zig/lib/std / crypto/sha3.zig

TurboSHAKE128 is a XOF (a secure hash function with a variable output length), with a 128 bit security level. It is based on the same permutation as SHA3 and SHAKE128, but which much higher performance. The delimiter is 0x1f by default, but can be changed for context-separation. For a protocol that uses both KangarooTwelve and TurboSHAKE128, it is recommended to avoid using 0x06, 0x07 or 0x0b for the delimiter.

const std = @import("std");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;

Sha3_224

TurboSHAKE256 is a XOF (a secure hash function with a variable output length), with a 256 bit security level. It is based on the same permutation as SHA3 and SHAKE256, but which much higher performance. The delimiter is 0x1f by default, but can be changed for context-separation.


const KeccakState = std.crypto.core.keccak.State;

Sha3_256

A generic Keccak hash function.


pub const Sha3_224 = Keccak(1600, 224, 0x06, 24);
pub const Sha3_256 = Keccak(1600, 256, 0x06, 24);

Sha3_384

The output length, in bytes.

pub const Sha3_384 = Keccak(1600, 384, 0x06, 24);

Sha3_512

The block length, or rate, in bytes.

pub const Sha3_512 = Keccak(1600, 512, 0x06, 24);

Keccak256

The delimiter can be overwritten in the options.


pub const Keccak256 = Keccak(1600, 256, 0x01, 24);

Keccak512

Initialize a Keccak hash function.

pub const Keccak512 = Keccak(1600, 512, 0x01, 24);

Keccak_256

Hash a slice of bytes.

pub const Keccak_256 = @compileError("Deprecated: use `Keccak256` instead");

Keccak_512

Absorb a slice of bytes into the state.

pub const Keccak_512 = @compileError("Deprecated: use `Keccak512` instead");

Shake128

Return the hash of the absorbed bytes.


pub const Shake128 = Shake(128);

Shake256

The SHAKE extendable output hash function.

pub const Shake256 = Shake(256);

CShake128

The TurboSHAKE extendable output hash function. It is based on the same permutation as SHA3 and SHAKE, but which much higher performance. The delimiter is 0x1f by default, but can be changed for context-separation. https://eprint.iacr.org/2023/342


pub const CShake128 = CShake(128, null);

CShake256

The recommended output length, in bytes.

pub const CShake256 = CShake(256, null);

KMac128

The block length, or rate, in bytes.


pub const KMac128 = KMac(128);

KMac256

The delimiter can be overwritten in the options.

pub const KMac256 = KMac(256);

TupleHash128

Initialize a SHAKE extensible hash function.


pub const TupleHash128 = TupleHash(128);

TupleHash256

Hash a slice of bytes. out can be any length.

pub const TupleHash256 = TupleHash(256);

TurboShake128()

Absorb a slice of bytes into the state.


/// TurboSHAKE128 is a XOF (a secure hash function with a variable output length), with a 128 bit security level.
/// It is based on the same permutation as SHA3 and SHAKE128, but which much higher performance.
/// The delimiter is 0x1f by default, but can be changed for context-separation.
/// For a protocol that uses both KangarooTwelve and TurboSHAKE128, it is recommended to avoid using 0x06, 0x07 or 0x0b for the delimiter.
pub fn TurboShake128(delim: ?u7) type {
    return TurboShake(128, delim);

Options

Squeeze a slice of bytes from the state. out can be any length, and the function can be called multiple times.

}

Keccak()

Return the hash of the absorbed bytes. out can be of any length, but the function must not be called multiple times (use squeeze for that purpose instead).


/// TurboSHAKE256 is a XOF (a secure hash function with a variable output length), with a 256 bit security level.
/// It is based on the same permutation as SHA3 and SHAKE256, but which much higher performance.
/// The delimiter is 0x1f by default, but can be changed for context-separation.
pub fn TurboShake256(comptime delim: ?u7) type {
    return TurboShake(256, delim);

Options

Align the input to a block boundary.

}

block_length

The cSHAKE extendable output hash function. cSHAKE is similar to SHAKE, but in addition to the input message, it also takes an optional context (aka customization string).


/// A generic Keccak hash function.
pub fn Keccak(comptime f: u11, comptime output_bits: u11, comptime default_delim: u8, comptime rounds: u5) type {
    comptime assert(output_bits > 0 and output_bits * 2 < f and output_bits % 8 == 0); // invalid output length

Options

The recommended output length, in bytes.


    const State = KeccakState(f, output_bits * 2, rounds);

init()

The block length, or rate, in bytes.


    return struct {
        const Self = @This();

hash()

cSHAKE options can include a context string.


        st: State,

update()

Initialize a SHAKE extensible hash function.


        /// The output length, in bytes.
        pub const digest_length = output_bits / 8;
        /// The block length, or rate, in bytes.

block_length

Hash a slice of bytes. out can be any length.

        pub const block_length = State.rate;
        /// The delimiter can be overwritten in the options.

Options

Absorb a slice of bytes into the state.

        pub const Options = struct { delim: u8 = default_delim };

Writer

Squeeze a slice of bytes from the state. out can be any length, and the function can be called multiple times.


        /// Initialize a Keccak hash function.

init()

Return the hash of the absorbed bytes. out can be of any length, but the function must not be called multiple times (use squeeze for that purpose instead).

        pub fn init(options: Options) Self {
            return Self{ .st = .{ .delim = options.delim } };
        }

Shake()

Align the input to a block boundary.


        /// Hash a slice of bytes.
        pub fn hash(bytes: []const u8, out: *[digest_length]u8, options: Options) void {
            var st = Self.init(options);
            st.update(bytes);
            st.final(out);
        }

TurboShake()

The KMAC extendable output authentication function. KMAC is a keyed version of the cSHAKE function, with an optional context. It can be used as an SHA-3 based alternative to HMAC, as well as a generic keyed XoF (extendable output function).


