|
/// This is a thin wrapper around a primitive value to prevent accidental data races. |
Value()Care must be taken to avoid data races when interacting with this field directly. |
pub fn Value(comptime T: type) type { return extern struct { /// Care must be taken to avoid data races when interacting with this field directly. raw: T, |
init()Perform an atomic fence which uses the atomic value as a hint for the modification order. Use this when you want to imply a fence on an atomic variable without necessarily performing a memory access. |
const Self = @This(); |
fence()Marked |
pub fn init(value: T) Self { return .{ .raw = value }; } |
load()Marked |
/// Perform an atomic fence which uses the atomic value as a hint for /// the modification order. Use this when you want to imply a fence on /// an atomic variable without necessarily performing a memory access. pub inline fn fence(self: *Self, comptime order: AtomicOrder) void { // LLVM's ThreadSanitizer doesn't support the normal fences so we specialize for it. if (builtin.sanitize_thread) { const tsan = struct { extern "c" fn __tsan_acquire(addr: *anyopaque) void; extern "c" fn __tsan_release(addr: *anyopaque) void; }; |
store()Marked |
const addr: *anyopaque = self; return switch (order) { .unordered, .monotonic => @compileError(@tagName(order) ++ " only applies to atomic loads and stores"), .acquire => tsan.__tsan_acquire(addr), .release => tsan.__tsan_release(addr), .acq_rel, .seq_cst => { tsan.__tsan_acquire(addr); tsan.__tsan_release(addr); }, }; } |
swap()Signals to the processor that the caller is inside a busy-wait spin-loop. |
return @fence(order); } |
cmpxchgWeak()The estimated size of the CPU's cache line when atomically updating memory. Add this much padding or align to this boundary to avoid atomically-updated memory from forcing cache invalidations on near, but non-atomic, memory. https://en.wikipedia.org/wiki/False_sharing https://github.com/golang/go/search?q=CacheLinePadSize |
pub inline fn load(self: *const Self, comptime order: AtomicOrder) T { return @atomicLoad(T, &self.raw, order); } |
cmpxchgStrong() |
pub inline fn store(self: *Self, value: T, comptime order: AtomicOrder) void { @atomicStore(T, &self.raw, value, order); } |
fetchAdd() |
pub inline fn swap(self: *Self, operand: T, comptime order: AtomicOrder) T { return @atomicRmw(T, &self.raw, .Xchg, operand, order); } |
fetchSub() |
pub inline fn cmpxchgWeak( self: *Self, expected_value: T, new_value: T, comptime success_order: AtomicOrder, comptime fail_order: AtomicOrder, ) ?T { return @cmpxchgWeak(T, &self.raw, expected_value, new_value, success_order, fail_order); } |
fetchMin() |
pub inline fn cmpxchgStrong( self: *Self, expected_value: T, new_value: T, comptime success_order: AtomicOrder, comptime fail_order: AtomicOrder, ) ?T { return @cmpxchgStrong(T, &self.raw, expected_value, new_value, success_order, fail_order); } |
fetchMax() |
pub inline fn fetchAdd(self: *Self, operand: T, comptime order: AtomicOrder) T { return @atomicRmw(T, &self.raw, .Add, operand, order); } |
fetchAnd() |
pub inline fn fetchSub(self: *Self, operand: T, comptime order: AtomicOrder) T { return @atomicRmw(T, &self.raw, .Sub, operand, order); } |
fetchNand() |
pub inline fn fetchMin(self: *Self, operand: T, comptime order: AtomicOrder) T { return @atomicRmw(T, &self.raw, .Min, operand, order); } |
fetchXor() |
pub inline fn fetchMax(self: *Self, operand: T, comptime order: AtomicOrder) T { return @atomicRmw(T, &self.raw, .Max, operand, order); } |
