|
//! AEGIS is a very fast authenticated encryption system built on top of the core AES function. //! //! The AEGIS-128L variant has a 128 bit key, a 128 bit nonce, and processes 256 bit message blocks. //! The AEGIS-256 variant has a 256 bit key, a 256 bit nonce, and processes 128 bit message blocks. //! //! The AEGIS cipher family offers performance that significantly exceeds that of AES-GCM with //! hardware support for parallelizable AES block encryption. //! //! Unlike with AES-GCM, nonces can be safely chosen at random with no practical limit when using AEGIS-256. //! AEGIS-128L also allows for more messages to be safely encrypted when using random nonces. //! //! AEGIS is believed to be key-committing, making it a safer choice than most other AEADs //! when the key has low entropy, or can be controlled by an attacker. //! //! Finally, leaking the state does not leak the key. //! //! https://datatracker.ietf.org/doc/draft-irtf-cfrg-aegis-aead/ |
Aegis128LAEGIS-128L with a 128-bit authentication tag. |
const std = @import("std"); const crypto = std.crypto; const mem = std.mem; const assert = std.debug.assert; const AesBlock = crypto.core.aes.Block; const AuthenticationError = crypto.errors.AuthenticationError; |
Aegis128L_256AEGIS-128L with a 256-bit authentication tag. |
/// AEGIS-128L with a 128-bit authentication tag. pub const Aegis128L = Aegis128LGeneric(128); |
Aegis256AEGIS-256 with a 128-bit authentication tag. |
/// AEGIS-128L with a 256-bit authentication tag. pub const Aegis128L_256 = Aegis128LGeneric(256); |
Aegis256_256AEGIS-256 with a 256-bit authentication tag. |
/// AEGIS-256 with a 128-bit authentication tag. pub const Aegis256 = Aegis256Generic(128); |
tag_lengthc: ciphertext: output buffer should be of size m.len tag: authentication tag: output MAC m: message ad: Associated Data npub: public nonce k: private key |
/// AEGIS-256 with a 256-bit authentication tag. pub const Aegis256_256 = Aegis256Generic(256); |
nonce_length
|
const State128L = struct { blocks: [8]AesBlock, |
key_lengthAEGIS is a very fast authenticated encryption system built on top of the core AES function. The 256 bit variant of AEGIS has a 256 bit key, a 256 bit nonce, and processes 128 bit message blocks. https://datatracker.ietf.org/doc/draft-irtf-cfrg-aegis-aead/ |
fn init(key: [16]u8, nonce: [16]u8) State128L { const c1 = AesBlock.fromBytes(&[16]u8{ 0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1, 0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd }); const c2 = AesBlock.fromBytes(&[16]u8{ 0x0, 0x1, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d, 0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62 }); const key_block = AesBlock.fromBytes(&key); const nonce_block = AesBlock.fromBytes(&nonce); const blocks = [8]AesBlock{ key_block.xorBlocks(nonce_block), c1, c2, c1, key_block.xorBlocks(nonce_block), key_block.xorBlocks(c2), key_block.xorBlocks(c1), key_block.xorBlocks(c2), }; var state = State128L{ .blocks = blocks }; var i: usize = 0; while (i < 10) : (i += 1) { state.update(nonce_block, key_block); } return state; } |
block_lengthc: ciphertext: output buffer should be of size m.len tag: authentication tag: output MAC m: message ad: Associated Data npub: public nonce k: private key |
inline fn update(state: *State128L, d1: AesBlock, d2: AesBlock) void { const blocks = &state.blocks; const tmp = blocks[7]; comptime var i: usize = 7; inline while (i > 0) : (i -= 1) { blocks[i] = blocks[i - 1].encrypt(blocks[i]); } blocks[0] = tmp.encrypt(blocks[0]); blocks[0] = blocks[0].xorBlocks(d1); blocks[4] = blocks[4].xorBlocks(d2); } |
