rc_source_file.file.getPath2(module.owner, step)); total_linker_objects += 1; }, } } // We need to emit the --mod argument here so that the above link objects // have the correct parent module, but only if the module is part of // this compilation. if (cli_named_modules.modules.getIndex(module)) |module_cli_index| { const module_cli_name = cli_named_modules.names.keys()[module_cli_index]; try module.appendZigProcessFlags(&zig_args, step); // --dep arguments try zig_args.ensureUnusedCapacity(module.import_table.count() * 2); for (module.import_table.keys(), module.import_table.values()) |name, dep| { const dep_index = cli_named_modules.modules.getIndex(dep).?; const dep_cli_name = cli_named_modules.names.keys()[dep_index]; zig_args.appendAssumeCapacity("--dep"); if (std.mem.eql(u8, dep_cli_name, name)) { zig_args.appendAssumeCapacity(dep_cli_name); } else { zig_args.appendAssumeCapacity(b.fmt("{s}={s}", .{ name, dep_cli_name })); } } // When the CLI sees a -M argument, it determines whether it // implies the existence of a Zig compilation unit based on // whether there is a root source file. If there is no root // source file, then this is not a zig compilation unit - it is // perhaps a set of linker objects, or C source files instead. // Linker objects are added to the CLI globally, while C source // files must have a module parent. if (module.root_source_file) |lp| { const src = lp.getPath2(module.owner, step); try zig_args.append(b.fmt("-M{s}={s}", .{ module_cli_name, src })); } else if (moduleNeedsCliArg(module)) { try zig_args.append(b.fmt("-M{s}", .{module_cli_name})); } } } if (total_linker_objects == 0) { return step.fail("the linker needs one or more objects to link", .{}); } for (frameworks.keys(), frameworks.values()) |name, info| { if (info.needed) { try zig_args.append("-needed_framework"); } else if (info.weak) { try zig_args.append("-weak_framework"); } else { try zig_args.append("-framework"); } try zig_args.append(name); } if (self.is_linking_libcpp) { try zig_args.append("-lc++"); } if (self.is_linking_libc) { try zig_args.append("-lc"); } } if (self.win32_manifest) |manifest_file| { try zig_args.append(manifest_file.getPath(b)); } if (self.image_base) |image_base| { try zig_args.append("--image-base"); try zig_args.append(b.fmt("0x{x}", .{image_base})); } for (self.filters) |filter| { try zig_args.append("--test-filter"); try zig_args.append(filter); } if (self.test_runner) |test_runner| { try zig_args.append("--test-runner"); try zig_args.append(test_runner.getPath(b)); } for (b.debug_log_scopes) |log_scope| { try zig_args.append("--debug-log"); try zig_args.append(log_scope); } if (b.debug_compile_errors) { try zig_args.append("--debug-compile-errors"); } if (b.verbose_cimport) try zig_args.append("--verbose-cimport"); if (b.verbose_air) try zig_args.append("--verbose-air"); if (b.verbose_llvm_ir) |path| try zig_args.append(b.fmt("--verbose-llvm-ir={s}", .{path})); if (b.verbose_llvm_bc) |path| try zig_args.append(b.fmt("--verbose-llvm-bc={s}", .{path})); if (b.verbose_link or self.verbose_link) try zig_args.append("--verbose-link"); if (b.verbose_cc or self.verbose_cc) try zig_args.append("--verbose-cc"); if (b.verbose_llvm_cpu_features) try zig_args.append("--verbose-llvm-cpu-features"); if (self.generated_asm != null) try zig_args.append("-femit-asm"); if (self.generated_bin == null) try zig_args.append("-fno-emit-bin"); if (self.generated_docs != null) try zig_args.append("-femit-docs"); if (self.generated_implib != null) try zig_args.append("-femit-implib"); if (self.generated_llvm_bc != null) try zig_args.append("-femit-llvm-bc"); if (self.generated_llvm_ir != null) try zig_args.append("-femit-llvm-ir"); if (self.generated_h != null) try zig_args.append("-femit-h"); try addFlag(&zig_args, "formatted-panics", self.formatted_panics); switch (self.compress_debug_sections) { .none => {}, .zlib => try zig_args.append("--compress-debug-sections=zlib"), .zstd => try zig_args.append("--compress-debug-sections=zstd"), } if (self.link_eh_frame_hdr) { try zig_args.append("--eh-frame-hdr"); } if (self.link_emit_relocs) { try zig_args.append("--emit-relocs"); } if (self.link_function_sections) { try