        /// Absorb a slice of bytes into the state.

update()

The recommended output length, in bytes.

        pub fn update(self: *Self, bytes: []const u8) void {
            self.st.absorb(bytes);
        }

block_length

The minimum output length, in bytes.


        /// Return the hash of the absorbed bytes.
        pub fn final(self: *Self, out: *[digest_length]u8) void {
            self.st.pad();
            self.st.squeeze(out[0..]);
        }

Options

The recommended key length, in bytes.


Error

The minimum key length, in bytes.

        pub const Error = error{};

Writer

The block length, or rate, in bytes.

        pub const Writer = std.io.Writer(*Self, Error, write);

update()

KMAC options can include a context string.


        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

squeeze()

Initialize a state for the KMAC function, with an optional context and an arbitrary-long key. If the context and key are going to be reused, the structure can be initialized once, and cloned for each message. This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.


writer()

Initialize a state for the KMAC function. If the context and key are going to be reused, the structure can be initialized once, and cloned for each message. This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };

Error

Add data to the state.

}

Error

Return an authentication tag for the current state.


/// The SHAKE extendable output hash function.
pub fn Shake(comptime security_level: u11) type {
    return ShakeLike(security_level, 0x1f, 24);

Options

Squeeze a slice of bytes from the state. out can be any length, and the function can be called multiple times.

}

writer()

Return an authentication tag for a message and a key, with an optional context.


/// The TurboSHAKE extendable output hash function.
/// It is based on the same permutation as SHA3 and SHAKE, but which much higher performance.
/// The delimiter is 0x1f by default, but can be changed for context-separation.
/// https://eprint.iacr.org/2023/342
pub fn TurboShake(comptime security_level: u11, comptime delim: ?u7) type {
    comptime assert(security_level <= 256);
    const d = delim orelse 0x1f;
    comptime assert(d >= 0x01); // delimiter must be >= 1
    return ShakeLike(security_level, d, 12);

Options

Return an authentication tag for a message and a key.

}

digest_length

The TupleHash extendable output hash function, with domain-separated inputs. TupleHash is a secure hash function with a variable output length, based on the cSHAKE function. It is designed for unambiguously hashing tuples of data. With most hash functions, calling update("A") followed by update("B")is identical to update("AB"). With TupleHash, this is not the case: update("A"); update("B") is different from update("AB"). Any number of inputs can be hashed, and the output depends on individual inputs and their order.


fn ShakeLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5) type {
    const f = 1600;
    const State = KeccakState(f, security_level * 2, rounds);

block_length

The output length, in bytes.


    return struct {
        const Self = @This();

Options

The block length, or rate, in bytes.


        st: State,
        buf: [State.rate]u8 = undefined,
        offset: usize = 0,
        padded: bool = false,

init()

TupleHash options can include a context string.


        /// The recommended output length, in bytes.
        pub const digest_length = security_level / 8 * 2;
        /// The block length, or rate, in bytes.
        pub const block_length = State.rate;
        /// The delimiter can be overwritten in the options.
        pub const Options = struct { delim: u8 = default_delim };

hash()

Initialize a state for the TupleHash function, with an optional context. If the context is going to be reused, the structure can be initialized once, and cloned for each message. This is more efficient than reinitializing the state for each message at the cost of a small amount of memory. A key can be optionally added to the context to create a keyed TupleHash function, similar to KMAC.


        /// Initialize a SHAKE extensible hash function.
        pub fn init(options: Options) Self {
            return Self{ .st = .{ .delim = options.delim } };
        }

update()

Initialize a state for the MAC function.


        /// Hash a slice of bytes.
        /// `out` can be any length.
        pub fn hash(bytes: []const u8, out: []u8, options: Options) void {
            var st = Self.init(options);
            st.update(bytes);
            st.squeeze(out);
        }

squeeze()

Add data to the state, separated from previous updates.


        /// Absorb a slice of bytes into the state.
        pub fn update(self: *Self, bytes: []const u8) void {
            self.st.absorb(bytes);
        }

final()

Return an authentication tag for the current state.


        /// Squeeze a slice of bytes from the state.
        /// `out` can be any length, and the function can be called multiple times.
        pub fn squeeze(self: *Self, out_: []u8) void {
            if (!self.padded) {
                self.st.pad();
                self.padded = true;
            }
            var out = out_;
            if (self.offset > 0) {
                const left = self.buf.len - self.offset;
                if (left > 0) {
                    const n = @min(left, out.len);
                    @memcpy(out[0..n], self.buf[self.offset..][0..n]);
                    out = out[n..];
                    self.offset += n;
                    if (out.len == 0) {
                        return;
                    }
                }
            }
            const full_blocks = out[0 .. out.len - out.len % State.rate];
            if (full_blocks.len > 0) {
                self.st.squeeze(full_blocks);
                out = out[full_blocks.len..];
            }
            if (out.len > 0) {
                self.st.squeeze(self.buf[0..]);
                @memcpy(out[0..], self.buf[0..out.len]);
                self.offset = out.len;
            }
        }

fillBlock()

Align the input to a block boundary.


        /// Return the hash of the absorbed bytes.
        /// `out` can be of any length, but the function must not be called multiple times (use `squeeze` for that purpose instead).

final()

Squeeze a slice of bytes from the state. out can be any length, and the function can be called multiple times.

        pub fn final(self: *Self, out: []u8) void {
            self.squeeze(out);
            self.st.st.clear(0, State.rate);
        }

Writer

The NIST SP 800-185 encoded length format.


        /// Align the input to a block boundary.

fillBlock()

A length encoded according to NIST SP 800-185.

        pub fn fillBlock(self: *Self) void {
            self.st.fillBlock();
        }

KMac()

The size of the encoded value, in bytes.


