|
const std = @import("std.zig"); const builtin = @import("builtin"); const assert = std.debug.assert; const autoHash = std.hash.autoHash; const math = std.math; const mem = std.mem; const Allocator = mem.Allocator; const Wyhash = std.hash.Wyhash; |
getAutoHashFn()Key memory is managed by the caller. Keys and values will not automatically be freed. |
pub fn getAutoHashFn(comptime K: type, comptime Context: type) (fn (Context, K) u64) { comptime { assert(@hasDecl(std, "StringHashMap")); // detect when the following message needs updated if (K == []const u8) { @compileError("std.auto_hash.autoHash does not allow slices here (" ++ @typeName(K) ++ ") because the intent is unclear. " ++ "Consider using std.StringHashMap for hashing the contents of []const u8. " ++ "Alternatively, consider using std.auto_hash.hash or providing your own hash function instead."); } } |
getAutoEqlFn()This function issues a compile error with a helpful message if there is a problem with the provided context type. A context must have the following member functions: - hash(self, PseudoKey) Hash - eql(self, PseudoKey, Key) bool If you are passing a context to a *Adapted function, PseudoKey is the type of the key parameter. Otherwise, when creating a HashMap or HashMapUnmanaged type, PseudoKey = Key = K. |
return struct { fn hash(ctx: Context, key: K) u64 { _ = ctx; if (std.meta.hasUniqueRepresentation(K)) { return Wyhash.hash(0, std.mem.asBytes(&key)); } else { var hasher = Wyhash.init(0); autoHash(&hasher, key); return hasher.final(); } } }.hash; } |
AutoHashMap()General purpose hash table.
No order is guaranteed and any modification invalidates live iterators.
It provides fast operations (lookup, insertion, deletion) with quite high
load factors (up to 80% by default) for low memory usage.
For a hash map that can be initialized directly that does not store an Allocator
field, see |
pub fn getAutoEqlFn(comptime K: type, comptime Context: type) (fn (Context, K, K) bool) { return struct { fn eql(ctx: Context, a: K, b: K) bool { _ = ctx; return std.meta.eql(a, b); } }.eql; } |
AutoHashMapUnmanaged()The type of the unmanaged hash map underlying this wrapper |
pub fn AutoHashMap(comptime K: type, comptime V: type) type { return HashMap(K, V, AutoContext(K), default_max_load_percentage); } |
AutoContext()An entry, containing pointers to a key and value stored in the map |
pub fn AutoHashMapUnmanaged(comptime K: type, comptime V: type) type { return HashMapUnmanaged(K, V, AutoContext(K), default_max_load_percentage); } |
hashA copy of a key and value which are no longer in the map |
pub fn AutoContext(comptime K: type) type { return struct { pub const hash = getAutoHashFn(K, @This()); |
eqlThe integer type that is the result of hashing |
pub const eql = getAutoEqlFn(K, @This()); }; } |
StringHashMap()The iterator type returned by iterator() |
/// Builtin hashmap for strings as keys. /// Key memory is managed by the caller. Keys and values /// will not automatically be freed. pub fn StringHashMap(comptime V: type) type { return HashMap([]const u8, V, StringContext, default_max_load_percentage); } |
StringHashMapUnmanaged()The integer type used to store the size of the map |
/// Key memory is managed by the caller. Keys and values /// will not automatically be freed. pub fn StringHashMapUnmanaged(comptime V: type) type { return HashMapUnmanaged([]const u8, V, StringContext, default_max_load_percentage); } |
StringContextThe type returned from getOrPut and variants |
pub const StringContext = struct { |
hash()Create a managed hash map with an empty context. If the context is not zero-sized, you must use initContext(allocator, ctx) instead. |
pub fn hash(self: @This(), s: []const u8) u64 { _ = self; return hashString(s); } |
eql()Create a managed hash map with a context |
pub fn eql(self: @This(), a: []const u8, b: []const u8) bool { _ = self; return eqlString(a, b); } }; |
eqlString()Puts the hash map into a state where any method call that would
cause an existing key or value pointer to become invalidated will
instead trigger an assertion.
An additional call to |
pub fn eqlString(a: []const u8, b: []const u8) bool { return mem.eql(u8, a, b); } |
hashString()Undoes a call to |
pub fn hashString(s: []const u8) u64 { return std.hash.Wyhash.hash(0, s); } |
StringIndexContextRelease the backing array and invalidate this map. This does *not* deinit keys, values, or the context! If your keys or values need to be released, ensure that that is done before calling this function. |
pub const StringIndexContext = struct { bytes: *const std.ArrayListUnmanaged(u8), |
eql()Empty the map, but keep the backing allocation for future use. This does *not* free keys or values! Be sure to release them if they need deinitialization before calling this function. |
pub fn eql(_: @This(), a: u32, b: u32) bool { return a == b; } |
hash()Empty the map and release the backing allocation. This does *not* free keys or values! Be sure to release them if they need deinitialization before calling this function. |
pub fn hash(ctx: @This(), key: u32) u64 { return hashString(mem.sliceTo(ctx.bytes.items[key..], 0)); } }; |
StringIndexAdapterReturn the number of items in the map. |
pub const StringIndexAdapter = struct { bytes: *const std.ArrayListUnmanaged(u8), |
eql()Create an iterator over the entries in the map. The iterator is invalidated if the map is modified. |
pub fn eql(ctx: @This(), a: []const u8, b: u32) bool { return mem.eql(u8, a, mem.sliceTo(ctx.bytes.items[b..], 0)); } |
hash()Create an iterator over the keys in the map. The iterator is invalidated if the map is modified. |
pub fn hash(_: @This(), adapted_key: []const u8) u64 { assert(mem.indexOfScalar(u8, adapted_key, 0) == null); return hashString(adapted_key); } }; |
default_max_load_percentageCreate an iterator over the values in the map. The iterator is invalidated if the map is modified. |
pub const default_max_load_percentage = 80; |
verifyContext()If key exists this function cannot fail.
If there is an existing item with |
/// This function issues a compile error with a helpful message if there /// is a problem with the provided context type. A context must have the following /// member functions: /// - hash(self, PseudoKey) Hash /// - eql(self, PseudoKey, Key) bool /// /// If you are passing a context to a *Adapted function, PseudoKey is the type /// of the key parameter. Otherwise, when creating a HashMap or HashMapUnmanaged /// type, PseudoKey = Key = K. pub fn verifyContext( comptime RawContext: type, comptime PseudoKey: type, comptime Key: type, comptime Hash: type, comptime is_array: bool, |
lockPointers()If key exists this function cannot fail.