zig_args.append("-ffunction-sections"); } if (self.link_data_sections) { try zig_args.append("-fdata-sections"); } if (self.link_gc_sections) |x| { try zig_args.append(if (x) "--gc-sections" else "--no-gc-sections"); } if (!self.linker_dynamicbase) { try zig_args.append("--no-dynamicbase"); } if (self.linker_allow_shlib_undefined) |x| { try zig_args.append(if (x) "-fallow-shlib-undefined" else "-fno-allow-shlib-undefined"); } if (self.link_z_notext) { try zig_args.append("-z"); try zig_args.append("notext"); } if (!self.link_z_relro) { try zig_args.append("-z"); try zig_args.append("norelro"); } if (self.link_z_lazy) { try zig_args.append("-z"); try zig_args.append("lazy"); } if (self.link_z_common_page_size) |size| { try zig_args.append("-z"); try zig_args.append(b.fmt("common-page-size={d}", .{size})); } if (self.link_z_max_page_size) |size| { try zig_args.append("-z"); try zig_args.append(b.fmt("max-page-size={d}", .{size})); } if (self.libc_file) |libc_file| { try zig_args.append("--libc"); try zig_args.append(libc_file.getPath(b)); } else if (b.libc_file) |libc_file| { try zig_args.append("--libc"); try zig_args.append(libc_file); } try zig_args.append("--cache-dir"); try zig_args.append(b.cache_root.path orelse "."); try zig_args.append("--global-cache-dir"); try zig_args.append(b.graph.global_cache_root.path orelse "."); try zig_args.append("--name"); try zig_args.append(self.name); if (self.linkage) |some| switch (some) { .dynamic => try zig_args.append("-dynamic"), .static => try zig_args.append("-static"), }; if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic) { if (self.version) |version| { try zig_args.append("--version"); try zig_args.append(b.fmt("{}", .{version})); } if (self.rootModuleTarget().isDarwin()) { const install_name = self.install_name orelse b.fmt("@rpath/{s}{s}{s}", .{ self.rootModuleTarget().libPrefix(), self.name, self.rootModuleTarget().dynamicLibSuffix(), }); try zig_args.append("-install_name"); try zig_args.append(install_name); } } if (self.entitlements) |entitlements| { try zig_args.appendSlice(&[_][]const u8{ "--entitlements", entitlements }); } if (self.pagezero_size) |pagezero_size| { const size = try std.fmt.allocPrint(arena, "{x}", .{pagezero_size}); try zig_args.appendSlice(&[_][]const u8{ "-pagezero_size", size }); } if (self.headerpad_size) |headerpad_size| { const size = try std.fmt.allocPrint(arena, "{x}", .{headerpad_size}); try zig_args.appendSlice(&[_][]const u8{ "-headerpad", size }); } if (self.headerpad_max_install_names) { try zig_args.append("-headerpad_max_install_names"); } if (self.dead_strip_dylibs) { try zig_args.append("-dead_strip_dylibs"); } if (self.force_load_objc) { try zig_args.append("-ObjC"); } try addFlag(&zig_args, "compiler-rt", self.bundle_compiler_rt); try addFlag(&zig_args, "dll-export-fns", self.dll_export_fns); if (self.rdynamic) { try zig_args.append("-rdynamic"); } if (self.import_memory) { try zig_args.append("--import-memory"); } if (self.export_memory) { try zig_args.append("--export-memory"); } if (self.import_symbols) { try zig_args.append("--import-symbols"); } if (self.import_table) { try zig_args.append("--import-table"); } if (self.export_table) { try zig_args.append("--export-table"); } if (self.initial_memory) |initial_memory| { try zig_args.append(b.fmt("--initial-memory={d}", .{initial_memory})); } if (self.max_memory) |max_memory| { try zig_args.append(b.fmt("--max-memory={d}", .{max_memory})); } if (self.shared_memory) { try zig_args.append("--shared-memory"); } if (self.global_base) |global_base| { try zig_args.append(b.fmt("--global-base={d}", .{global_base})); } if (self.wasi_exec_model) |model| { try zig_args.append(b.fmt("-mexec-model={s}", .{@tagName(model)})); } if (self.linker_script) |linker_script| { try zig_args.append("--script"); try zig_args.append(linker_script.getPath(b)); } if (self.version_script) |version_script| { try zig_args.append("--version-script"); try zig_args.append(version_script.getPath(b)); } if (self.linker_allow_undefined_version) |x| { try zig_args.append(if (x) "--undefined-version" else "--no-undefined-version"); } if (self.linker_enable_new_dtags) |enabled| { try zig_args.append(if (enabled) "--enable-new-dtags" else "--disable-new-dtags"); } if (self.kind == .