encrypt()
|
fn absorb(state: *State128L, src: *const [32]u8) void { const msg0 = AesBlock.fromBytes(src[0..16]); const msg1 = AesBlock.fromBytes(src[16..32]); state.update(msg0, msg1); } |
decrypt()The |
fn enc(state: *State128L, dst: *[32]u8, src: *const [32]u8) void { const blocks = &state.blocks; const msg0 = AesBlock.fromBytes(src[0..16]); const msg1 = AesBlock.fromBytes(src[16..32]); var tmp0 = msg0.xorBlocks(blocks[6]).xorBlocks(blocks[1]); var tmp1 = msg1.xorBlocks(blocks[2]).xorBlocks(blocks[5]); tmp0 = tmp0.xorBlocks(blocks[2].andBlocks(blocks[3])); tmp1 = tmp1.xorBlocks(blocks[6].andBlocks(blocks[7])); dst[0..16].* = tmp0.toBytes(); dst[16..32].* = tmp1.toBytes(); state.update(msg0, msg1); } |
tag_lengthThe |
fn dec(state: *State128L, dst: *[32]u8, src: *const [32]u8) void { const blocks = &state.blocks; var msg0 = AesBlock.fromBytes(src[0..16]).xorBlocks(blocks[6]).xorBlocks(blocks[1]); var msg1 = AesBlock.fromBytes(src[16..32]).xorBlocks(blocks[2]).xorBlocks(blocks[5]); msg0 = msg0.xorBlocks(blocks[2].andBlocks(blocks[3])); msg1 = msg1.xorBlocks(blocks[6].andBlocks(blocks[7])); dst[0..16].* = msg0.toBytes(); dst[16..32].* = msg1.toBytes(); state.update(msg0, msg1); } |
nonce_lengthAegis128L MAC with a 128-bit output. A MAC with a 128-bit output is not safe unless the number of messages authenticated with the same key remains small. After 2^48 messages, the probability of a collision is already ~ 2^-33. If unsure, use the Aegis128LMac type, that has a 256 bit output. |
fn mac(state: *State128L, comptime tag_bits: u9, adlen: usize, mlen: usize) [tag_bits / 8]u8 { const blocks = &state.blocks; var sizes: [16]u8 = undefined; mem.writeInt(u64, sizes[0..8], @as(u64, adlen) * 8, .little); mem.writeInt(u64, sizes[8..16], @as(u64, mlen) * 8, .little); const tmp = AesBlock.fromBytes(&sizes).xorBlocks(blocks[2]); var i: usize = 0; while (i < 7) : (i += 1) { state.update(tmp, tmp); } return switch (tag_bits) { 128 => blocks[0].xorBlocks(blocks[1]).xorBlocks(blocks[2]).xorBlocks(blocks[3]) .xorBlocks(blocks[4]).xorBlocks(blocks[5]).xorBlocks(blocks[6]).toBytes(), 256 => tag: { const t1 = blocks[0].xorBlocks(blocks[1]).xorBlocks(blocks[2]).xorBlocks(blocks[3]); const t2 = blocks[4].xorBlocks(blocks[5]).xorBlocks(blocks[6]).xorBlocks(blocks[7]); break :tag t1.toBytes() ++ t2.toBytes(); }, else => unreachable, }; } |
ErrorAegis256 MAC with a 128-bit output. A MAC with a 128-bit output is not safe unless the number of messages authenticated with the same key remains small. After 2^48 messages, the probability of a collision is already ~ 2^-33. If unsure, use the Aegis256Mac type, that has a 256 bit output. |
}; |
block_lengthInitialize a state for the MAC function |
fn Aegis128LGeneric(comptime tag_bits: u9) type { comptime assert(tag_bits == 128 or tag_bits == 256); // tag must be 128 or 256 bits |
encrypt()Add data to the state |
return struct { pub const tag_length = tag_bits / 8; pub const nonce_length = 16; pub const key_length = 16; pub const block_length = 32; |
decrypt()Return an authentication tag for the current state |
const State = State128L; |
Aegis128LMacReturn an authentication tag for a message and a key |