Error

A buffer to store the encoded length.

        pub const Error = error{};

Writer

Return the encoded length as a slice.

        pub const Writer = std.io.Writer(*Self, Error, write);

key_length

Encode a length according to NIST SP 800-185.


        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

key_length_min


writer()

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };

Error

}

initWithOptions()


/// The cSHAKE extendable output hash function.
/// cSHAKE is similar to SHAKE, but in addition to the input message, it also takes an optional context (aka customization string).
pub fn CShake(comptime security_level: u11, comptime fname: ?[]const u8) type {
    return CShakeLike(security_level, 0x04, 24, fname);

Error

}

update()


fn CShakeLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5, comptime fname: ?[]const u8) type {
    return struct {
        const Shaker = ShakeLike(security_level, default_delim, rounds);
        shaker: Shaker,

final()


        /// The recommended output length, in bytes.
        pub const digest_length = Shaker.digest_length;
        /// The block length, or rate, in bytes.
        pub const block_length = Shaker.block_length;

squeeze()


        /// cSHAKE options can include a context string.
        pub const Options = struct { context: ?[]const u8 = null };

createWithOptions()


        const Self = @This();

create()


        /// Initialize a SHAKE extensible hash function.
        pub fn init(options: Options) Self {
            if (fname == null and options.context == null) {
                return Self{ .shaker = Shaker.init(.{ .delim = 0x1f }) };
            }
            var shaker = Shaker.init(.{});
            comptime assert(Shaker.block_length % 8 == 0);
            const encoded_rate_len = NistLengthEncoding.encode(.left, block_length / 8);
            shaker.update(encoded_rate_len.slice());
            const encoded_zero = comptime NistLengthEncoding.encode(.left, 0);
            if (fname) |name| {
                const encoded_fname_len = comptime NistLengthEncoding.encode(.left, name.len);
                const encoded_fname = comptime encoded_fname_len.slice() ++ name;
                shaker.update(encoded_fname);
            } else {
                shaker.update(encoded_zero.slice());
            }
            if (options.context) |context| {
                const encoded_context_len = NistLengthEncoding.encode(.left, context.len);
                shaker.update(encoded_context_len.slice());
                shaker.update(context);
            } else {
                shaker.update(encoded_zero.slice());
            }
            shaker.st.fillBlock();
            return Self{ .shaker = shaker };
        }

Error


        /// Hash a slice of bytes.
        /// `out` can be any length.
        pub fn hash(bytes: []const u8, out: []u8, options: Options) void {
            var st = Self.init(options);
            st.update(bytes);
            st.squeeze(out);
        }

Writer


        /// Absorb a slice of bytes into the state.
        pub fn update(self: *Self, bytes: []const u8) void {
            self.shaker.update(bytes);
        }

writer()


        /// Squeeze a slice of bytes from the state.
        /// `out` can be any length, and the function can be called multiple times.

squeeze()

        pub fn squeeze(self: *Self, out: []u8) void {
            self.shaker.squeeze(out);
        }

digest_length


        /// Return the hash of the absorbed bytes.
        /// `out` can be of any length, but the function must not be called multiple times (use `squeeze` for that purpose instead).

final()

        pub fn final(self: *Self, out: []u8) void {
            self.shaker.final(out);
        }

Options


        /// Align the input to a block boundary.

fillBlock()

        pub fn fillBlock(self: *Self) void {
            self.shaker.fillBlock();
        }

init()


Error

        pub const Error = error{};

Writer

        pub const Writer = std.io.Writer(*Self, Error, write);

fillBlock()


        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

squeeze()


writer()

        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };
}

Writer


/// The KMAC extendable output authentication function.
/// KMAC is a keyed version of the cSHAKE function, with an optional context.
/// It can be used as an SHA-3 based alternative to HMAC, as well as a generic keyed XoF (extendable output function).
pub fn KMac(comptime security_level: u11) type {
    return KMacLike(security_level, 0x04, 24);
}

writer()


fn KMacLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5) type {
    const CShaker = CShakeLike(security_level, default_delim, rounds, "KMAC");

NistLengthEncoding


    return struct {
        const Self = @This();

Length


        /// The recommended output length, in bytes.
        pub const mac_length = CShaker.digest_length;
        /// The minimum output length, in bytes.
        pub const mac_length_min = 4;
        /// The recommended key length, in bytes.
        pub const key_length = security_level / 8;
        /// The minimum key length, in bytes.
        pub const key_length_min = 0;
        /// The block length, or rate, in bytes.
        pub const block_length = CShaker.block_length;

slice()


        cshaker: CShaker,
        xof_mode: bool = false,

encode()


        /// KMAC options can include a context string.
        pub const Options = struct {
            context: ?[]const u8 = null,
        };

Test:

sha3-224 single


        /// Initialize a state for the KMAC function, with an optional context and an arbitrary-long key.
        /// If the context and key are going to be reused, the structure can be initialized once, and cloned for each message.
        /// This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.
        pub fn initWithOptions(key: []const u8, options: Options) Self {
            var cshaker = CShaker.init(.{ .context = options.context });
            const encoded_rate_len = NistLengthEncoding.encode(.left, block_length / 8);
            cshaker.update(encoded_rate_len.slice());
            const encoded_key_len = NistLengthEncoding.encode(.left, key.len);
            cshaker.update(encoded_key_len.slice());
            cshaker.update(key);
            cshaker.fillBlock();
            return Self{
                .cshaker = cshaker,
            };
        }

Test:

sha3-224 streaming


        /// Initialize a state for the KMAC function.
        /// If the context and key are going to be reused, the structure can be initialized once, and cloned for each message.
        /// This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.
        pub fn init(key: []const u8) Self {
            return initWithOptions(key, .{});
        }

Test:

sha3-256 single


        /// Add data to the state.
        pub fn update(self: *Self, b: []const u8) void {
            self.cshaker.update(b);
        }