If there is an existing item with |
) void { comptime { var allow_const_ptr = false; var allow_mutable_ptr = false; // Context is the actual namespace type. RawContext may be a pointer to Context. var Context = RawContext; // Make sure the context is a namespace type which may have member functions switch (@typeInfo(Context)) { .Struct, .Union, .Enum => {}, // Special-case .Opaque for a better error message .Opaque => @compileError("Hash context must be a type with hash and eql member functions. Cannot use " ++ @typeName(Context) ++ " because it is opaque. Use a pointer instead."), .Pointer => |ptr| { if (ptr.size != .One) { @compileError("Hash context must be a type with hash and eql member functions. Cannot use " ++ @typeName(Context) ++ " because it is not a single pointer."); } Context = ptr.child; allow_const_ptr = true; allow_mutable_ptr = !ptr.is_const; switch (@typeInfo(Context)) { .Struct, .Union, .Enum, .Opaque => {}, else => @compileError("Hash context must be a type with hash and eql member functions. Cannot use " ++ @typeName(Context)), } }, else => @compileError("Hash context must be a type with hash and eql member functions. Cannot use " ++ @typeName(Context)), } |
UnmanagedIf there is an existing item with |
// Keep track of multiple errors so we can report them all. var errors: []const u8 = ""; |
EntryIf there is an existing item with |
// Put common errors here, they will only be evaluated // if the error is actually triggered. const lazy = struct { const prefix = "\n "; const deep_prefix = prefix ++ " "; const hash_signature = "fn (self, " ++ @typeName(PseudoKey) ++ ") " ++ @typeName(Hash); const index_param = if (is_array) ", b_index: usize" else ""; const eql_signature = "fn (self, " ++ @typeName(PseudoKey) ++ ", " ++ @typeName(Key) ++ index_param ++ ") bool"; const err_invalid_hash_signature = prefix ++ @typeName(Context) ++ ".hash must be " ++ hash_signature ++ deep_prefix ++ "but is actually " ++ @typeName(@TypeOf(Context.hash)); const err_invalid_eql_signature = prefix ++ @typeName(Context) ++ ".eql must be " ++ eql_signature ++ deep_prefix ++ "but is actually " ++ @typeName(@TypeOf(Context.eql)); }; |
KVIncreases capacity, guaranteeing that insertions up until the
|
// Verify Context.hash(self, PseudoKey) => Hash if (@hasDecl(Context, "hash")) { const hash = Context.hash; const info = @typeInfo(@TypeOf(hash)); if (info == .Fn) { const func = info.Fn; if (func.params.len != 2) { errors = errors ++ lazy.err_invalid_hash_signature; } else { var emitted_signature = false; if (func.params[0].type) |Self| { if (Self == Context) { // pass, this is always fine. } else if (Self == *const Context) { if (!allow_const_ptr) { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_hash_signature; emitted_signature = true; } errors = errors ++ lazy.deep_prefix ++ "First parameter must be " ++ @typeName(Context) ++ ", but is " ++ @typeName(Self); errors = errors ++ lazy.deep_prefix ++ "Note: Cannot be a pointer because it is passed by value."; } } else if (Self == *Context) { if (!allow_mutable_ptr) { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_hash_signature; emitted_signature = true; } if (!allow_const_ptr) { errors = errors ++ lazy.deep_prefix ++ "First parameter must be " ++ @typeName(Context) ++ ", but is " ++ @typeName(Self); errors = errors ++ lazy.deep_prefix ++ "Note: Cannot be a pointer because it is passed by value."; } else { errors = errors ++ lazy.deep_prefix ++ "First parameter must be " ++ @typeName(Context) ++ " or " ++ @typeName(*const Context) ++ ", but is " ++ @typeName(Self); errors = errors ++ lazy.deep_prefix ++ "Note: Cannot be non-const because it is passed by const pointer."; } } } else { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_hash_signature; emitted_signature = true; } errors = errors ++ lazy.deep_prefix ++ "First parameter must be " ++ @typeName(Context); if (allow_const_ptr) { errors = errors ++ " or " ++ @typeName(*const Context); if (allow_mutable_ptr) { errors = errors ++ " or " ++ @typeName(*Context); } } errors = errors ++ ", but is " ++ @typeName(Self); } } if (func.params[1].type != null and func.params[1].type.? != PseudoKey) { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_hash_signature; emitted_signature = true; } errors = errors ++ lazy.deep_prefix ++ "Second parameter must be " ++ @typeName(PseudoKey) ++ ", but is " ++ @typeName(func.params[1].type.?); } if (func.return_type != null and func.return_type.? != Hash) { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_hash_signature; emitted_signature = true; } errors = errors ++ lazy.deep_prefix ++ "Return type must be " ++ @typeName(Hash) ++ ", but was " ++ @typeName(func.return_type.?); } // If any of these are generic (null), we cannot verify them. // The call sites check the return type, but cannot check the // parameters. This may cause compile errors with generic hash/eql functions. } } else { errors = errors ++ lazy.err_invalid_hash_signature; } } else { errors = errors ++ lazy.prefix ++ @typeName(Context) ++ " must declare a pub hash function with signature " ++ lazy.hash_signature; } |
HashIncreases capacity, guaranteeing that insertions up until
|
// Verify Context.eql(self, PseudoKey, Key) => bool if (@hasDecl(Context, "eql")) { const eql = Context.eql; const info = @typeInfo(@TypeOf(eql)); if (info == .Fn) { const func = info.Fn; const args_len = if (is_array) 4 else 3; if (func.params.len != args_len) { errors = errors ++ lazy.err_invalid_eql_signature; } else { var emitted_signature = false; if (func.params[0].type) |Self| { if (Self == Context) { // pass, this is always fine. } else if (Self == *const Context) { if (!allow_const_ptr) { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_eql_signature; emitted_signature = true; } errors = errors ++ lazy.deep_prefix ++ "First parameter must be " ++ @typeName(Context) ++ ", but is " ++ @typeName(Self); errors = errors ++ lazy.deep_prefix ++ "Note: Cannot be a pointer because it is passed by value."; } } else if (Self == *Context) { if (!allow_mutable_ptr) { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_eql_signature; emitted_signature = true; } if (!allow_const_ptr) { errors = errors ++ lazy.deep_prefix ++ "First parameter must be " ++ @typeName(Context) ++ ", but is " ++ @typeName(Self); errors = errors ++ lazy.deep_prefix ++ "Note: Cannot be a pointer because it is passed by value."; } else { errors = errors ++ lazy.deep_prefix ++ "First parameter must be " ++ @typeName(Context) ++ " or " ++ @typeName(*const Context) ++ ", but is " ++ @typeName(Self); errors = errors ++ lazy.deep_prefix ++ "Note: Cannot be non-const because it is passed by const pointer."; } } } else { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_eql_signature; emitted_signature = true; } errors = errors ++ lazy.deep_prefix ++ "First parameter must be " ++ @typeName(Context); if (allow_const_ptr) { errors = errors ++ " or " ++ @typeName(*const Context); if (allow_mutable_ptr) { errors = errors ++ " or " ++ @typeName(*Context); } } errors = errors ++ ", but is " ++ @typeName(Self); } } if (func.params[1].type.? != PseudoKey) { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_eql_signature; emitted_signature = true; } errors = errors ++ lazy.deep_prefix ++ "Second parameter must be " ++ @typeName(PseudoKey) ++ ", but is " ++ @typeName(func.params[1].type.?); } if (func.params[2].type.? != Key) { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_eql_signature; emitted_signature = true; } errors = errors ++ lazy.deep_prefix ++ "Third parameter must be " ++ @typeName(Key) ++ ", but is " ++ @typeName(func.params[2].type.?); } if (func.return_type.? != bool) { if (!emitted_signature) { errors = errors ++ lazy.err_invalid_eql_signature; emitted_signature = true; } errors = errors ++ lazy.deep_prefix ++ "Return type must be bool, but was " ++ @typeName(func.return_type.?); } // If any of these are generic (null), we cannot verify them. // The call sites check the return type, but cannot check the // parameters. This may cause compile errors with generic hash/eql functions. } } else { errors = errors ++ lazy.err_invalid_eql_signature; } } else { errors = errors ++ lazy.prefix ++ @typeName(Context) ++ " must declare a pub eql function with signature " ++ lazy.eql_signature; } |
IteratorReturns the number of total elements which may be present before it is no longer guaranteed that no allocations will be performed. |
if (errors.len != 0) { // errors begins with a newline (from lazy.prefix) @compileError("Problems found with hash context type " ++ @typeName(Context) ++ ":" ++ errors); } } } |
KeyIteratorClobbers any existing data. To detect if a put would clobber
existing data, see |
/// General purpose hash table. /// No order is guaranteed and any modification invalidates live iterators. /// It provides fast operations (lookup, insertion, deletion) with quite high /// load factors (up to 80% by default) for low memory usage. /// For a hash map that can be initialized directly that does not store an Allocator /// field, see `HashMapUnmanaged`. /// If iterating over the table entries is a strong usecase and needs to be fast, /// prefer the alternative `std.ArrayHashMap`. /// Context must be a struct type with two member functions: /// hash(self, K) u64 /// eql(self, K, K) bool /// Adapted variants of many functions are provided. These variants /// take a pseudo key instead of a key. Their context must have the functions: /// hash(self, PseudoKey) u64 /// eql(self, PseudoKey, K) bool pub fn HashMap( comptime K: type, comptime V: type, comptime Context: type, comptime max_load_percentage: u64, ) type { return struct { unmanaged: Unmanaged, allocator: Allocator, ctx: Context, |
ValueIteratorInserts a key-value pair into the hash map, asserting that no previous entry with the same key is already present |
comptime { verifyContext(Context, K, K, u64, false); } |
SizeAsserts there is enough capacity to store the new key-value pair.