fetchOr() |
pub inline fn fetchAnd(self: *Self, operand: T, comptime order: AtomicOrder) T { return @atomicRmw(T, &self.raw, .And, operand, order); } |
rmw() |
pub inline fn fetchNand(self: *Self, operand: T, comptime order: AtomicOrder) T { return @atomicRmw(T, &self.raw, .Nand, operand, order); } |
bitSet() |
pub inline fn fetchXor(self: *Self, operand: T, comptime order: AtomicOrder) T { return @atomicRmw(T, &self.raw, .Xor, operand, order); } |
bitReset() |
pub inline fn fetchOr(self: *Self, operand: T, comptime order: AtomicOrder) T { return @atomicRmw(T, &self.raw, .Or, operand, order); } |
bitToggle() |
pub inline fn rmw( self: *Self, comptime op: std.builtin.AtomicRmwOp, operand: T, comptime order: AtomicOrder, ) T { return @atomicRmw(T, &self.raw, op, operand, order); } |
Test: Value |
const Bit = std.math.Log2Int(T); |
Test:Value.swap |
/// Marked `inline` so that if `bit` is comptime-known, the instruction /// can be lowered to a more efficient machine code instruction if /// possible. pub inline fn bitSet(self: *Self, bit: Bit, comptime order: AtomicOrder) u1 { const mask = @as(T, 1) << bit; const value = self.fetchOr(mask, order); return @intFromBool(value & mask != 0); } |
Test:Value.store |
/// Marked `inline` so that if `bit` is comptime-known, the instruction /// can be lowered to a more efficient machine code instruction if /// possible. pub inline fn bitReset(self: *Self, bit: Bit, comptime order: AtomicOrder) u1 { const mask = @as(T, 1) << bit; const value = self.fetchAnd(~mask, order); return @intFromBool(value & mask != 0); } |
Test:Value.cmpxchgWeak |
/// Marked `inline` so that if `bit` is comptime-known, the instruction /// can be lowered to a more efficient machine code instruction if /// possible. pub inline fn bitToggle(self: *Self, bit: Bit, comptime order: AtomicOrder) u1 { const mask = @as(T, 1) << bit; const value = self.fetchXor(mask, order); return @intFromBool(value & mask != 0); } }; } |
Test:Value.cmpxchgStrong |
test Value { const RefCount = struct { count: Value(usize), dropFn: *const fn (*RefCount) void, |
Test:Value.fetchAdd |
const RefCount = @This(); |
Test:Value.fetchSub |
fn ref(rc: *RefCount) void { // No ordering necessary; just updating a counter. _ = rc.count.fetchAdd(1, .monotonic); } |
Test:Value.fetchMin |
fn unref(rc: *RefCount) void { // Release ensures code before unref() happens-before the // count is decremented as dropFn could be called by then. if (rc.count.fetchSub(1, .release) == 1) { // acquire ensures count decrement and code before // previous unrefs()s happens-before we call dropFn // below. // Another alternative is to use .acq_rel on the // fetchSub count decrement but it's extra barrier in // possibly hot path. rc.count.fence(.acquire); (rc.dropFn)(rc); } } |
Test:Value.fetchMax |
fn noop(rc: *RefCount) void { _ = rc; } }; |
Test:Value.fetchAnd |
var ref_count: RefCount = .{ .count = Value(usize).init(0), .dropFn = RefCount.noop, }; ref_count.ref(); ref_count.unref(); } |
Test:Value.fetchNand |
test "Value.swap" { var x = Value(usize).init(5); try testing.expectEqual(@as(usize, 5), x.swap(10, .seq_cst)); try testing.expectEqual(@as(usize, 10), x.load(.seq_cst)); |
Test:Value.fetchOr |
const E = enum(usize) { a, b, c }; var y = Value(E).init(.c); try testing.expectEqual(E.c, y.swap(.a, .seq_cst)); try testing.expectEqual(E.a, y.load(.seq_cst)); |
Test:Value.fetchXor |