@"test") { if (self.exec_cmd_args) |exec_cmd_args| { for (exec_cmd_args) |cmd_arg| { if (cmd_arg) |arg| { try zig_args.append("--test-cmd"); try zig_args.append(arg); } else { try zig_args.append("--test-cmd-bin"); } } } } if (b.sysroot) |sysroot| { try zig_args.appendSlice(&[_][]const u8{ "--sysroot", sysroot }); } // -I and -L arguments that appear after the last --mod argument apply to all modules. for (b.search_prefixes.items) |search_prefix| { var prefix_dir = fs.cwd().openDir(search_prefix, .{}) catch |err| { return step.fail("unable to open prefix directory '{s}': {s}", .{ search_prefix, @errorName(err), }); }; defer prefix_dir.close(); // Avoid passing -L and -I flags for nonexistent directories. // This prevents a warning, that should probably be upgraded to an error in Zig's // CLI parsing code, when the linker sees an -L directory that does not exist. if (prefix_dir.accessZ("lib", .{})) |_| { try zig_args.appendSlice(&.{ "-L", try fs.path.join(arena, &.{ search_prefix, "lib" }), }); } else |err| switch (err) { error.FileNotFound => {}, else => |e| return step.fail("unable to access '{s}/lib' directory: {s}", .{ search_prefix, @errorName(e), }), } if (prefix_dir.accessZ("include", .{})) |_| { try zig_args.appendSlice(&.{ "-I", try fs.path.join(arena, &.{ search_prefix, "include" }), }); } else |err| switch (err) { error.FileNotFound => {}, else => |e| return step.fail("unable to access '{s}/include' directory: {s}", .{ search_prefix, @errorName(e), }), } } if (self.rc_includes != .any) { try zig_args.append("-rcincludes"); try zig_args.append(@tagName(self.rc_includes)); } try addFlag(&zig_args, "each-lib-rpath", self.each_lib_rpath); if (self.build_id) |build_id| { try zig_args.append(switch (build_id) { .hexstring => |hs| b.fmt("--build-id=0x{s}", .{ std.fmt.fmtSliceHexLower(hs.toSlice()), }), .none, .fast, .uuid, .sha1, .md5 => b.fmt("--build-id={s}", .{@tagName(build_id)}), }); } if (self.zig_lib_dir) |dir| { try zig_args.append("--zig-lib-dir"); try zig_args.append(dir.getPath(b)); } try addFlag(&zig_args, "PIE", self.pie); try addFlag(&zig_args, "lto", self.want_lto); if (self.subsystem) |subsystem| { try zig_args.append("--subsystem"); try zig_args.append(switch (subsystem) { .Console => "console", .Windows => "windows", .Posix => "posix", .Native => "native", .EfiApplication => "efi_application", .EfiBootServiceDriver => "efi_boot_service_driver", .EfiRom => "efi_rom", .EfiRuntimeDriver => "efi_runtime_driver", }); } if (self.mingw_unicode_entry_point) { try zig_args.append("-municode"); } if (self.error_limit) |err_limit| try zig_args.appendSlice(&.{ "--error-limit", b.fmt("{}", .{err_limit}), }); try zig_args.append("--listen=-"); // Windows has an argument length limit of 32,766 characters, macOS 262,144 and Linux // 2,097,152. If our args exceed 30 KiB, we instead write them to a "response file" and // pass that to zig, e.g. via 'zig build-lib @args.rsp' // See @file syntax here: https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html var args_length: usize = 0; for (zig_args.items) |arg| { args_length += arg.len + 1; // +1 to account for null terminator } if (args_length >= 30 * 1024) { try b.cache_root.handle.makePath("args"); const args_to_escape = zig_args.items[2..]; var escaped_args = try ArrayList([]const u8).initCapacity(arena, args_to_escape.len); arg_blk: for (args_to_escape) |arg| { for (arg, 0..) |c, arg_idx| { if (c == '\\' or c == '"') { // Slow path for arguments that need to be escaped. We'll need to allocate and copy var escaped = try ArrayList(u8).initCapacity(arena, arg.len + 1); const writer = escaped.writer(); try writer.writeAll(arg[0..arg_idx]); for (arg[arg_idx..]) |to_escape| { if (to_escape == '\\' or to_escape == '"') try writer.writeByte('\\'); try writer.writeByte(to_escape); } escaped_args.appendAssumeCapacity(escaped.items); continue :arg_blk; } } escaped_args.appendAssumeCapacity(arg); // no escaping needed so just use original argument } // Write the args to zig-cache/args/<SHA256 hash of args> to avoid conflicts with // other zig build commands running in parallel. const partially_quoted = try std.mem.join(arena, "\" \"", escaped_args.items); const args = try std.mem.concat(arena, u8, &[_][]const u8{ "\"", partially_quoted, "\"" }); var args_hash: [Sha256.digest_length]u8 = undefined; Sha256.hash(args, &args_hash, .