Test:

sha3-256 streaming


        /// Return an authentication tag for the current state.
        pub fn final(self: *Self, out: []u8) void {
            const encoded_out_len = NistLengthEncoding.encode(.right, out.len);
            self.update(encoded_out_len.slice());
            self.cshaker.final(out);
        }

Test:

sha3-256 aligned final


        /// Squeeze a slice of bytes from the state.
        /// `out` can be any length, and the function can be called multiple times.
        pub fn squeeze(self: *Self, out: []u8) void {
            if (!self.xof_mode) {
                const encoded_out_len = comptime NistLengthEncoding.encode(.right, 0);
                self.update(encoded_out_len.slice());
                self.xof_mode = true;
            }
            self.cshaker.squeeze(out);
        }

Test:

sha3-384 single


        /// Return an authentication tag for a message and a key, with an optional context.
        pub fn createWithOptions(out: []u8, msg: []const u8, key: []const u8, options: Options) void {
            var ctx = Self.initWithOptions(key, options);
            ctx.update(msg);
            ctx.final(out);
        }

Test:

sha3-384 streaming


        /// Return an authentication tag for a message and a key.
        pub fn create(out: []u8, msg: []const u8, key: []const u8) void {
            var ctx = Self.init(key);
            ctx.update(msg);
            ctx.final(out);
        }

Test:

sha3-512 single


        pub const Error = error{};
        pub const Writer = std.io.Writer(*Self, Error, write);

Test:

sha3-512 streaming


        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

Test:

sha3-512 aligned final


        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };
}

Test:

keccak-256 single


/// The TupleHash extendable output hash function, with domain-separated inputs.
/// TupleHash is a secure hash function with a variable output length, based on the cSHAKE function.
/// It is designed for unambiguously hashing tuples of data.
///
/// With most hash functions, calling `update("A")` followed by `update("B")`is identical to `update("AB")`.
/// With TupleHash, this is not the case: `update("A"); update("B")` is different from `update("AB")`.
///
/// Any number of inputs can be hashed, and the output depends on individual inputs and their order.
pub fn TupleHash(comptime security_level: u11) type {
    return TupleHashLike(security_level, 0x04, 24);
}

Test:

keccak-512 single


fn TupleHashLike(comptime security_level: u11, comptime default_delim: u8, comptime rounds: u5) type {
    const CShaker = CShakeLike(security_level, default_delim, rounds, "TupleHash");

Test:

SHAKE-128 single


    return struct {
        const Self = @This();

Test:

SHAKE-128 multisqueeze


        /// The output length, in bytes.
        pub const digest_length = CShaker.digest_length;
        /// The block length, or rate, in bytes.
        pub const block_length = CShaker.block_length;

Test:

SHAKE-128 multisqueeze with multiple blocks


        cshaker: CShaker,
        xof_mode: bool = false,

Test:

SHAKE-256 single


        /// TupleHash options can include a context string.
        pub const Options = struct {
            context: ?[]const u8 = null,
        };

Test:

TurboSHAKE-128


        /// Initialize a state for the TupleHash function, with an optional context.
        /// If the context is going to be reused, the structure can be initialized once, and cloned for each message.
        /// This is more efficient than reinitializing the state for each message at the cost of a small amount of memory.
        ///
        /// A key can be optionally added to the context to create a keyed TupleHash function, similar to KMAC.
        pub fn initWithOptions(options: Options) Self {
            const cshaker = CShaker.init(.{ .context = options.context });
            return Self{
                .cshaker = cshaker,
            };
        }

Test:

SHA-3 with streaming


        /// Initialize a state for the MAC function.
        pub fn init() Self {
            return initWithOptions(.{});
        }

Test:

cSHAKE-128 with no context nor function name


        /// Add data to the state, separated from previous updates.
        pub fn update(self: *Self, b: []const u8) void {
            const encoded_b_len = NistLengthEncoding.encode(.left, b.len);
            self.cshaker.update(encoded_b_len.slice());
            self.cshaker.update(b);
        }

Test:

cSHAKE-128 with context


        /// Return an authentication tag for the current state.
        pub fn final(self: *Self, out: []u8) void {
            const encoded_out_len = NistLengthEncoding.encode(.right, out.len);
            self.cshaker.update(encoded_out_len.slice());
            self.cshaker.final(out);
        }

Test:

cSHAKE-128 with context and function


        /// Align the input to a block boundary.
        pub fn fillBlock(self: *Self) void {
            self.cshaker.fillBlock();
        }

Test:

cSHAKE-256


        /// Squeeze a slice of bytes from the state.
        /// `out` can be any length, and the function can be called multiple times.
        pub fn squeeze(self: *Self, out: []u8) void {
            if (!self.xof_mode) {
                const encoded_out_len = comptime NistLengthEncoding.encode(.right, 0);
                self.update(encoded_out_len.slice());
                self.xof_mode = true;
            }
            self.cshaker.squeeze(out);
        }

Test:

KMAC-128 with empty key and message


        pub const Error = error{};
        pub const Writer = std.io.Writer(*Self, Error, write);

Test:

KMAC-128


        fn write(self: *Self, bytes: []const u8) Error!usize {
            self.update(bytes);
            return bytes.len;
        }

Test:

KMAC-128 with a customization string


        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }
    };
}

Test:

KMACXOF-128


/// The NIST SP 800-185 encoded length format.
pub const NistLengthEncoding = enum {
    left,
    right,

Test:

KMACXOF-256


    /// A length encoded according to NIST SP 800-185.
    pub const Length = struct {
        /// The size of the encoded value, in bytes.
        len: usize = 0,
        /// A buffer to store the encoded length.
        buf: [@sizeOf(usize) + 1]u8 = undefined,

Test:

TupleHash-128


        /// Return the encoded length as a slice.
        pub fn slice(self: *const Length) []const u8 {
            return self.buf[0..self.len];
        }
    };

Test:

TupleHash-256


    /// Encode a length according to NIST SP 800-185.
    pub fn encode(comptime encoding: NistLengthEncoding, len: usize) Length {
        const len_bits = @bitSizeOf(@TypeOf(len)) - @clz(len) + 3;
        const len_bytes = std.math.divCeil(usize, len_bits, 8) catch unreachable;

        var res = Length{ .len = len_bytes + 1 };
        if (encoding == .right) {
            res.buf[len_bytes] = @intCast(len_bytes);
        }
        const end = if (encoding == .right) len_bytes - 1 else len_bytes;
        res.buf[end] = @truncate(len << 3);
        var len_ = len >> 5;
        for (1..len_bytes) |i| {
            res.buf[end - i] = @truncate(len_);
            len_ >>= 8;
        }
        if (encoding == .left) {
            res.buf[0] = @intCast(len_bytes);
        }
        return res;
    }
};

const htest = @import("test.zig");

test "sha3-224 single" {
    try htest.assertEqualHash(Sha3_224, "6b4e03423667dbb73b6e15454f0eb1abd4597f9a1b078e3f5b5a6bc7", "");
    try htest.assertEqualHash(Sha3_224, "e642824c3f8cf24ad09234ee7d3c766fc9a3a5168d0c94ad73b46fdf", "abc");
    try htest.assertEqualHash(Sha3_224, "543e6868e1666c1a643630df77367ae5a62a85070a51c14cbf665cbc", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "sha3-224 streaming" {
    var h = Sha3_224.init(.{});
    var out: [28]u8 = undefined;

    h.final(out[0..]);
    try htest.assertEqual("6b4e03423667dbb73b6e15454f0eb1abd4597f9a1b078e3f5b5a6bc7", out[0..]);

    h = Sha3_224.init(.{});
    h.update("abc");
    h.final(out[0..]);
    try htest.assertEqual("e642824c3f8cf24ad09234ee7d3c766fc9a3a5168d0c94ad73b46fdf", out[0..]);

    h = Sha3_224.init(.{});
    h.update("a");
    h.update("b");
    h.update("c");
    h.final(out[0..]);
    try htest.assertEqual("e642824c3f8cf24ad09234ee7d3c766fc9a3a5168d0c94ad73b46fdf", out[0..]);
}

test "sha3-256 single" {
    try htest.assertEqualHash(Sha3_256, "a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a", "");
    try htest.assertEqualHash(Sha3_256, "3a985da74fe225b2045c172d6bd390bd855f086e3e9d525b46bfe24511431532", "abc");
    try htest.assertEqualHash(Sha3_256, "916f6061fe879741ca6469b43971dfdb28b1a32dc36cb3254e812be27aad1d18", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "sha3-256 streaming" {
    var h = Sha3_256.init(.{});
    var out: [32]u8 = undefined;

    h.final(out[0..]);
    try htest.assertEqual("a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a", out[0..]);

    h = Sha3_256.init(.{});
    h.update("abc");
    h.final(out[0..]);
    try htest.assertEqual("3a985da74fe225b2045c172d6bd390bd855f086e3e9d525b46bfe24511431532", out[0..]);

    h = Sha3_256.init(.{});
    h.update("a");
    h.update("b");
    h.update("c");
    h.final(out[0..]);
    try htest.assertEqual("3a985da74fe225b2045c172d6bd390bd855f086e3e9d525b46bfe24511431532", out[0..]);
}

test "sha3-256 aligned final" {
    var block = [_]u8{0} ** Sha3_256.block_length;
    var out: [Sha3_256.digest_length]u8 = undefined;

    var h = Sha3_256.init(.{});
    h.update(&block);
    h.final(out[0..]);
}

test "sha3-384 single" {
    const h1 = "0c63a75b845e4f7d01107d852e4c2485c51a50aaaa94fc61995e71bbee983a2ac3713831264adb47fb6bd1e058d5f004";
    try htest.assertEqualHash(Sha3_384, h1, "");
    const h2 = "ec01498288516fc926459f58e2c6ad8df9b473cb0fc08c2596da7cf0e49be4b298d88cea927ac7f539f1edf228376d25";
    try htest.assertEqualHash(Sha3_384, h2, "abc");
    const h3 = "79407d3b5916b59c3e30b09822974791c313fb9ecc849e406f23592d04f625dc8c709b98b43b3852b337216179aa7fc7";
    try htest.assertEqualHash(Sha3_384, h3, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "sha3-384 streaming" {
    var h = Sha3_384.init(.{});
    var out: [48]u8 = undefined;

    const h1 = "0c63a75b845e4f7d01107d852e4c2485c51a50aaaa94fc61995e71bbee983a2ac3713831264adb47fb6bd1e058d5f004";
    h.final(out[0..]);
    try htest.assertEqual(h1, out[0..]);

    const h2 = "ec01498288516fc926459f58e2c6ad8df9b473cb0fc08c2596da7cf0e49be4b298d88cea927ac7f539f1edf228376d25";
    h = Sha3_384.init(.{});
    h.update("abc");
    h.final(out[0..]);
    try htest.assertEqual(h2, out[0..]);

    h = Sha3_384.init(.{});
    h.update("a");
    h.update("b");
    h.update("c");
    h.final(out[0..]);
    try htest.assertEqual(h2, out[0..]);
}