Clobbers any existing data. To detect if a put would clobber
existing data, see |
/// The type of the unmanaged hash map underlying this wrapper pub const Unmanaged = HashMapUnmanaged(K, V, Context, max_load_percentage); /// An entry, containing pointers to a key and value stored in the map pub const Entry = Unmanaged.Entry; /// A copy of a key and value which are no longer in the map pub const KV = Unmanaged.KV; /// The integer type that is the result of hashing pub const Hash = Unmanaged.Hash; /// The iterator type returned by iterator() pub const Iterator = Unmanaged.Iterator; |
GetOrPutResultAsserts there is enough capacity to store the new key-value pair.
Asserts that it does not clobber any existing data.
To detect if a put would clobber existing data, see |
pub const KeyIterator = Unmanaged.KeyIterator; pub const ValueIterator = Unmanaged.ValueIterator; |
init()Inserts a new |
/// The integer type used to store the size of the map pub const Size = Unmanaged.Size; /// The type returned from getOrPut and variants pub const GetOrPutResult = Unmanaged.GetOrPutResult; |
initContext()Inserts a new |
const Self = @This(); |
lockPointers()Removes a value from the map and returns the removed kv pair. |
/// Create a managed hash map with an empty context. /// If the context is not zero-sized, you must use /// initContext(allocator, ctx) instead. pub fn init(allocator: Allocator) Self { if (@sizeOf(Context) != 0) { @compileError("Context must be specified! Call initContext(allocator, ctx) instead."); } return .{ .unmanaged = .{}, .allocator = allocator, .ctx = undefined, // ctx is zero-sized so this is safe. }; } |
unlockPointers()Finds the value associated with a key in the map |
/// Create a managed hash map with a context pub fn initContext(allocator: Allocator, ctx: Context) Self { return .{ .unmanaged = .{}, .allocator = allocator, .ctx = ctx, }; } |
deinit()Finds the actual key associated with an adapted key in the map |
/// Puts the hash map into a state where any method call that would /// cause an existing key or value pointer to become invalidated will /// instead trigger an assertion. /// /// An additional call to `lockPointers` in such state also triggers an /// assertion. /// /// `unlockPointers` returns the hash map to the previous state. |
lockPointers()Finds the key and value associated with a key in the map |
pub fn lockPointers(self: *Self) void { self.unmanaged.lockPointers(); } |
clearAndFree()Check if the map contains a key |
/// Undoes a call to `lockPointers`. |
unlockPointers()If there is an |
pub fn unlockPointers(self: *Self) void { self.unmanaged.unlockPointers(); } |
iterator()Delete the entry with key pointed to by key_ptr from the hash map. key_ptr is assumed to be a valid pointer to a key that is present in the hash map. |
/// Release the backing array and invalidate this map. /// This does *not* deinit keys, values, or the context! /// If your keys or values need to be released, ensure /// that that is done before calling this function. pub fn deinit(self: *Self) void { self.unmanaged.deinit(self.allocator); self.* = undefined; } |
keyIterator()Creates a copy of this map, using the same allocator |
/// Empty the map, but keep the backing allocation for future use. /// This does *not* free keys or values! Be sure to /// release them if they need deinitialization before /// calling this function. |
clearRetainingCapacity()Creates a copy of this map, using a specified allocator |
pub fn clearRetainingCapacity(self: *Self) void { return self.unmanaged.clearRetainingCapacity(); } |
getOrPut()Creates a copy of this map, using a specified context |
/// Empty the map and release the backing allocation. /// This does *not* free keys or values! Be sure to /// release them if they need deinitialization before /// calling this function. pub fn clearAndFree(self: *Self) void { return self.unmanaged.clearAndFree(self.allocator); } |
getOrPutAdapted()Creates a copy of this map, using a specified allocator and context. |
/// Return the number of items in the map. pub fn count(self: Self) Size { return self.unmanaged.count(); } |
getOrPutAssumeCapacity()Set the map to an empty state, making deinitialization a no-op, and returning a copy of the original. |
/// Create an iterator over the entries in the map. /// The iterator is invalidated if the map is modified. |
iterator()A HashMap based on open addressing and linear probing. A lookup or modification typically incurs only 2 cache misses. No order is guaranteed and any modification invalidates live iterators. It achieves good performance with quite high load factors (by default, grow is triggered at 80% full) and only one byte of overhead per element. The struct itself is only 16 bytes for a small footprint. This comes at the price of handling size with u32, which should be reasonable enough for almost all uses. Deletions are achieved with tombstones. |
pub fn iterator(self: *const Self) Iterator { return self.unmanaged.iterator(); } |
getOrPutValue()Pointer to the metadata. |
/// Create an iterator over the keys in the map. /// The iterator is invalidated if the map is modified. |
keyIterator()Current number of elements in the hashmap. |
pub fn keyIterator(self: *const Self) KeyIterator { return self.unmanaged.keyIterator(); } |
ensureUnusedCapacity()Number of available slots before a grow is needed to satisfy the
|
/// Create an iterator over the values in the map. /// The iterator is invalidated if the map is modified. |
valueIterator()Used to detect memory safety violations. |
pub fn valueIterator(self: *const Self) ValueIterator { return self.unmanaged.valueIterator(); } |
put()Capacity of the first grow when bootstrapping the hashmap. |
/// If key exists this function cannot fail. /// If there is an existing item with `key`, then the result's /// `Entry` pointers point to it, and found_existing is true. /// Otherwise, puts a new item with undefined value, and /// the `Entry` pointers point to it. Caller should then initialize /// the value (but not the key). pub fn getOrPut(self: *Self, key: K) Allocator.Error!GetOrPutResult { return self.unmanaged.getOrPutContext(self.allocator, key, self.ctx); } |
putNoClobber()Metadata for a slot. It can be in three states: empty, used or
tombstone. Tombstones indicate that an entry was previously used,
they are a simple way to handle removal.
To this state, we add 7 bits from the slot's key hash. These are
used as a fast way to disambiguate between entries without
having to use the equality function. If two fingerprints are
different, we know that we don't have to compare the keys at all.
The 7 bits are the highest ones from a 64 bit hash. This way, not
only we use the |
/// If key exists this function cannot fail. /// If there is an existing item with `key`, then the result's /// `Entry` pointers point to it, and found_existing is true. /// Otherwise, puts a new item with undefined key and value, and /// the `Entry` pointers point to it. Caller must then initialize /// the key and value. pub fn getOrPutAdapted(self: *Self, key: anytype, ctx: anytype) Allocator.Error!GetOrPutResult { return self.unmanaged.getOrPutContextAdapted(self.allocator, key, ctx, self.ctx); } |
putAssumeCapacity()Puts the hash map into a state where any method call that would
cause an existing key or value pointer to become invalidated will
instead trigger an assertion.