{}); var args_hex_hash: [Sha256.digest_length * 2]u8 = undefined; _ = try std.fmt.bufPrint( &args_hex_hash, "{s}", .{std.fmt.fmtSliceHexLower(&args_hash)}, ); const args_file = "args" ++ fs.path.sep_str ++ args_hex_hash; try b.cache_root.handle.writeFile(args_file, args); const resolved_args_file = try mem.concat(arena, u8, &.{ "@", try b.cache_root.join(arena, &.{args_file}), }); zig_args.shrinkRetainingCapacity(2); try zig_args.append(resolved_args_file); } const maybe_output_bin_path = step.evalZigProcess(zig_args.items, prog_node) catch |err| switch (err) { error.NeedCompileErrorCheck => { assert(self.expect_errors != null); try checkCompileErrors(self); return; }, else => |e| return e, }; // Update generated files if (maybe_output_bin_path) |output_bin_path| { const output_dir = fs.path.dirname(output_bin_path).?; if (self.emit_directory) |lp| { lp.path = output_dir; } // -femit-bin[=path] (default) Output machine code if (self.generated_bin) |bin| { bin.path = b.pathJoin(&.{ output_dir, self.out_filename }); } const sep = std.fs.path.sep; // output PDB if someone requested it if (self.generated_pdb) |pdb| { pdb.path = b.fmt("{s}{c}{s}.pdb", .{ output_dir, sep, self.name }); } // -femit-implib[=path] (default) Produce an import .lib when building a Windows DLL if (self.generated_implib) |implib| { implib.path = b.fmt("{s}{c}{s}.lib", .{ output_dir, sep, self.name }); } // -femit-h[=path] Generate a C header file (.h) if (self.generated_h) |lp| { lp.path = b.fmt("{s}{c}{s}.h", .{ output_dir, sep, self.name }); } // -femit-docs[=path] Create a docs/ dir with html documentation if (self.generated_docs) |generated_docs| { generated_docs.path = b.pathJoin(&.{ output_dir, "docs" }); } // -femit-asm[=path] Output .s (assembly code) if (self.generated_asm) |lp| { lp.path = b.fmt("{s}{c}{s}.s", .{ output_dir, sep, self.name }); } // -femit-llvm-ir[=path] Produce a .ll file with optimized LLVM IR (requires LLVM extensions) if (self.generated_llvm_ir) |lp| { lp.path = b.fmt("{s}{c}{s}.ll", .{ output_dir, sep, self.name }); } // -femit-llvm-bc[=path] Produce an optimized LLVM module as a .bc file (requires LLVM extensions) if (self.generated_llvm_bc) |lp| { lp.path = b.fmt("{s}{c}{s}.bc", .{ output_dir, sep, self.name }); } } if (self.kind == .lib and self.linkage != null and self.linkage.? == .dynamic and self.version != null and std.Build.wantSharedLibSymLinks(self.rootModuleTarget())) { try doAtomicSymLinks( step, self.getEmittedBin().getPath(b), self.major_only_filename.?, self.name_only_filename.?, ); } } pub fn doAtomicSymLinks( step: *Step, output_path: []const u8, filename_major_only: []const u8, filename_name_only: []const u8, ) !void { const arena = step.owner.allocator; const out_dir = fs.path.dirname(output_path) orelse "."; const out_basename = fs.path.basename(output_path); // sym link for libfoo.so.1 to libfoo.so.1.2.3 const major_only_path = try fs.path.join(arena, &.{ out_dir, filename_major_only }); fs.atomicSymLink(arena, out_basename, major_only_path) catch |err| { return step.fail("unable to symlink {s} -> {s}: {s}", .{ major_only_path, out_basename, @errorName(err), }); }; // sym link for libfoo.so to libfoo.so.1 const name_only_path = try fs.path.join(arena, &.{ out_dir, filename_name_only }); fs.atomicSymLink(arena, filename_major_only, name_only_path) catch |err| { return step.fail("Unable to symlink {s} -> {s}: {s}", .