test "sha3-512 single" {
    const h1 = "a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26";
    try htest.assertEqualHash(Sha3_512, h1, "");
    const h2 = "b751850b1a57168a5693cd924b6b096e08f621827444f70d884f5d0240d2712e10e116e9192af3c91a7ec57647e3934057340b4cf408d5a56592f8274eec53f0";
    try htest.assertEqualHash(Sha3_512, h2, "abc");
    const h3 = "afebb2ef542e6579c50cad06d2e578f9f8dd6881d7dc824d26360feebf18a4fa73e3261122948efcfd492e74e82e2189ed0fb440d187f382270cb455f21dd185";
    try htest.assertEqualHash(Sha3_512, h3, "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "sha3-512 streaming" {
    var h = Sha3_512.init(.{});
    var out: [64]u8 = undefined;

    const h1 = "a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26";
    h.final(out[0..]);
    try htest.assertEqual(h1, out[0..]);

    const h2 = "b751850b1a57168a5693cd924b6b096e08f621827444f70d884f5d0240d2712e10e116e9192af3c91a7ec57647e3934057340b4cf408d5a56592f8274eec53f0";
    h = Sha3_512.init(.{});
    h.update("abc");
    h.final(out[0..]);
    try htest.assertEqual(h2, out[0..]);

    h = Sha3_512.init(.{});
    h.update("a");
    h.update("b");
    h.update("c");
    h.final(out[0..]);
    try htest.assertEqual(h2, out[0..]);
}

test "sha3-512 aligned final" {
    var block = [_]u8{0} ** Sha3_512.block_length;
    var out: [Sha3_512.digest_length]u8 = undefined;

    var h = Sha3_512.init(.{});
    h.update(&block);
    h.final(out[0..]);
}

test "keccak-256 single" {
    try htest.assertEqualHash(Keccak256, "c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470", "");
    try htest.assertEqualHash(Keccak256, "4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45", "abc");
    try htest.assertEqualHash(Keccak256, "f519747ed599024f3882238e5ab43960132572b7345fbeb9a90769dafd21ad67", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "keccak-512 single" {
    try htest.assertEqualHash(Keccak512, "0eab42de4c3ceb9235fc91acffe746b29c29a8c366b7c60e4e67c466f36a4304c00fa9caf9d87976ba469bcbe06713b435f091ef2769fb160cdab33d3670680e", "");
    try htest.assertEqualHash(Keccak512, "18587dc2ea106b9a1563e32b3312421ca164c7f1f07bc922a9c83d77cea3a1e5d0c69910739025372dc14ac9642629379540c17e2a65b19d77aa511a9d00bb96", "abc");
    try htest.assertEqualHash(Keccak512, "ac2fb35251825d3aa48468a9948c0a91b8256f6d97d8fa4160faff2dd9dfcc24f3f1db7a983dad13d53439ccac0b37e24037e7b95f80f59f37a2f683c4ba4682", "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu");
}

test "SHAKE-128 single" {
    var out: [10]u8 = undefined;
    Shake128.hash("hello123", &out, .{});
    try htest.assertEqual("1b85861510bc4d8e467d", &out);
}

test "SHAKE-128 multisqueeze" {
    var out: [10]u8 = undefined;
    var h = Shake128.init(.{});
    h.update("hello123");
    h.squeeze(out[0..4]);
    h.squeeze(out[4..]);
    try htest.assertEqual("1b85861510bc4d8e467d", &out);
}

test "SHAKE-128 multisqueeze with multiple blocks" {
    var out: [100]u8 = undefined;
    var out2: [100]u8 = undefined;

    var h = Shake128.init(.{});
    h.update("hello123");
    h.squeeze(out[0..50]);
    h.squeeze(out[50..]);

    var h2 = Shake128.init(.{});
    h2.update("hello123");
    h2.squeeze(&out2);
    try std.testing.expectEqualSlices(u8, &out, &out2);
}

test "SHAKE-256 single" {
    var out: [10]u8 = undefined;
    Shake256.hash("hello123", &out, .{});
    try htest.assertEqual("ade612ba265f92de4a37", &out);
}

test "TurboSHAKE-128" {
    var out: [32]u8 = undefined;
    TurboShake(128, 0x06).hash("\xff", &out, .{});
    try htest.assertEqual("8ec9c66465ed0d4a6c35d13506718d687a25cb05c74cca1e42501abd83874a67", &out);
}