An additional call to |
/// If there is an existing item with `key`, then the result's /// `Entry` pointers point to it, and found_existing is true. /// Otherwise, puts a new item with undefined value, and /// the `Entry` pointers point to it. Caller should then initialize /// the value (but not the key). /// If a new entry needs to be stored, this function asserts there /// is enough capacity to store it. |
getOrPutAssumeCapacity()Undoes a call to |
pub fn getOrPutAssumeCapacity(self: *Self, key: K) GetOrPutResult { return self.unmanaged.getOrPutAssumeCapacityContext(key, self.ctx); } |
fetchPut()Insert an entry in the map. Assumes it is not already present. |
/// If there is an existing item with `key`, then the result's /// `Entry` pointers point to it, and found_existing is true. /// Otherwise, puts a new item with undefined value, and /// the `Entry` pointers point to it. Caller must then initialize /// the key and value. /// If a new entry needs to be stored, this function asserts there /// is enough capacity to store it. |
getOrPutAssumeCapacityAdapted()Asserts there is enough capacity to store the new key-value pair.
Clobbers any existing data. To detect if a put would clobber
existing data, see |
pub fn getOrPutAssumeCapacityAdapted(self: *Self, key: anytype, ctx: anytype) GetOrPutResult { return self.unmanaged.getOrPutAssumeCapacityAdapted(key, ctx); } |
fetchRemove()Insert an entry in the map. Assumes it is not already present, and that no allocation is needed. |
pub fn getOrPutValue(self: *Self, key: K, value: V) Allocator.Error!Entry { return self.unmanaged.getOrPutValueContext(self.allocator, key, value, self.ctx); } |
fetchRemoveAdapted()Inserts a new |
/// Increases capacity, guaranteeing that insertions up until the /// `expected_count` will not cause an allocation, and therefore cannot fail. pub fn ensureTotalCapacity(self: *Self, expected_count: Size) Allocator.Error!void { return self.unmanaged.ensureTotalCapacityContext(self.allocator, expected_count, self.ctx); } |
get()Inserts a new |
/// Increases capacity, guaranteeing that insertions up until /// `additional_count` **more** items will not cause an allocation, and /// therefore cannot fail. pub fn ensureUnusedCapacity(self: *Self, additional_count: Size) Allocator.Error!void { return self.unmanaged.ensureUnusedCapacityContext(self.allocator, additional_count, self.ctx); } |
getAdapted()If there is an |
/// Returns the number of total elements which may be present before it is /// no longer guaranteed that no allocations will be performed. pub fn capacity(self: *Self) Size { return self.unmanaged.capacity(); } |
getPtr()Find the index containing the data for the given key. Whether this function returns null is almost always branched on after this function returns, and this function returns null/not null from separate code paths. We want the optimizer to remove that branch and instead directly fuse the basic blocks after the branch to the basic blocks from this function. To encourage that, this function is marked as inline. |
/// Clobbers any existing data. To detect if a put would clobber /// existing data, see `getOrPut`. pub fn put(self: *Self, key: K, value: V) Allocator.Error!void { return self.unmanaged.putContext(self.allocator, key, value, self.ctx); } |
getPtrAdapted()Insert an entry if the associated key is not already present, otherwise update preexisting value. |
/// Inserts a key-value pair into the hash map, asserting that no previous /// entry with the same key is already present pub fn putNoClobber(self: *Self, key: K, value: V) Allocator.Error!void { return self.unmanaged.putNoClobberContext(self.allocator, key, value, self.ctx); } |
getKey()Get an optional pointer to the actual key associated with adapted key, if present. |
/// Asserts there is enough capacity to store the new key-value pair. /// Clobbers any existing data. To detect if a put would clobber /// existing data, see `getOrPutAssumeCapacity`. |
putAssumeCapacity()Get a copy of the actual key associated with adapted key, if present. |
pub fn putAssumeCapacity(self: *Self, key: K, value: V) void { return self.unmanaged.putAssumeCapacityContext(key, value, self.ctx); } |
getKeyPtr()Get an optional pointer to the value associated with key, if present. |
/// Asserts there is enough capacity to store the new key-value pair. /// Asserts that it does not clobber any existing data. /// To detect if a put would clobber existing data, see `getOrPutAssumeCapacity`. |
putAssumeCapacityNoClobber()Get a copy of the value associated with key, if present. |
pub fn putAssumeCapacityNoClobber(self: *Self, key: K, value: V) void { return self.unmanaged.putAssumeCapacityNoClobberContext(key, value, self.ctx); } |
getEntry()Return true if there is a value associated with key in the map. |
/// Inserts a new `Entry` into the hash map, returning the previous one, if any. pub fn fetchPut(self: *Self, key: K, value: V) Allocator.Error!?KV { return self.unmanaged.fetchPutContext(self.allocator, key, value, self.ctx); } |
getEntryAdapted()If there is an |
/// Inserts a new `Entry` into the hash map, returning the previous one, if any. /// If insertion happens, asserts there is enough capacity without allocating. |
fetchPutAssumeCapacity()Delete the entry with key pointed to by key_ptr from the hash map. key_ptr is assumed to be a valid pointer to a key that is present in the hash map. |
pub fn fetchPutAssumeCapacity(self: *Self, key: K, value: V) ?KV { return self.unmanaged.fetchPutAssumeCapacityContext(key, value, self.ctx); } |
containsAdapted()Set the map to an empty state, making deinitialization a no-op, and returning a copy of the original. |
/// Removes a value from the map and returns the removed kv pair. |
fetchRemove()This function is used in the debugger pretty formatters in tools/ to fetch the header type to facilitate fancy debug printing for this type. |
pub fn fetchRemove(self: *Self, key: K) ?KV { return self.unmanaged.fetchRemoveContext(key, self.ctx); } |
removeAdapted() |
|
fetchRemoveAdapted() |
pub fn fetchRemoveAdapted(self: *Self, key: anytype, ctx: anytype) ?KV { return self.unmanaged.fetchRemoveAdapted(key, ctx); } |
clone() |
/// Finds the value associated with a key in the map |
get() |
pub fn get(self: Self, key: K) ?V { return self.unmanaged.getContext(key, self.ctx); } |
getAdapted() |
pub fn getAdapted(self: Self, key: anytype, ctx: anytype) ?V { return self.unmanaged.getAdapted(key, ctx); } |
cloneWithAllocatorAndContext() |
|
getPtr() |
pub fn getPtr(self: Self, key: K) ?*V { return self.unmanaged.getPtrContext(key, self.ctx); } |
getPtrAdapted() |
pub fn getPtrAdapted(self: Self, key: anytype, ctx: anytype) ?*V { return self.unmanaged.getPtrAdapted(key, ctx); } |
Size |
/// Finds the actual key associated with an adapted key in the map |
getKey() |
pub fn getKey(self: Self, key: K) ?K { return self.unmanaged.getKeyContext(key, self.ctx); } |
getKeyAdapted() |
pub fn getKeyAdapted(self: Self, key: anytype, ctx: anytype) ?K { return self.unmanaged.getKeyAdapted(key, ctx); } |
KV |
|
getKeyPtr() |
pub fn getKeyPtr(self: Self, key: K) ?*K { return self.unmanaged.getKeyPtrContext(key, self.ctx); } |
getKeyPtrAdapted() |
pub fn getKeyPtrAdapted(self: Self, key: anytype, ctx: anytype) ?*K { return self.unmanaged.getKeyPtrAdapted(key, ctx); } |
isFree() |
/// Finds the key and value associated with a key in the map |