/// c: ciphertext: output buffer should be of size m.len /// tag: authentication tag: output MAC /// m: message /// ad: Associated Data /// npub: public nonce /// k: private key pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const u8, npub: [nonce_length]u8, key: [key_length]u8) void { assert(c.len == m.len); var state = State128L.init(key, npub); var src: [32]u8 align(16) = undefined; var dst: [32]u8 align(16) = undefined; var i: usize = 0; while (i + 32 <= ad.len) : (i += 32) { state.absorb(ad[i..][0..32]); } if (ad.len % 32 != 0) { @memset(src[0..], 0); @memcpy(src[0 .. ad.len % 32], ad[i..][0 .. ad.len % 32]); state.absorb(&src); } i = 0; while (i + 32 <= m.len) : (i += 32) { state.enc(c[i..][0..32], m[i..][0..32]); } if (m.len % 32 != 0) { @memset(src[0..], 0); @memcpy(src[0 .. m.len % 32], m[i..][0 .. m.len % 32]); state.enc(&dst, &src); @memcpy(c[i..][0 .. m.len % 32], dst[0 .. m.len % 32]); } tag.* = state.mac(tag_bits, ad.len, m.len); } |
Aegis256Mac |
/// `m`: Message /// `c`: Ciphertext /// `tag`: Authentication tag /// `ad`: Associated data /// `npub`: Public nonce /// `k`: Private key /// Asserts `c.len == m.len`. /// /// Contents of `m` are undefined if an error is returned. pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const u8, npub: [nonce_length]u8, key: [key_length]u8) AuthenticationError!void { assert(c.len == m.len); var state = State128L.init(key, npub); var src: [32]u8 align(16) = undefined; var dst: [32]u8 align(16) = undefined; var i: usize = 0; while (i + 32 <= ad.len) : (i += 32) { state.absorb(ad[i..][0..32]); } if (ad.len % 32 != 0) { @memset(src[0..], 0); @memcpy(src[0 .. ad.len % 32], ad[i..][0 .. ad.len % 32]); state.absorb(&src); } i = 0; while (i + 32 <= m.len) : (i += 32) { state.dec(m[i..][0..32], c[i..][0..32]); } if (m.len % 32 != 0) { @memset(src[0..], 0); @memcpy(src[0 .. m.len % 32], c[i..][0 .. m.len % 32]); state.dec(&dst, &src); @memcpy(m[i..][0 .. m.len % 32], dst[0 .. m.len % 32]); @memset(dst[0 .. m.len % 32], 0); const blocks = &state.blocks; blocks[0] = blocks[0].xorBlocks(AesBlock.fromBytes(dst[0..16])); blocks[4] = blocks[4].xorBlocks(AesBlock.fromBytes(dst[16..32])); } var computed_tag = state.mac(tag_bits, ad.len, m.len); const verify = crypto.utils.timingSafeEql([tag_length]u8, computed_tag, tag); if (!verify) { crypto.utils.secureZero(u8, &computed_tag); @memset(m, undefined); return error.AuthenticationFailed; } } }; |
Error |
} |
Aegis256Mac_128 |
const State256 = struct { blocks: [6]AesBlock, |
mac_length |
fn init(key: [32]u8, nonce: [32]u8) State256 { const c1 = AesBlock.fromBytes(&[16]u8{ 0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1, 0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd }); const c2 = AesBlock.fromBytes(&[16]u8{ 0x0, 0x1, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d, 0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62 }); const key_block1 = AesBlock.fromBytes(key[0..16]); const key_block2 = AesBlock.fromBytes(key[16..32]); const nonce_block1 = AesBlock.fromBytes(nonce[0..16]); const nonce_block2 = AesBlock.fromBytes(nonce[16..32]); const kxn1 = key_block1.xorBlocks(nonce_block1); const kxn2 = key_block2.xorBlocks(nonce_block2); const blocks = [6]AesBlock{ kxn1, kxn2, c1, c2, key_block1.xorBlocks(c2), key_block2.xorBlocks(c1), }; var state = State256{ .blocks = blocks }; var i: usize = 0; while (i < 4) : (i += 1) { state.update(key_block1); state.update(key_block2); state.update(kxn1); state.update(kxn2); } return state; } |
key_length |
inline fn update(state: *State256, d: AesBlock) void { const blocks = &state.blocks; const tmp = blocks[5].encrypt(blocks[0]); comptime var i: usize = 5; inline while (i > 0) : (i -= 1) { blocks[i] = blocks[i - 1].encrypt(blocks[i]); } blocks[0] = tmp.xorBlocks(d); } |