test "SHA-3 with streaming" {
    var msg: [613]u8 = [613]u8{ 0x97, 0xd1, 0x2d, 0x1a, 0x16, 0x2d, 0x36, 0x4d, 0x20, 0x62, 0x19, 0x0b, 0x14, 0x93, 0xbb, 0xf8, 0x5b, 0xea, 0x04, 0xc2, 0x61, 0x8e, 0xd6, 0x08, 0x81, 0xa1, 0x1d, 0x73, 0x27, 0x48, 0xbf, 0xa4, 0xba, 0xb1, 0x9a, 0x48, 0x9c, 0xf9, 0x9b, 0xff, 0x34, 0x48, 0xa9, 0x75, 0xea, 0xc8, 0xa3, 0x48, 0x24, 0x9d, 0x75, 0x27, 0x48, 0xec, 0x03, 0xb0, 0xbb, 0xdf, 0x33, 0x90, 0xe3, 0x93, 0xed, 0x68, 0x24, 0x39, 0x12, 0xdf, 0xea, 0xee, 0x8c, 0x9f, 0x96, 0xde, 0x42, 0x46, 0x8c, 0x2b, 0x17, 0x83, 0x36, 0xfb, 0xf4, 0xf7, 0xff, 0x79, 0xb9, 0x45, 0x41, 0xc9, 0x56, 0x1a, 0x6b, 0x0c, 0xa4, 0x1a, 0xdd, 0x6b, 0x95, 0xe8, 0x03, 0x0f, 0x09, 0x29, 0x40, 0x1b, 0xea, 0x87, 0xfa, 0xb9, 0x18, 0xa9, 0x95, 0x07, 0x7c, 0x2f, 0x7c, 0x33, 0xfb, 0xc5, 0x11, 0x5e, 0x81, 0x0e, 0xbc, 0xae, 0xec, 0xb3, 0xe1, 0x4a, 0x26, 0x56, 0xe8, 0x5b, 0x11, 0x9d, 0x37, 0x06, 0x9b, 0x34, 0x31, 0x6e, 0xa3, 0xba, 0x41, 0xbc, 0x11, 0xd8, 0xc5, 0x15, 0xc9, 0x30, 0x2c, 0x9b, 0xb6, 0x71, 0xd8, 0x7c, 0xbc, 0x38, 0x2f, 0xd5, 0xbd, 0x30, 0x96, 0xd4, 0xa3, 0x00, 0x77, 0x9d, 0x55, 0x4a, 0x33, 0x53, 0xb6, 0xb3, 0x35, 0x1b, 0xae, 0xe5, 0xdc, 0x22, 0x23, 0x85, 0x95, 0x88, 0xf9, 0x3b, 0xbf, 0x74, 0x13, 0xaa, 0xcb, 0x0a, 0x60, 0x79, 0x13, 0x79, 0xc0, 0x4a, 0x02, 0xdb, 0x1c, 0xc9, 0xff, 0x60, 0x57, 0x9a, 0x70, 0x28, 0x58, 0x60, 0xbc, 0x57, 0x07, 0xc7, 0x47, 0x1a, 0x45, 0x71, 0x76, 0x94, 0xfb, 0x05, 0xad, 0xec, 0x12, 0x29, 0x5a, 0x44, 0x6a, 0x81, 0xd9, 0xc6, 0xf0, 0xb6, 0x9b, 0x97, 0x83, 0x69, 0xfb, 0xdc, 0x0d, 0x4a, 0x67, 0xbc, 0x72, 0xf5, 0x43, 0x5e, 0x9b, 0x13, 0xf2, 0xe4, 0x6d, 0x49, 0xdb, 0x76, 0xcb, 0x42, 0x6a, 0x3c, 0x9f, 0xa1, 0xfe, 0x5e, 0xca, 0x0a, 0xfc, 0xfa, 0x39, 0x27, 0xd1, 0x3c, 0xcb, 0x9a, 0xde, 0x4c, 0x6b, 0x09, 0x8b, 0x49, 0xfd, 0x1e, 0x3d, 0x5e, 0x67, 0x7c, 0x57, 0xad, 0x90, 0xcc, 0x46, 0x5f, 0x5c, 0xae, 0x6a, 0x9c, 0xb2, 0xcd, 0x2c, 0x89, 0x78, 0xcf, 0xf1, 0x49, 0x96, 0x55, 0x1e, 0x04, 0xef, 0x0e, 0x1c, 0xde, 0x6c, 0x96, 0x51, 0x00, 0xee, 0x9a, 0x1f, 0x8d, 0x61, 0xbc, 0xeb, 0xb1, 0xa6, 0xa5, 0x21, 0x8b, 0xa7, 0xf8, 0x25, 0x41, 0x48, 0x62, 0x5b, 0x01, 0x6c, 0x7c, 0x2a, 0xe8, 0xff, 0xf9, 0xf9, 0x1f, 0xe2, 0x79, 0x2e, 0xd1, 0xff, 0xa3, 0x2e, 0x1c, 0x3a, 0x1a, 0x5d, 0x2b, 0x7b, 0x87, 0x25, 0x22, 0xa4, 0x90, 0xea, 0x26, 0x9d, 0xdd, 0x13, 0x60, 0x4c, 0x10, 0x03, 0xf6, 0x99, 0xd3, 0x21, 0x0c, 0x69, 0xc6, 0xd8, 0xc8, 0x9e, 0x94, 0x89, 0x51, 0x21, 0xe3, 0x9a, 0xcd, 0xda, 0x54, 0x72, 0x64, 0xae, 0x94, 0x79, 0x36, 0x81, 0x44, 0x14, 0x6d, 0x3a, 0x0e, 0xa6, 0x30, 0xbf, 0x95, 0x99, 0xa6, 0xf5, 0x7f, 0x4f, 0xef, 0xc6, 0x71, 0x2f, 0x36, 0x13, 0x14, 0xa2, 0x9d, 0xc2, 0x0c, 0x0d, 0x4e, 0xc0, 0x02, 0xd3, 0x6f, 0xee, 0x98, 0x5e, 0x24, 0x31, 0x74, 0x11, 0x96, 0x6e, 0x43, 0x57, 0xe8, 0x8e, 0xa0, 0x8d, 0x3d, 0x79, 0x38, 0x20, 0xc2, 0x0f, 0xb4, 0x75, 0x99, 0x3b, 0xb1, 0xf0, 0xe8, 0xe1, 0xda, 0xf9, 0xd4, 0xe6, 0xd6, 0xf4, 0x8a, 0x32, 0x4a, 0x4a, 0x25, 0xa8, 0xd9, 0x60, 0xd6, 0x33, 0x31, 0x97, 0xb9, 0xb6, 0xed, 0x5f, 0xfc, 0x15, 0xbd, 0x13, 0xc0, 0x3a, 0x3f, 0x1f, 0x2d, 0x09, 0x1d, 0xeb, 0x69, 0x6a, 0xfe, 0xd7, 0x95, 0x3e, 0x8a, 0x4e, 0xe1, 0x6e, 0x61, 0xb2, 0x6c, 0xe3, 0x2b, 0x70, 0x60, 0x7e, 0x8c, 0xe4, 0xdd, 0x27, 0x30, 0x7e, 0x0d, 0xc7, 0xb7, 0x9a, 0x1a, 0x3c, 0xcc, 0xa7, 0x22, 0x77, 0x14, 0x05, 0x50, 0x57, 0x31, 0x1b, 0xc8, 0xbf, 0xce, 0x52, 0xaf, 0x9c, 0x8e, 0x10, 0x2e, 0xd2, 0x16, 0xb6, 0x6e, 0x43, 0x10, 0xaf, 0x8b, 0xde, 0x1d, 0x60, 0xb2, 0x7d, 0xe6, 0x2f, 0x08, 0x10, 0x12, 0x7e, 0xb4, 0x76, 0x45, 0xb6, 0xd8, 0x9b, 0x26, 0x40, 0xa1, 0x63, 0x5c, 0x7a, 0x2a, 0xb1, 0x8c, 0xd6, 0xa4, 0x6f, 0x5a, 0xae, 0x33, 0x7e, 0x6d, 0x71, 0xf5, 0xc8, 0x6d, 0x80, 0x1c, 0x35, 0xfc, 0x3f, 0xc1, 0xa6, 0xc6, 0x1a, 0x15, 0x04, 0x6d, 0x76, 0x38, 0x32, 0x95, 0xb2, 0x51, 0x1a, 0xe9, 0x3e, 0x89, 0x9f, 0x0c, 0x79 };
    var out: [Sha3_256.digest_length]u8 = undefined;