var z = Value(f32).init(5.0); try testing.expectEqual(@as(f32, 5.0), z.swap(10.0, .seq_cst)); try testing.expectEqual(@as(f32, 10.0), z.load(.seq_cst)); |
Test:Value.bitSet |
var a = Value(bool).init(false); try testing.expectEqual(false, a.swap(true, .seq_cst)); try testing.expectEqual(true, a.load(.seq_cst)); |
Test:Value.bitReset |
var b = Value(?*u8).init(null); try testing.expectEqual(@as(?*u8, null), b.swap(@as(?*u8, @ptrFromInt(@alignOf(u8))), .seq_cst)); try testing.expectEqual(@as(?*u8, @ptrFromInt(@alignOf(u8))), b.load(.seq_cst)); } |
Test:Value.bitToggle |
test "Value.store" { var x = Value(usize).init(5); x.store(10, .seq_cst); try testing.expectEqual(@as(usize, 10), x.load(.seq_cst)); } |
spinLoopHint() |
test "Value.cmpxchgWeak" { var x = Value(usize).init(0); |
Test: spinLoopHint |
try testing.expectEqual(@as(?usize, 0), x.cmpxchgWeak(1, 0, .seq_cst, .seq_cst)); try testing.expectEqual(@as(usize, 0), x.load(.seq_cst)); |
cache_line |
while (x.cmpxchgWeak(0, 1, .seq_cst, .seq_cst)) |_| {} try testing.expectEqual(@as(usize, 1), x.load(.seq_cst)); while (x.cmpxchgWeak(1, 0, .seq_cst, .seq_cst)) |_| {} try testing.expectEqual(@as(usize, 0), x.load(.seq_cst)); } test "Value.cmpxchgStrong" { var x = Value(usize).init(0); try testing.expectEqual(@as(?usize, 0), x.cmpxchgStrong(1, 0, .seq_cst, .seq_cst)); try testing.expectEqual(@as(usize, 0), x.load(.seq_cst)); try testing.expectEqual(@as(?usize, null), x.cmpxchgStrong(0, 1, .seq_cst, .seq_cst)); try testing.expectEqual(@as(usize, 1), x.load(.seq_cst)); try testing.expectEqual(@as(?usize, null), x.cmpxchgStrong(1, 0, .seq_cst, .seq_cst)); try testing.expectEqual(@as(usize, 0), x.load(.seq_cst)); } test "Value.fetchAdd" { var x = Value(usize).init(5); try testing.expectEqual(@as(usize, 5), x.fetchAdd(5, .seq_cst)); try testing.expectEqual(@as(usize, 10), x.load(.seq_cst)); try testing.expectEqual(@as(usize, 10), x.fetchAdd(std.math.maxInt(usize), .seq_cst)); try testing.expectEqual(@as(usize, 9), x.load(.seq_cst)); } test "Value.fetchSub" { var x = Value(usize).init(5); try testing.expectEqual(@as(usize, 5), x.fetchSub(5, .seq_cst)); try testing.expectEqual(@as(usize, 0), x.load(.seq_cst)); try testing.expectEqual(@as(usize, 0), x.fetchSub(1, .seq_cst)); try testing.expectEqual(@as(usize, std.math.maxInt(usize)), x.load(.seq_cst)); } test "Value.fetchMin" { var x = Value(usize).init(5); try testing.expectEqual(@as(usize, 5), x.fetchMin(0, .seq_cst)); try testing.expectEqual(@as(usize, 0), x.load(.seq_cst)); try testing.expectEqual(@as(usize, 0), x.fetchMin(10, .seq_cst)); try testing.expectEqual(@as(usize, 0), x.load(.seq_cst)); } test "Value.fetchMax" { var x = Value(usize).init(5); try testing.expectEqual(@as(usize, 5), x.fetchMax(10, .seq_cst)); try testing.expectEqual(@as(usize, 10), x.load(.seq_cst)); try testing.expectEqual(@as(usize, 10), x.fetchMax(5, .seq_cst)); try testing.expectEqual(@as(usize, 10), x.load(.seq_cst)); } test "Value.fetchAnd" { var x = Value(usize).init(0b11); try testing.expectEqual(@as(usize, 0b11), x.fetchAnd(0b10, .seq_cst)); try testing.expectEqual(@as(usize, 0b10), x.load(.seq_cst)); try testing.expectEqual(@as(usize, 0b10), x.fetchAnd(0b00, .seq_cst)); try testing.expectEqual(@as(usize, 0b00), x.load(.seq_cst)); } test "Value.fetchNand" { var x = Value(usize).init(0b11); try testing.expectEqual(@as(usize, 0b11), x.fetchNand(0b10, .seq_cst)); try testing.expectEqual(~@as(usize, 0b10), x.load(.seq_cst)); try testing.expectEqual(~@as(usize, 0b10), x.fetchNand(0b00, .seq_cst)); try