getEntry() |
pub fn getEntry(self: Self, key: K) ?Entry { return self.unmanaged.getEntryContext(key, self.ctx); } |
fill() |
|
getEntryAdapted() |
pub fn getEntryAdapted(self: Self, key: anytype, ctx: anytype) ?Entry { return self.unmanaged.getEntryAdapted(key, ctx); } |
Iterator |
/// Check if the map contains a key pub fn contains(self: Self, key: K) bool { return self.unmanaged.containsContext(key, self.ctx); } |
next() |
pub fn containsAdapted(self: Self, key: anytype, ctx: anytype) bool { return self.unmanaged.containsAdapted(key, ctx); } |
KeyIterator |
/// If there is an `Entry` with a matching key, it is deleted from /// the hash map, and this function returns true. Otherwise this /// function returns false. |
remove() |
pub fn remove(self: *Self, key: K) bool { return self.unmanaged.removeContext(key, self.ctx); } |
next() |
|
removeAdapted() |
pub fn removeAdapted(self: *Self, key: anytype, ctx: anytype) bool { return self.unmanaged.removeAdapted(key, ctx); } |
Managed |
/// Delete the entry with key pointed to by key_ptr from the hash map. /// key_ptr is assumed to be a valid pointer to a key that is present /// in the hash map. |
removeByPtr() |
pub fn removeByPtr(self: *Self, key_ptr: *K) void { self.unmanaged.removeByPtr(key_ptr); } |
promoteContext() |
/// Creates a copy of this map, using the same allocator pub fn clone(self: Self) Allocator.Error!Self { var other = try self.unmanaged.cloneContext(self.allocator, self.ctx); return other.promoteContext(self.allocator, self.ctx); } |
lockPointers() |
/// Creates a copy of this map, using a specified allocator pub fn cloneWithAllocator(self: Self, new_allocator: Allocator) Allocator.Error!Self { var other = try self.unmanaged.cloneContext(new_allocator, self.ctx); return other.promoteContext(new_allocator, self.ctx); } |
unlockPointers() |
/// Creates a copy of this map, using a specified context pub fn cloneWithContext(self: Self, new_ctx: anytype) Allocator.Error!HashMap(K, V, @TypeOf(new_ctx), max_load_percentage) { var other = try self.unmanaged.cloneContext(self.allocator, new_ctx); return other.promoteContext(self.allocator, new_ctx); } |
deinit() |
/// Creates a copy of this map, using a specified allocator and context. pub fn cloneWithAllocatorAndContext( self: Self, new_allocator: Allocator, new_ctx: anytype, ) Allocator.Error!HashMap(K, V, @TypeOf(new_ctx), max_load_percentage) { var other = try self.unmanaged.cloneContext(new_allocator, new_ctx); return other.promoteContext(new_allocator, new_ctx); } |
ensureTotalCapacity() |
/// Set the map to an empty state, making deinitialization a no-op, and /// returning a copy of the original. |
move() |
pub fn move(self: *Self) Self { self.unmanaged.pointer_stability.assertUnlocked(); const result = self.*; self.unmanaged = .{}; return result; } }; } |
ensureUnusedCapacity() |
/// A HashMap based on open addressing and linear probing. /// A lookup or modification typically incurs only 2 cache misses. /// No order is guaranteed and any modification invalidates live iterators. /// It achieves good performance with quite high load factors (by default, /// grow is triggered at 80% full) and only one byte of overhead per element. /// The struct itself is only 16 bytes for a small footprint. This comes at /// the price of handling size with u32, which should be reasonable enough /// for almost all uses. /// Deletions are achieved with tombstones. pub fn HashMapUnmanaged( comptime K: type, comptime V: type, comptime Context: type, comptime max_load_percentage: u64, ) type { if (max_load_percentage <= 0 or max_load_percentage >= 100) @compileError("max_load_percentage must be between 0 and 100."); return struct { const Self = @This(); |
ensureUnusedCapacityContext() |
comptime { verifyContext(Context, K, K, u64, false); } |
clearRetainingCapacity() |
// This is actually a midway pointer to the single buffer containing // a `Header` field, the `Metadata`s and `Entry`s. // At `-@sizeOf(Header)` is the Header field. // At `sizeOf(Metadata) * capacity + offset`, which is pointed to by // self.header().entries, is the array of entries. // This means that the hashmap only holds one live allocation, to // reduce memory fragmentation and struct size. /// Pointer to the metadata. metadata: ?[*]Metadata = null, |
clearAndFree() |
/// Current number of elements in the hashmap. size: Size = 0, |
count() |
// Having a countdown to grow reduces the number of instructions to // execute when determining if the hashmap has enough capacity already. /// Number of available slots before a grow is needed to satisfy the /// `max_load_percentage`. available: Size = 0, |
capacity() |
/// Used to detect memory safety violations. pointer_stability: std.debug.SafetyLock = .{}, |
iterator() |
// This is purely empirical and not a /very smart magic constantâ„¢/. /// Capacity of the first grow when bootstrapping the hashmap. const minimal_capacity = 8; |
keyIterator() |
// This hashmap is specially designed for sizes that fit in a u32. pub const Size = u32; |
valueIterator() |
// u64 hashes guarantee us that the fingerprint bits will never be used // to compute the index of a slot, maximizing the use of entropy. pub const Hash = u64; |
putNoClobber() |
pub const Entry = struct { key_ptr: *K, value_ptr: *V, }; |
putNoClobberContext() |
pub const KV = struct { key: K, value: V, }; |
putAssumeCapacity() |
const Header = struct { values: [*]V, keys: [*]K, capacity: Size, }; |
putAssumeCapacityContext() |
/// Metadata for a slot. It can be in three states: empty, used or /// tombstone. Tombstones indicate that an entry was previously used, /// they are a simple way to handle removal. /// To this state, we add 7 bits from the slot's key hash. These are /// used as a fast way to disambiguate between entries without /// having to use the equality function. If two fingerprints are /// different, we know that we don't have to compare the keys at all. /// The 7 bits are the highest ones from a 64 bit hash. This way, not /// only we use the `log2(capacity)` lowest bits from the hash to determine /// a slot index, but we use 7 more bits to quickly resolve collisions /// when multiple elements with different hashes end up wanting to be in the same slot. /// Not using the equality function means we don't have to read into /// the entries array, likely avoiding a cache miss and a potentially /// costly function call. const Metadata = packed struct { const FingerPrint = u7; |
putAssumeCapacityNoClobber() |
const free: FingerPrint = 0; const tombstone: FingerPrint = 1; |
putAssumeCapacityNoClobberContext() |
fingerprint: FingerPrint = free, used: u1 = 0, |
fetchPut() |
const slot_free = @as(u8, @bitCast(Metadata{ .fingerprint = free })); const slot_tombstone = @as(u8, @bitCast(Metadata{ .fingerprint = tombstone })); |
fetchPutContext() |
pub fn isUsed(self: Metadata) bool { return self.used == 1; } |
fetchPutAssumeCapacity() |
pub fn isTombstone(self: Metadata) bool { return @as(u8, @bitCast(self)) == slot_tombstone; } |
fetchPutAssumeCapacityContext() |
pub fn isFree(self: Metadata) bool { return @as(u8, @bitCast(self)) == slot_free; } |
fetchRemove() |
pub fn takeFingerprint(hash: Hash) FingerPrint { const hash_bits = @typeInfo(Hash).Int.bits; const fp_bits = @typeInfo(FingerPrint).Int.bits; return @as(FingerPrint, @truncate(hash >> (hash_bits - fp_bits))); } |
fetchRemoveContext() |