block_length |
fn absorb(state: *State256, src: *const [16]u8) void { const msg = AesBlock.fromBytes(src); state.update(msg); } |
init() |
fn enc(state: *State256, dst: *[16]u8, src: *const [16]u8) void { const blocks = &state.blocks; const msg = AesBlock.fromBytes(src); var tmp = msg.xorBlocks(blocks[5]).xorBlocks(blocks[4]).xorBlocks(blocks[1]); tmp = tmp.xorBlocks(blocks[2].andBlocks(blocks[3])); dst.* = tmp.toBytes(); state.update(msg); } |
update() |
fn dec(state: *State256, dst: *[16]u8, src: *const [16]u8) void { const blocks = &state.blocks; var msg = AesBlock.fromBytes(src).xorBlocks(blocks[5]).xorBlocks(blocks[4]).xorBlocks(blocks[1]); msg = msg.xorBlocks(blocks[2].andBlocks(blocks[3])); dst.* = msg.toBytes(); state.update(msg); } |
final() |
fn mac(state: *State256, comptime tag_bits: u9, adlen: usize, mlen: usize) [tag_bits / 8]u8 { const blocks = &state.blocks; var sizes: [16]u8 = undefined; mem.writeInt(u64, sizes[0..8], @as(u64, adlen) * 8, .little); mem.writeInt(u64, sizes[8..16], @as(u64, mlen) * 8, .little); const tmp = AesBlock.fromBytes(&sizes).xorBlocks(blocks[3]); var i: usize = 0; while (i < 7) : (i += 1) { state.update(tmp); } return switch (tag_bits) { 128 => blocks[0].xorBlocks(blocks[1]).xorBlocks(blocks[2]).xorBlocks(blocks[3]) .xorBlocks(blocks[4]).xorBlocks(blocks[5]).toBytes(), 256 => tag: { const t1 = blocks[0].xorBlocks(blocks[1]).xorBlocks(blocks[2]); const t2 = blocks[3].xorBlocks(blocks[4]).xorBlocks(blocks[5]); break :tag t1.toBytes() ++ t2.toBytes(); }, else => unreachable, }; } |
Error |
}; |
Error |
/// AEGIS is a very fast authenticated encryption system built on top of the core AES function. /// /// The 256 bit variant of AEGIS has a 256 bit key, a 256 bit nonce, and processes 128 bit message blocks. /// /// https://datatracker.ietf.org/doc/draft-irtf-cfrg-aegis-aead/ fn Aegis256Generic(comptime tag_bits: u9) type { comptime assert(tag_bits == 128 or tag_bits == 256); // tag must be 128 or 256 bits |
Writer |
return struct { pub const tag_length = tag_bits / 8; pub const nonce_length = 32; pub const key_length = 32; pub const block_length = 16; |
writer() |
const State = State256; |
Test:Aegis128L test vector 1 |
/// c: ciphertext: output buffer should be of size m.len /// tag: authentication tag: output MAC /// m: message /// ad: Associated Data /// npub: public nonce /// k: private key pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const u8, npub: [nonce_length]u8, key: [key_length]u8) void { assert(c.len == m.len); var state = State256.init(key, npub); var src: [16]u8 align(16) = undefined; var dst: [16]u8 align(16) = undefined; var i: usize = 0; while (i + 16 <= ad.len) : (i += 16) { state.enc(&dst, ad[i..][0..16]); } if (ad.len % 16 != 0) { @memset(src[0..], 0); @memcpy(src[0 .. ad.len % 16], ad[i..][0 .. ad.len % 16]); state.enc(&dst, &src); } i = 0; while (i + 16 <= m.len) : (i += 16) { state.enc(c[i..][0..16], m[i..][0..16]); } if (m.len % 16 != 0) { @memset(src[0..], 0); @memcpy(src[0 .. m.len % 16], m[i..][0 .. m.len % 16]); state.enc(&dst, &src); @memcpy(c[i..][0 .. m.len % 16], dst[0 .. m.len % 16]); } tag.* = state.mac(tag_bits, ad.len, m.len); } |
Test:Aegis128L test vector 2 |