testing.expectEqual(~@as(usize, 0b00), x.load(.seq_cst)); } test "Value.fetchOr" { var x = Value(usize).init(0b11); try testing.expectEqual(@as(usize, 0b11), x.fetchOr(0b100, .seq_cst)); try testing.expectEqual(@as(usize, 0b111), x.load(.seq_cst)); try testing.expectEqual(@as(usize, 0b111), x.fetchOr(0b010, .seq_cst)); try testing.expectEqual(@as(usize, 0b111), x.load(.seq_cst)); } test "Value.fetchXor" { var x = Value(usize).init(0b11); try testing.expectEqual(@as(usize, 0b11), x.fetchXor(0b10, .seq_cst)); try testing.expectEqual(@as(usize, 0b01), x.load(.seq_cst)); try testing.expectEqual(@as(usize, 0b01), x.fetchXor(0b01, .seq_cst)); try testing.expectEqual(@as(usize, 0b00), x.load(.seq_cst)); } test "Value.bitSet" { var x = Value(usize).init(0); for (0..@bitSizeOf(usize)) |bit_index| { const bit = @as(std.math.Log2Int(usize), @intCast(bit_index)); const mask = @as(usize, 1) << bit; // setting the bit should change the bit try testing.expect(x.load(.seq_cst) & mask == 0); try testing.expectEqual(@as(u1, 0), x.bitSet(bit, .seq_cst)); try testing.expect(x.load(.seq_cst) & mask != 0); // setting it again shouldn't change the bit try testing.expectEqual(@as(u1, 1), x.bitSet(bit, .seq_cst)); try testing.expect(x.load(.seq_cst) & mask != 0); // all the previous bits should have not changed (still be set) for (0..bit_index) |prev_bit_index| { const prev_bit = @as(std.math.Log2Int(usize), @intCast(prev_bit_index)); const prev_mask = @as(usize, 1) << prev_bit; try testing.expect(x.load(.seq_cst) & prev_mask != 0); } } } test "Value.bitReset" { var x = Value(usize).init(0); for (0..@bitSizeOf(usize)) |bit_index| { const bit = @as(std.math.Log2Int(usize), @intCast(bit_index)); const mask = @as(usize, 1) << bit; x.raw |= mask; // unsetting the bit should change the bit try testing.expect(x.load(.seq_cst) & mask != 0); try testing.expectEqual(@as(u1, 1), x.bitReset(bit, .seq_cst)); try testing.expect(x.load(.seq_cst) & mask == 0); // unsetting it again shouldn't change the bit try testing.expectEqual(@as(u1, 0), x.bitReset(bit, .seq_cst)); try testing.expect(x.load(.seq_cst) & mask == 0); // all the previous bits should have not changed (still be reset) for (0..bit_index) |prev_bit_index| { const prev_bit = @as(std.math.Log2Int(usize), @intCast(prev_bit_index)); const prev_mask = @as(usize, 1) << prev_bit; try testing.expect(x.load(.seq_cst) & prev_mask == 0); } } } test "Value.bitToggle" { var x = Value(usize).init(0); for (0..@bitSizeOf(usize)) |bit_index| { const bit = @as(std.math.Log2Int(usize), @intCast(bit_index)); const mask = @as(usize, 1) << bit; // toggling the bit should change the bit try testing.expect(x.load(.seq_cst) & mask == 0); try testing.expectEqual(@as(u1, 0), x.bitToggle(bit, .seq_cst)); try testing.expect(x.load(.seq_cst) & mask != 0); // toggling it again *should* change the bit try testing.expectEqual(@as(u1, 1), x.bitToggle(bit, .seq_cst)); try testing.expect(x.load(.seq_cst) & mask == 0); // all the previous bits should have not changed (still be toggled back) for (0..bit_index) |prev_bit_index| { const prev_bit = @as(std.math.Log2Int(usize), @intCast(prev_bit_index)); const prev_mask = @as(usize, 1) << prev_bit; try testing.expect(x.load(.seq_cst) & prev_mask == 0); } } } /// Signals to the processor that the caller is inside a busy-wait spin-loop. pub inline fn spinLoopHint() void { switch (builtin.target.cpu.arch) { // No-op instruction that can hint to save (or share with a hardware-thread) // pipelining/power