pub fn fill(self: *Metadata, fp: FingerPrint) void { self.used = 1; self.fingerprint = fp; } |
fetchRemoveAdapted() |
pub fn remove(self: *Metadata) void { self.used = 0; self.fingerprint = tombstone; } }; |
getEntry() |
comptime { assert(@sizeOf(Metadata) == 1); assert(@alignOf(Metadata) == 1); } |
getEntryContext() |
pub const Iterator = struct { hm: *const Self, index: Size = 0, |
getEntryAdapted() |
pub fn next(it: *Iterator) ?Entry { assert(it.index <= it.hm.capacity()); if (it.hm.size == 0) return null; |
put() |
const cap = it.hm.capacity(); const end = it.hm.metadata.? + cap; var metadata = it.hm.metadata.? + it.index; |
putContext() |
while (metadata != end) : ({ metadata += 1; it.index += 1; }) { if (metadata[0].isUsed()) { const key = &it.hm.keys()[it.index]; const value = &it.hm.values()[it.index]; it.index += 1; return Entry{ .key_ptr = key, .value_ptr = value }; } } |
getKeyPtr() |
return null; } }; |
getKeyPtrContext() |
pub const KeyIterator = FieldIterator(K); pub const ValueIterator = FieldIterator(V); |
getKeyPtrAdapted() |
fn FieldIterator(comptime T: type) type { return struct { len: usize, metadata: [*]const Metadata, items: [*]T, |
getKey() |
pub fn next(self: *@This()) ?*T { while (self.len > 0) { self.len -= 1; const used = self.metadata[0].isUsed(); const item = &self.items[0]; self.metadata += 1; self.items += 1; if (used) { return item; } } return null; } }; } |
getKeyContext() |
pub const GetOrPutResult = struct { key_ptr: *K, value_ptr: *V, found_existing: bool, }; |
getKeyAdapted() |
pub const Managed = HashMap(K, V, Context, max_load_percentage); |
getPtr() |
pub fn promote(self: Self, allocator: Allocator) Managed { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call promoteContext instead."); return promoteContext(self, allocator, undefined); } |
getPtrContext() |
pub fn promoteContext(self: Self, allocator: Allocator, ctx: Context) Managed { return .{ .unmanaged = self, .allocator = allocator, .ctx = ctx, }; } |
getPtrAdapted() |
/// Puts the hash map into a state where any method call that would /// cause an existing key or value pointer to become invalidated will /// instead trigger an assertion. /// /// An additional call to `lockPointers` in such state also triggers an /// assertion. /// /// `unlockPointers` returns the hash map to the previous state. pub fn lockPointers(self: *Self) void { self.pointer_stability.lock(); } |
get() |
/// Undoes a call to `lockPointers`. pub fn unlockPointers(self: *Self) void { self.pointer_stability.unlock(); } |
getContext() |
fn isUnderMaxLoadPercentage(size: Size, cap: Size) bool { return size * 100 < max_load_percentage * cap; } |
getAdapted() |
pub fn deinit(self: *Self, allocator: Allocator) void { self.pointer_stability.assertUnlocked(); self.deallocate(allocator); self.* = undefined; } |
getOrPut() |
fn capacityForSize(size: Size) Size { var new_cap: u32 = @intCast((@as(u64, size) * 100) / max_load_percentage + 1); new_cap = math.ceilPowerOfTwo(u32, new_cap) catch unreachable; return new_cap; } |
getOrPutContext() |
pub fn ensureTotalCapacity(self: *Self, allocator: Allocator, new_size: Size) Allocator.Error!void { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call ensureTotalCapacityContext instead."); return ensureTotalCapacityContext(self, allocator, new_size, undefined); } pub fn ensureTotalCapacityContext(self: *Self, allocator: Allocator, new_size: Size, ctx: Context) Allocator.Error!void { self.pointer_stability.lock(); defer self.pointer_stability.unlock(); if (new_size > self.size) try self.growIfNeeded(allocator, new_size - self.size, ctx); } |
getOrPutAdapted() |
pub fn ensureUnusedCapacity(self: *Self, allocator: Allocator, additional_size: Size) Allocator.Error!void { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call ensureUnusedCapacityContext instead."); return ensureUnusedCapacityContext(self, allocator, additional_size, undefined); } pub fn ensureUnusedCapacityContext(self: *Self, allocator: Allocator, additional_size: Size, ctx: Context) Allocator.Error!void { return ensureTotalCapacityContext(self, allocator, self.count() + additional_size, ctx); } |
getOrPutContextAdapted() |
pub fn clearRetainingCapacity(self: *Self) void { self.pointer_stability.lock(); defer self.pointer_stability.unlock(); if (self.metadata) |_| { self.initMetadatas(); self.size = 0; self.available = @truncate((self.capacity() * max_load_percentage) / 100); } } |
getOrPutAssumeCapacity() |
pub fn clearAndFree(self: *Self, allocator: Allocator) void { self.pointer_stability.lock(); defer self.pointer_stability.unlock(); self.deallocate(allocator); self.size = 0; self.available = 0; } |
getOrPutAssumeCapacityContext() |
pub fn count(self: *const Self) Size { return self.size; } |
getOrPutAssumeCapacityAdapted() |
fn header(self: *const Self) *Header { return @ptrCast(@as([*]Header, @ptrCast(@alignCast(self.metadata.?))) - 1); } |
getOrPutValue() |
fn keys(self: *const Self) [*]K { return self.header().keys; } |
getOrPutValueContext() |
fn values(self: *const Self) [*]V { return self.header().values; } |
contains() |
pub fn capacity(self: *const Self) Size { if (self.metadata == null) return 0; |
containsContext() |
return self.header().capacity; } |
containsAdapted() |
pub fn iterator(self: *const Self) Iterator { return .{ .hm = self }; } |
remove() |
pub fn keyIterator(self: *const Self) KeyIterator { if (self.metadata) |metadata| { return .{ .len = self.capacity(), .metadata = metadata, .items = self.keys(), }; } else { return .{ .len = 0, .metadata = undefined, .items = undefined, }; } } |
removeContext() |
pub fn valueIterator(self: *const Self) ValueIterator { if (self.metadata) |metadata| { return .{ .len = self.capacity(), .metadata = metadata, .items = self.values(), }; } else { return .{ .len = 0, .metadata = undefined, .items = undefined, }; } } |
removeAdapted() |
/// Insert an entry in the map. Assumes it is not already present. pub fn putNoClobber(self: *Self, allocator: Allocator, key: K, value: V) Allocator.Error!void { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call putNoClobberContext instead."); return self.putNoClobberContext(allocator, key, value, undefined); } pub fn putNoClobberContext(self: *Self, allocator: Allocator, key: K, value: V, ctx: Context) Allocator.Error!void { { self.pointer_stability.lock(); defer self.pointer_stability.unlock(); try self.growIfNeeded(allocator, 1, ctx); } self.putAssumeCapacityNoClobberContext(key, value, ctx); } |
removeByPtr() |
/// Asserts there is enough capacity to store the new key-value pair. /// Clobbers any existing data. To detect if a put would clobber /// existing data, see `getOrPutAssumeCapacity`. pub fn putAssumeCapacity(self: *Self, key: K, value: V) void { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call putAssumeCapacityContext instead."); return self.putAssumeCapacityContext(key, value, undefined); } pub fn putAssumeCapacityContext(self: *Self, key: K, value: V, ctx: Context) void { const gop = self.getOrPutAssumeCapacityContext(key, ctx); gop.value_ptr.* = value; } |
clone() |
/// Insert an entry in the map. Assumes it is not already present, /// and that no allocation is needed. pub fn putAssumeCapacityNoClobber(self: *Self, key: K, value: V) void { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call putAssumeCapacityNoClobberContext instead."); return self.putAssumeCapacityNoClobberContext(key, value, undefined); } pub fn putAssumeCapacityNoClobberContext(self: *Self, key: K, value: V, ctx: Context) void { assert(!self.containsContext(key, ctx)); |