/// `m`: Message /// `c`: Ciphertext /// `tag`: Authentication tag /// `ad`: Associated data /// `npub`: Public nonce /// `k`: Private key /// Asserts `c.len == m.len`. /// /// Contents of `m` are undefined if an error is returned. pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const u8, npub: [nonce_length]u8, key: [key_length]u8) AuthenticationError!void { assert(c.len == m.len); var state = State256.init(key, npub); var src: [16]u8 align(16) = undefined; var dst: [16]u8 align(16) = undefined; var i: usize = 0; while (i + 16 <= ad.len) : (i += 16) { state.enc(&dst, ad[i..][0..16]); } if (ad.len % 16 != 0) { @memset(src[0..], 0); @memcpy(src[0 .. ad.len % 16], ad[i..][0 .. ad.len % 16]); state.enc(&dst, &src); } i = 0; while (i + 16 <= m.len) : (i += 16) { state.dec(m[i..][0..16], c[i..][0..16]); } if (m.len % 16 != 0) { @memset(src[0..], 0); @memcpy(src[0 .. m.len % 16], c[i..][0 .. m.len % 16]); state.dec(&dst, &src); @memcpy(m[i..][0 .. m.len % 16], dst[0 .. m.len % 16]); @memset(dst[0 .. m.len % 16], 0); const blocks = &state.blocks; blocks[0] = blocks[0].xorBlocks(AesBlock.fromBytes(&dst)); } var computed_tag = state.mac(tag_bits, ad.len, m.len); const verify = crypto.utils.timingSafeEql([tag_length]u8, computed_tag, tag); if (!verify) { crypto.utils.secureZero(u8, &computed_tag); @memset(m, undefined); return error.AuthenticationFailed; } } }; } |
Test:Aegis128L test vector 3 |
/// The `Aegis128LMac` message authentication function outputs 256 bit tags. /// In addition to being extremely fast, its large state, non-linearity /// and non-invertibility provides the following properties: /// - 128 bit security, stronger than GHash/Polyval/Poly1305. /// - Recovering the secret key from the state would require ~2^128 attempts, /// which is infeasible for any practical adversary. /// - It has a large security margin against internal collisions. pub const Aegis128LMac = AegisMac(Aegis128L_256); |
Test:Aegis256 test vector 1 |
/// The `Aegis256Mac` message authentication function has a 256-bit key size, /// and outputs 256 bit tags. Unless theoretical multi-target attacks are a /// concern, the AEGIS-128L variant should be preferred. /// AEGIS' large state, non-linearity and non-invertibility provides the /// following properties: /// - More than 128 bit security against forgery. /// - Recovering the secret key from the state would require ~2^256 attempts, /// which is infeasible for any practical adversary. /// - It has a large security margin against internal collisions. pub const Aegis256Mac = AegisMac(Aegis256_256); |
Test:Aegis256 test vector 2 |
/// Aegis128L MAC with a 128-bit output. /// A MAC with a 128-bit output is not safe unless the number of messages /// authenticated with the same key remains small. /// After 2^48 messages, the probability of a collision is already ~ 2^-33. /// If unsure, use the Aegis128LMac type, that has a 256 bit output. pub const Aegis128LMac_128 = AegisMac(Aegis128L); |
Test:Aegis256 test vector 3 |
/// Aegis256 MAC with a 128-bit output. /// A MAC with a 128-bit output is not safe unless the number of messages /// authenticated with the same key remains small. /// After 2^48 messages, the probability of a collision is already ~ 2^-33. /// If unsure, use the Aegis256Mac type, that has a 256 bit output. pub const Aegis256Mac_128 = AegisMac(Aegis256); |
Test:Aegis MAC |