{ name_only_path, filename_major_only, @errorName(err), }); }; } fn execPkgConfigList(self: *std.Build, out_code: *u8) (PkgConfigError || RunError)![]const PkgConfigPkg { const stdout = try self.runAllowFail(&[_][]const u8{ "pkg-config", "--list-all" }, out_code, .Ignore); var list = ArrayList(PkgConfigPkg).init(self.allocator); errdefer list.deinit(); var line_it = mem.tokenizeAny(u8, stdout, "\r\n"); while (line_it.next()) |line| { if (mem.trim(u8, line, " \t").len == 0) continue; var tok_it = mem.tokenizeAny(u8, line, " \t"); try list.append(PkgConfigPkg{ .name = tok_it.next() orelse return error.PkgConfigInvalidOutput, .desc = tok_it.rest(), }); } return list.toOwnedSlice(); } fn getPkgConfigList(self: *std.Build) ![]const PkgConfigPkg { if (self.pkg_config_pkg_list) |res| { return res; } var code: u8 = undefined; if (execPkgConfigList(self, &code)) |list| { self.pkg_config_pkg_list = list; return list; } else |err| { const result = switch (err) { error.ProcessTerminated => error.PkgConfigCrashed, error.ExecNotSupported => error.PkgConfigFailed, error.ExitCodeFailure => error.PkgConfigFailed, error.FileNotFound => error.PkgConfigNotInstalled, error.InvalidName => error.PkgConfigNotInstalled, error.PkgConfigInvalidOutput => error.PkgConfigInvalidOutput, else => return err, }; self.pkg_config_pkg_list = result; return result; } } fn addFlag(args: *ArrayList([]const u8), comptime name: []const u8, opt: ?bool) !void { const cond = opt orelse return; try args.ensureUnusedCapacity(1); if (cond) { args.appendAssumeCapacity("-f" ++ name); } else { args.appendAssumeCapacity("-fno-" ++ name); } } fn checkCompileErrors(self: *Compile) !void { // Clear this field so that it does not get printed by the build runner. const actual_eb = self.step.result_error_bundle; self.step.result_error_bundle = std.zig.ErrorBundle.empty; const arena = self.step.owner.allocator; var actual_stderr_list = std.ArrayList(u8).init(arena); try actual_eb.renderToWriter(.{ .ttyconf = .no_color, .include_reference_trace = false, .include_source_line = false, }, actual_stderr_list.writer()); const actual_stderr = try actual_stderr_list.toOwnedSlice(); // Render the expected lines into a string that we can compare verbatim. var expected_generated = std.ArrayList(u8).init(arena); const expect_errors = self.expect_errors.?; var actual_line_it = mem.splitScalar(u8, actual_stderr, '\n'); // TODO merge this with the testing.expectEqualStrings logic, and also CheckFile switch (expect_errors) { .contains => |expect_line| { while (actual_line_it.next()) |actual_line| { if (!matchCompileError(actual_line, expect_line)) continue; return; } return self.step.fail( \\ \\========= should contain: =============== \\{s} \\========= but not found: ================ \\{s} \\========================================= , .{ expect_line, actual_stderr }); }, .exact => |expect_lines| { for (expect_lines) |expect_line| { const actual_line = actual_line_it.next() orelse { try expected_generated.appendSlice(expect_line); try expected_generated.append('\n'); continue; }; if (matchCompileError(actual_line, expect_line)) { try expected_generated.appendSlice(actual_line); try expected_generated.append('\n'); continue; } try expected_generated.appendSlice(expect_line); try expected_generated.append('\n'); } if (mem.eql(u8, expected_generated.items, actual_stderr)) return; return self.step.fail( \\ \\========= expected: ===================== \\{s} \\========= but found: ==================== \\{s} \\========================================= , .{ expected_generated.items, actual_stderr }); }, } } fn matchCompileError(actual: []const u8, expected: []const u8) bool { if (mem.endsWith(u8, actual, expected)) return true; if (mem.startsWith(u8, expected, ":?:?: ")) { if (mem.endsWith(u8, actual, expected[":?:?: ".len..])) return true; } // We scan for /?/ in expected line and if there is a match, we match everything // up to and after /?/. const expected_trim = mem.trim(u8, expected, " "); if (mem.indexOf(u8, expected_trim, "/?/")) |index| { const actual_trim = mem.trim(u8, actual, " "); const lhs = expected_trim[0..index]; const rhs = expected_trim[index + "/?/".len ..]; if (mem.startsWith(u8, actual_trim, lhs) and mem.endsWith(u8, actual_trim, rhs)) return true; } return false; } pub fn rootModuleTarget(c: *Compile) std.Target { // The root module is always given a target, so we know this to be non-null. return c.root_module.resolved_target.?.result; } fn moduleNeedsCliArg(mod: *const Module) bool { return for (mod.link_objects.items) |o| switch (o) { .c_source_file, .c_source_files, .assembly_file, .win32_resource_file => break true, else => continue, } else false; } |
Generated by zstd-live on 2025-08-13 02:35:13 UTC. |