cloneContext() |
const hash = ctx.hash(key); const mask = self.capacity() - 1; var idx: usize = @truncate(hash & mask); |
move() |
var metadata = self.metadata.? + idx; while (metadata[0].isUsed()) { idx = (idx + 1) & mask; metadata = self.metadata.? + idx; } |
Test:basic usage |
assert(self.available > 0); self.available -= 1; |
Test:ensureTotalCapacity |
const fingerprint = Metadata.takeFingerprint(hash); metadata[0].fill(fingerprint); self.keys()[idx] = key; self.values()[idx] = value; |
Test:ensureUnusedCapacity with tombstones |
self.size += 1; } |
Test:clearRetainingCapacity |
/// Inserts a new `Entry` into the hash map, returning the previous one, if any. pub fn fetchPut(self: *Self, allocator: Allocator, key: K, value: V) Allocator.Error!?KV { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call fetchPutContext instead."); return self.fetchPutContext(allocator, key, value, undefined); } pub fn fetchPutContext(self: *Self, allocator: Allocator, key: K, value: V, ctx: Context) Allocator.Error!?KV { const gop = try self.getOrPutContext(allocator, key, ctx); var result: ?KV = null; if (gop.found_existing) { result = KV{ .key = gop.key_ptr.*, .value = gop.value_ptr.*, }; } gop.value_ptr.* = value; return result; } |
Test:grow |
/// Inserts a new `Entry` into the hash map, returning the previous one, if any. /// If insertion happens, asserts there is enough capacity without allocating. pub fn fetchPutAssumeCapacity(self: *Self, key: K, value: V) ?KV { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call fetchPutAssumeCapacityContext instead."); return self.fetchPutAssumeCapacityContext(key, value, undefined); } pub fn fetchPutAssumeCapacityContext(self: *Self, key: K, value: V, ctx: Context) ?KV { const gop = self.getOrPutAssumeCapacityContext(key, ctx); var result: ?KV = null; if (gop.found_existing) { result = KV{ .key = gop.key_ptr.*, .value = gop.value_ptr.*, }; } gop.value_ptr.* = value; return result; } |
Test:clone |
/// If there is an `Entry` with a matching key, it is deleted from /// the hash map, and then returned from this function. pub fn fetchRemove(self: *Self, key: K) ?KV { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call fetchRemoveContext instead."); return self.fetchRemoveContext(key, undefined); } pub fn fetchRemoveContext(self: *Self, key: K, ctx: Context) ?KV { return self.fetchRemoveAdapted(key, ctx); } pub fn fetchRemoveAdapted(self: *Self, key: anytype, ctx: anytype) ?KV { if (self.getIndex(key, ctx)) |idx| { const old_key = &self.keys()[idx]; const old_val = &self.values()[idx]; const result = KV{ .key = old_key.*, .value = old_val.*, }; self.metadata.?[idx].remove(); old_key.* = undefined; old_val.* = undefined; self.size -= 1; self.available += 1; return result; } |
Test:ensureTotalCapacity with existing elements |
return null; } |
Test:ensureTotalCapacity satisfies max load factor |
/// Find the index containing the data for the given key. /// Whether this function returns null is almost always /// branched on after this function returns, and this function /// returns null/not null from separate code paths. We /// want the optimizer to remove that branch and instead directly /// fuse the basic blocks after the branch to the basic blocks /// from this function. To encourage that, this function is /// marked as inline. inline fn getIndex(self: Self, key: anytype, ctx: anytype) ?usize { comptime verifyContext(@TypeOf(ctx), @TypeOf(key), K, Hash, false); |
Test:remove |
if (self.size == 0) { return null; } |
Test:reverse removes |
// If you get a compile error on this line, it means that your generic hash // function is invalid for these parameters. const hash = ctx.hash(key); // verifyContext can't verify the return type of generic hash functions, // so we need to double-check it here. if (@TypeOf(hash) != Hash) { @compileError("Context " ++ @typeName(@TypeOf(ctx)) ++ " has a generic hash function that returns the wrong type! " ++ @typeName(Hash) ++ " was expected, but found " ++ @typeName(@TypeOf(hash))); } const mask = self.capacity() - 1; const fingerprint = Metadata.takeFingerprint(hash); // Don't loop indefinitely when there are no empty slots. var limit = self.capacity(); var idx = @as(usize, @truncate(hash & mask)); |
Test:multiple removes on same metadata |
var metadata = self.metadata.? + idx; while (!metadata[0].isFree() and limit != 0) { if (metadata[0].isUsed() and metadata[0].fingerprint == fingerprint) { const test_key = &self.keys()[idx]; // If you get a compile error on this line, it means that your generic eql // function is invalid for these parameters. const eql = ctx.eql(key, test_key.*); // verifyContext can't verify the return type of generic eql functions, // so we need to double-check it here. if (@TypeOf(eql) != bool) { @compileError("Context " ++ @typeName(@TypeOf(ctx)) ++ " has a generic eql function that returns the wrong type! bool was expected, but found " ++ @typeName(@TypeOf(eql))); } if (eql) { return idx; } } |
Test:put and remove loop in random order |
limit -= 1; idx = (idx + 1) & mask; metadata = self.metadata.? + idx; } |
Test:remove one million elements in random order |
return null; } |
Test:put |
pub fn getEntry(self: Self, key: K) ?Entry { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call getEntryContext instead."); return self.getEntryContext(key, undefined); } pub fn getEntryContext(self: Self, key: K, ctx: Context) ?Entry { return self.getEntryAdapted(key, ctx); } pub fn getEntryAdapted(self: Self, key: anytype, ctx: anytype) ?Entry { if (self.getIndex(key, ctx)) |idx| { return Entry{ .key_ptr = &self.keys()[idx], .value_ptr = &self.values()[idx], }; } return null; } |
Test:putAssumeCapacity |
/// Insert an entry if the associated key is not already present, otherwise update preexisting value. pub fn put(self: *Self, allocator: Allocator, key: K, value: V) Allocator.Error!void { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call putContext instead."); return self.putContext(allocator, key, value, undefined); } pub fn putContext(self: *Self, allocator: Allocator, key: K, value: V, ctx: Context) Allocator.Error!void { const result = try self.getOrPutContext(allocator, key, ctx); result.value_ptr.* = value; } |
Test:repeat putAssumeCapacity/remove |
/// Get an optional pointer to the actual key associated with adapted key, if present. pub fn getKeyPtr(self: Self, key: K) ?*K { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call getKeyPtrContext instead."); return self.getKeyPtrContext(key, undefined); } pub fn getKeyPtrContext(self: Self, key: K, ctx: Context) ?*K { return self.getKeyPtrAdapted(key, ctx); } pub fn getKeyPtrAdapted(self: Self, key: anytype, ctx: anytype) ?*K { if (self.getIndex(key, ctx)) |idx| { return &self.keys()[idx]; } return null; } |
Test:getOrPut |
/// Get a copy of the actual key associated with adapted key, if present. pub fn getKey(self: Self, key: K) ?K { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call getKeyContext instead."); return self.getKeyContext(key, undefined); } pub fn getKeyContext(self: Self, key: K, ctx: Context) ?K { return self.getKeyAdapted(key, ctx); } pub fn getKeyAdapted(self: Self, key: anytype, ctx: anytype) ?K { if (self.getIndex(key, ctx)) |idx| { return self.keys()[idx]; } return null; } |