fn AegisMac(comptime T: type) type { return struct { const Self = @This(); pub const mac_length = T.tag_length; pub const key_length = T.key_length; pub const block_length = T.block_length; state: T.State, buf: [block_length]u8 = undefined, off: usize = 0, msg_len: usize = 0, /// Initialize a state for the MAC function pub fn init(key: *const [key_length]u8) Self { const nonce = [_]u8{0} ** T.nonce_length; return Self{ .state = T.State.init(key.*, nonce), }; } /// Add data to the state pub fn update(self: *Self, b: []const u8) void { self.msg_len += b.len; const len_partial = @min(b.len, block_length - self.off); @memcpy(self.buf[self.off..][0..len_partial], b[0..len_partial]); self.off += len_partial; if (self.off < block_length) { return; } self.state.absorb(&self.buf); var i = len_partial; self.off = 0; while (i + block_length <= b.len) : (i += block_length) { self.state.absorb(b[i..][0..block_length]); } if (i != b.len) { self.off = b.len - i; @memcpy(self.buf[0..self.off], b[i..]); } } /// Return an authentication tag for the current state pub fn final(self: *Self, out: *[mac_length]u8) void { if (self.off > 0) { var pad = [_]u8{0} ** block_length; @memcpy(pad[0..self.off], self.buf[0..self.off]); self.state.absorb(&pad); } out.* = self.state.mac(T.tag_length * 8, self.msg_len, 0); } /// Return an authentication tag for a message and a key pub fn create(out: *[mac_length]u8, msg: []const u8, key: *const [key_length]u8) void { var ctx = Self.init(key); ctx.update(msg); ctx.final(out); } pub const Error = error{}; pub const Writer = std.io.Writer(*Self, Error, write); fn write(self: *Self, bytes: []const u8) Error!usize { self.update(bytes); return bytes.len; } pub fn writer(self: *Self) Writer { return .{ .context = self }; } }; } const htest = @import("test.zig"); const testing = std.testing; test "Aegis128L test vector 1" { const key: [Aegis128L.key_length]u8 = [_]u8{ 0x10, 0x01 } ++ [_]u8{0x00} ** 14; const nonce: [Aegis128L.nonce_length]u8 = [_]u8{ 0x10, 0x00, 0x02 } ++ [_]u8{0x00} ** 13; const ad = [8]u8{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 }; const m = [32]u8{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }; var c: [m.len]u8 = undefined; var m2: [m.len]u8 = undefined; var tag: [Aegis128L.tag_length]u8 = undefined; Aegis128L.encrypt(&c, &tag, &m, &ad, nonce, key); try Aegis128L.decrypt(&m2, &c, tag, &ad, nonce, key); try testing.expectEqualSlices(u8, &m, &m2); try htest.assertEqual("79d94593d8c2119d7e8fd9b8fc77845c5c077a05b2528b6ac54b563aed8efe84", &c); try htest.assertEqual("cc6f3372f6aa1bb82388d695c3962d9a", &tag); c[0] +%= 1; try testing.expectError(error.AuthenticationFailed, Aegis128L.decrypt(&m2, &c, tag, &ad, nonce, key)); c[0] -%= 1; tag[0] +%= 1; try testing.expectError(error.AuthenticationFailed, Aegis128L.decrypt(&m2, &c, tag, &ad, nonce, key)); } test "Aegis128L test vector 2" { const key: [Aegis128L.key_length]u8 = [_]u8{0x00} ** 16; const nonce: [Aegis128L.nonce_length]u8 = [_]u8{0x00} ** 16; const ad = [_]u8{}; const m = [_]u8{0x00} ** 16; var c: [m.len]u8 = undefined; var m2: [m.len]u8 = undefined; var tag: [Aegis128L.tag_length]u8 = undefined; Aegis128L.encrypt(&c, &tag, &m, &ad, nonce, key); try Aegis128L.decrypt(&m2, &c, tag, &ad, nonce, key); try testing.expectEqualSlices(u8, &m, &m2); try htest.assertEqual("41de9000a7b5e40e2d68bb64d99ebb19", &c); try htest.assertEqual("f4d997cc9b94227ada4fe4165422b1c8", &tag); } test "Aegis128L test vector 3" { const key: [Aegis128L.key_length]u8 = [_]u8{0x00} ** 16; const nonce: [Aegis128L.nonce_length]u8 = [_]u8{0x00} ** 16; const ad = [_]u8{}; const m = [_]u8{}; var c: [m.len]u8 = undefined; var m2: [m.len]u8 = undefined; var tag: [Aegis128L.tag_length]u8 = undefined; Aegis128L.encrypt(&c, &tag, &m, &ad, nonce, key); try Aegis128L.decrypt(&m2, &c, tag, &ad, nonce, key); try