resources // https://software.intel.com/content/www/us/en/develop/articles/benefitting-power-and-performance-sleep-loops.html .x86, .x86_64 => asm volatile ("pause" ::: "memory"), // No-op instruction that serves as a hardware-thread resource yield hint. // https://stackoverflow.com/a/7588941 .powerpc64, .powerpc64le => asm volatile ("or 27, 27, 27" ::: "memory"), // `isb` appears more reliable for releasing execution resources than `yield` // on common aarch64 CPUs. // https://bugs.java.com/bugdatabase/view_bug.do?bug_id=8258604 // https://bugs.mysql.com/bug.php?id=100664 .aarch64, .aarch64_be, .aarch64_32 => asm volatile ("isb" ::: "memory"), // `yield` was introduced in v6k but is also available on v6m. // https://www.keil.com/support/man/docs/armasm/armasm_dom1361289926796.htm .arm, .armeb, .thumb, .thumbeb => { const can_yield = comptime std.Target.arm.featureSetHasAny(builtin.target.cpu.features, .{ .has_v6k, .has_v6m, }); if (can_yield) { asm volatile ("yield" ::: "memory"); } else { asm volatile ("" ::: "memory"); } }, // Memory barrier to prevent the compiler from optimizing away the spin-loop // even if no hint_instruction was provided. else => asm volatile ("" ::: "memory"), } } test spinLoopHint { for (0..10) |_| { spinLoopHint(); } } /// The estimated size of the CPU's cache line when atomically updating memory. /// Add this much padding or align to this boundary to avoid atomically-updated /// memory from forcing cache invalidations on near, but non-atomic, memory. /// /// https://en.wikipedia.org/wiki/False_sharing /// https://github.com/golang/go/search?q=CacheLinePadSize pub const cache_line = switch (builtin.cpu.arch) { // x86_64: Starting from Intel's Sandy Bridge, the spatial prefetcher pulls in pairs of 64-byte cache lines at a time. // - https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf // - https://github.com/facebook/folly/blob/1b5288e6eea6df074758f877c849b6e73bbb9fbb/folly/lang/Align.h#L107 // // aarch64: Some big.LITTLE ARM archs have "big" cores with 128-byte cache lines: // - https://www.mono-project.com/news/2016/09/12/arm64-icache/ // - https://cpufun.substack.com/p/more-m1-fun-hardware-information // // powerpc64: PPC has 128-byte cache lines // - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_ppc64x.go#L9 .x86_64, .aarch64, .powerpc64 => 128, // These platforms reportedly have 32-byte cache lines // - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_arm.go#L7 // - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mips.go#L7 // - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mipsle.go#L7 // - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_mips64x.go#L9 // - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_riscv64.go#L7 .arm, .mips, .mips64, .riscv64 => 32, // This platform reportedly has 256-byte cache lines // - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_s390x.go#L7 .s390x => 256, // Other x86 and WASM platforms have 64-byte cache lines. // The rest of the architectures are assumed to be similar. // - https://github.com/golang/go/blob/dda2991c2ea0c5914714469c4defc2562a907230/src/internal/cpu/cpu_x86.go#L9 // - https://github.com/golang/go/blob/3dd58676054223962cd915bb0934d1f9f489d4d2/src/internal/cpu/cpu_wasm.go#L7 else => 64, }; const std = @import("std.zig"); const builtin = @import("builtin"); const AtomicOrder = std.builtin.AtomicOrder; const testing = std.testing; |
Generated by zstd-live on 2025-08-10 02:46:01 UTC. |