    Sha3_256.hash(&msg, &out, .{});
    try htest.assertEqual("5780048dfa381a1d01c747906e4a08711dd34fd712ecd7c6801dd2b38fd81a89", &out);

    var h = Sha3_256.init(.{});
    h.update(msg[0..64]);
    h.update(msg[64..613]);
    h.final(&out);
    try htest.assertEqual("5780048dfa381a1d01c747906e4a08711dd34fd712ecd7c6801dd2b38fd81a89", &out);
}

test "cSHAKE-128 with no context nor function name" {
    var out: [32]u8 = undefined;
    CShake128.hash("hello123", &out, .{});
    try htest.assertEqual("1b85861510bc4d8e467d6f8a92270533cbaa7ba5e06c2d2a502854bac468b8b9", &out);
}

test "cSHAKE-128 with context" {
    var out: [32]u8 = undefined;
    CShake128.hash("hello123", &out, .{ .context = "custom" });
    try htest.assertEqual("7509fa13a6bd3e38ad5c6fac042142c233996e40ebffc86c276f108b3b19cc6a", &out);
}

test "cSHAKE-128 with context and function" {
    var out: [32]u8 = undefined;
    CShake(128, "function").hash("hello123", &out, .{ .context = "custom" });
    try htest.assertEqual("ad7f4d7db2d96587fcd5047c65d37c368f5366e3afac60bb9b66b0bb95dfb675", &out);
}

test "cSHAKE-256" {
    var out: [32]u8 = undefined;
    CShake256.hash("hello123", &out, .{ .context = "custom" });
    try htest.assertEqual("dabe027eb1a6cbe3a0542d0560eb4e6b39146dd72ae1bf89c970a61bd93b1813", &out);
}

test "KMAC-128 with empty key and message" {
    var out: [KMac128.mac_length]u8 = undefined;
    const key = "";
    KMac128.create(&out, "", key);
    try htest.assertEqual("5c135c615152fb4d9784dd1155f9b6034e013fd77165c327dfa4d36701983ef7", &out);
}

test "KMAC-128" {
    var out: [KMac128.mac_length]u8 = undefined;
    const key = "A KMAC secret key";
    KMac128.create(&out, "hello123", key);
    try htest.assertEqual("1fa1c0d761129a83f9a4299ca137674de8373a3cc437799ae4c129e651627f8e", &out);
}

test "KMAC-128 with a customization string" {
    var out: [KMac128.mac_length]u8 = undefined;
    const key = "A KMAC secret key";
    KMac128.createWithOptions(&out, "hello123", key, .{ .context = "custom" });
    try htest.assertEqual("c58c6d42dc00a27dfa8e7e08f8c9307cecb5d662ddb11b6c36057fc2e0e068ba", &out);
}

test "KMACXOF-128" {
    const key = "A KMAC secret key";
    var xof = KMac128.init(key);
    xof.update("hello123");
    var out: [50]u8 = undefined;
    xof.squeeze(&out);
    try htest.assertEqual("628c2fb870d294b3673ac82d9f0d651aae6a5bb8084ea8cd8343cb888d075b9053173200a71f301141069c3c0322527981f7", &out);
    xof.squeeze(&out);
    try htest.assertEqual("7b638e178cfdac5727a4ea7694efaa967a65a1d0034501855acff506b4158d187d5a18d668e67b43f2abf61144b20ed4c09f", &out);
}

test "KMACXOF-256" {
    const key = "A KMAC secret key";
    var xof = KMac256.init(key);
    xof.update("hello123");
    var out: [50]u8 = undefined;
    xof.squeeze(&out);
    try htest.assertEqual("23fc644bc2655ba6fde7b7c11f2804f22e8d8c6bd7db856268bf3370ce2362703f6c7e91916a1b8c116e60edfbcb25613054", &out);
    xof.squeeze(&out);
    try htest.assertEqual("ff97251020ff255ee65a1c1f5f78ebe904f61211c39f973f82fbce2b196b9f51c2cb12afe51549a0f1eaf7954e657ba11af3", &out);
}

test "TupleHash-128" {
    var st = TupleHash128.init();
    st.update("hello");
    st.update("123");
    var out: [32]u8 = undefined;
    st.final(&out);
    try htest.assertEqual("3938d49ade8ec0f0c305ac63497b2d2e8b2f650714f9667cc41816b1c11ffd20", &out);
}

test "TupleHash-256" {
    var st = TupleHash256.init();
    st.update("hello");
    st.update("123");
    var out: [64]u8 = undefined;
    st.final(&out);
    try htest.assertEqual("2dca563c2882f2ba4f46a441a4c5e13fb97150d1436fe99c7e4e43a2d20d0f1cd3d38483bde4a966930606dfa6c61c4ca6400aeedfb474d1bf0d7f6a70968289", &out);
}