testing.expectEqualSlices(u8, &m, &m2); try htest.assertEqual("83cc600dc4e3e7e62d4055826174f149", &tag); } test "Aegis256 test vector 1" { const key: [Aegis256.key_length]u8 = [_]u8{ 0x10, 0x01 } ++ [_]u8{0x00} ** 30; const nonce: [Aegis256.nonce_length]u8 = [_]u8{ 0x10, 0x00, 0x02 } ++ [_]u8{0x00} ** 29; const ad = [8]u8{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 }; const m = [32]u8{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f }; var c: [m.len]u8 = undefined; var m2: [m.len]u8 = undefined; var tag: [Aegis256.tag_length]u8 = undefined; Aegis256.encrypt(&c, &tag, &m, &ad, nonce, key); try Aegis256.decrypt(&m2, &c, tag, &ad, nonce, key); try testing.expectEqualSlices(u8, &m, &m2); try htest.assertEqual("f373079ed84b2709faee373584585d60accd191db310ef5d8b11833df9dec711", &c); try htest.assertEqual("8d86f91ee606e9ff26a01b64ccbdd91d", &tag); c[0] +%= 1; try testing.expectError(error.AuthenticationFailed, Aegis256.decrypt(&m2, &c, tag, &ad, nonce, key)); c[0] -%= 1; tag[0] +%= 1; try testing.expectError(error.AuthenticationFailed, Aegis256.decrypt(&m2, &c, tag, &ad, nonce, key)); } test "Aegis256 test vector 2" { const key: [Aegis256.key_length]u8 = [_]u8{0x00} ** 32; const nonce: [Aegis256.nonce_length]u8 = [_]u8{0x00} ** 32; const ad = [_]u8{}; const m = [_]u8{0x00} ** 16; var c: [m.len]u8 = undefined; var m2: [m.len]u8 = undefined; var tag: [Aegis256.tag_length]u8 = undefined; Aegis256.encrypt(&c, &tag, &m, &ad, nonce, key); try Aegis256.decrypt(&m2, &c, tag, &ad, nonce, key); try testing.expectEqualSlices(u8, &m, &m2); try htest.assertEqual("b98f03a947807713d75a4fff9fc277a6", &c); try htest.assertEqual("478f3b50dc478ef7d5cf2d0f7cc13180", &tag); } test "Aegis256 test vector 3" { const key: [Aegis256.key_length]u8 = [_]u8{0x00} ** 32; const nonce: [Aegis256.nonce_length]u8 = [_]u8{0x00} ** 32; const ad = [_]u8{}; const m = [_]u8{}; var c: [m.len]u8 = undefined; var m2: [m.len]u8 = undefined; var tag: [Aegis256.tag_length]u8 = undefined; Aegis256.encrypt(&c, &tag, &m, &ad, nonce, key); try Aegis256.decrypt(&m2, &c, tag, &ad, nonce, key); try testing.expectEqualSlices(u8, &m, &m2); try htest.assertEqual("f7a0878f68bd083e8065354071fc27c3", &tag); } test "Aegis MAC" { const key = [_]u8{0x00} ** Aegis128LMac.key_length; var msg: [64]u8 = undefined; for (&msg, 0..) |*m, i| { m.* = @as(u8, @truncate(i)); } const st_init = Aegis128LMac.init(&key); var st = st_init; var tag: [Aegis128LMac.mac_length]u8 = undefined; st.update(msg[0..32]); st.update(msg[32..]); st.final(&tag); try htest.assertEqual("f8840849602738d81037cbaa0f584ea95759e2ac60263ce77346bcdc79fe4319", &tag); st = st_init; st.update(msg[0..31]); st.update(msg[31..]); st.final(&tag); try htest.assertEqual("f8840849602738d81037cbaa0f584ea95759e2ac60263ce77346bcdc79fe4319", &tag); st = st_init; st.update(msg[0..14]); st.update(msg[14..30]); st.update(msg[30..]); st.final(&tag); try htest.assertEqual("f8840849602738d81037cbaa0f584ea95759e2ac60263ce77346bcdc79fe4319", &tag); var empty: [0]u8 = undefined; const nonce = [_]u8{0x00} ** Aegis128L_256.nonce_length; Aegis128L_256.encrypt(&empty, &tag, &empty, &msg, nonce, key); try htest.assertEqual("f8840849602738d81037cbaa0f584ea95759e2ac60263ce77346bcdc79fe4319", &tag); // An update whose size is not a multiple of the block size st = st_init; st.update(msg[0..33]); st.final(&tag); try htest.assertEqual("c7cf649a844c1a6676cf6d91b1658e0aee54a4da330b0a8d3bc7ea4067551d1b", &tag); } |
Generated by zstd-live on 2025-08-12 12:37:58 UTC. |