Test:basic hash map usage |
/// Get an optional pointer to the value associated with key, if present. pub fn getPtr(self: Self, key: K) ?*V { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call getPtrContext instead."); return self.getPtrContext(key, undefined); } pub fn getPtrContext(self: Self, key: K, ctx: Context) ?*V { return self.getPtrAdapted(key, ctx); } pub fn getPtrAdapted(self: Self, key: anytype, ctx: anytype) ?*V { if (self.getIndex(key, ctx)) |idx| { return &self.values()[idx]; } return null; } |
Test:getOrPutAdapted |
/// Get a copy of the value associated with key, if present. pub fn get(self: Self, key: K) ?V { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call getContext instead."); return self.getContext(key, undefined); } pub fn getContext(self: Self, key: K, ctx: Context) ?V { return self.getAdapted(key, ctx); } pub fn getAdapted(self: Self, key: anytype, ctx: anytype) ?V { if (self.getIndex(key, ctx)) |idx| { return self.values()[idx]; } return null; } |
Test:ensureUnusedCapacity |
pub fn getOrPut(self: *Self, allocator: Allocator, key: K) Allocator.Error!GetOrPutResult { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call getOrPutContext instead."); return self.getOrPutContext(allocator, key, undefined); } pub fn getOrPutContext(self: *Self, allocator: Allocator, key: K, ctx: Context) Allocator.Error!GetOrPutResult { const gop = try self.getOrPutContextAdapted(allocator, key, ctx, ctx); if (!gop.found_existing) { gop.key_ptr.* = key; } return gop; } pub fn getOrPutAdapted(self: *Self, allocator: Allocator, key: anytype, key_ctx: anytype) Allocator.Error!GetOrPutResult { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call getOrPutContextAdapted instead."); return self.getOrPutContextAdapted(allocator, key, key_ctx, undefined); } pub fn getOrPutContextAdapted(self: *Self, allocator: Allocator, key: anytype, key_ctx: anytype, ctx: Context) Allocator.Error!GetOrPutResult { { self.pointer_stability.lock(); defer self.pointer_stability.unlock(); self.growIfNeeded(allocator, 1, ctx) catch |err| { // If allocation fails, try to do the lookup anyway. // If we find an existing item, we can return it. // Otherwise return the error, we could not add another. const index = self.getIndex(key, key_ctx) orelse return err; return GetOrPutResult{ .key_ptr = &self.keys()[index], .value_ptr = &self.values()[index], .found_existing = true, }; }; } return self.getOrPutAssumeCapacityAdapted(key, key_ctx); } |
Test:removeByPtr |
pub fn getOrPutAssumeCapacity(self: *Self, key: K) GetOrPutResult { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call getOrPutAssumeCapacityContext instead."); return self.getOrPutAssumeCapacityContext(key, undefined); } pub fn getOrPutAssumeCapacityContext(self: *Self, key: K, ctx: Context) GetOrPutResult { const result = self.getOrPutAssumeCapacityAdapted(key, ctx); if (!result.found_existing) { result.key_ptr.* = key; } return result; } pub fn getOrPutAssumeCapacityAdapted(self: *Self, key: anytype, ctx: anytype) GetOrPutResult { comptime verifyContext(@TypeOf(ctx), @TypeOf(key), K, Hash, false); |
Test:removeByPtr 0 sized key |
// If you get a compile error on this line, it means that your generic hash // function is invalid for these parameters. const hash = ctx.hash(key); // verifyContext can't verify the return type of generic hash functions, // so we need to double-check it here. if (@TypeOf(hash) != Hash) { @compileError("Context " ++ @typeName(@TypeOf(ctx)) ++ " has a generic hash function that returns the wrong type! " ++ @typeName(Hash) ++ " was expected, but found " ++ @typeName(@TypeOf(hash))); } const mask = self.capacity() - 1; const fingerprint = Metadata.takeFingerprint(hash); var limit = self.capacity(); var idx = @as(usize, @truncate(hash & mask)); |
Test:repeat fetchRemove |
var first_tombstone_idx: usize = self.capacity(); // invalid index var metadata = self.metadata.? + idx; while (!metadata[0].isFree() and limit != 0) { if (metadata[0].isUsed() and metadata[0].fingerprint == fingerprint) { const test_key = &self.keys()[idx]; // If you get a compile error on this line, it means that your generic eql // function is invalid for these parameters. const eql = ctx.eql(key, test_key.*); // verifyContext can't verify the return type of generic eql functions, // so we need to double-check it here. if (@TypeOf(eql) != bool) { @compileError("Context " ++ @typeName(@TypeOf(ctx)) ++ " has a generic eql function that returns the wrong type! bool was expected, but found " ++ @typeName(@TypeOf(eql))); } if (eql) { return GetOrPutResult{ .key_ptr = test_key, .value_ptr = &self.values()[idx], .found_existing = true, }; } } else if (first_tombstone_idx == self.capacity() and metadata[0].isTombstone()) { first_tombstone_idx = idx; } |
Test:getOrPut allocation failure |
limit -= 1; idx = (idx + 1) & mask; metadata = self.metadata.? + idx; } if (first_tombstone_idx < self.capacity()) { // Cheap try to lower probing lengths after deletions. Recycle a tombstone. idx = first_tombstone_idx; metadata = self.metadata.? + idx; } // We're using a slot previously free or a tombstone. self.available -= 1; metadata[0].fill(fingerprint); const new_key = &self.keys()[idx]; const new_value = &self.values()[idx]; new_key.* = undefined; new_value.* = undefined; self.size += 1; return GetOrPutResult{ .key_ptr = new_key, .value_ptr = new_value, .found_existing = false, }; } pub fn getOrPutValue(self: *Self, allocator: Allocator, key: K, value: V) Allocator.Error!Entry { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call getOrPutValueContext instead."); return self.getOrPutValueContext(allocator, key, value, undefined); } pub fn getOrPutValueContext(self: *Self, allocator: Allocator, key: K, value: V, ctx: Context) Allocator.Error!Entry { const res = try self.getOrPutAdapted(allocator, key, ctx); if (!res.found_existing) { res.key_ptr.* = key; res.value_ptr.* = value; } return Entry{ .key_ptr = res.key_ptr, .value_ptr = res.value_ptr }; } /// Return true if there is a value associated with key in the map. pub fn contains(self: *const Self, key: K) bool { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call containsContext instead."); return self.containsContext(key, undefined); } pub fn containsContext(self: *const Self, key: K, ctx: Context) bool { return self.containsAdapted(key, ctx); } pub fn containsAdapted(self: *const Self, key: anytype, ctx: anytype) bool { return self.getIndex(key, ctx) != null; } fn removeByIndex(self: *Self, idx: usize) void { self.metadata.?[idx].remove(); self.keys()[idx] = undefined; self.values()[idx] = undefined; self.size -= 1; self.available += 1; } /// If there is an `Entry` with a matching key, it is deleted from /// the hash map, and this function returns true. Otherwise this /// function returns false. pub fn remove(self: *Self, key: K) bool { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call removeContext instead."); return self.removeContext(key, undefined); } pub fn removeContext(self: *Self, key: K, ctx: Context) bool { return self.removeAdapted(key, ctx); } pub fn removeAdapted(self: *Self, key: anytype, ctx: anytype) bool { if (self.getIndex(key, ctx)) |idx| { self.removeByIndex(idx); return true; } return false; } /// Delete the entry with key pointed to by key_ptr from the hash map. /// key_ptr is assumed to be a valid pointer to a key that is present /// in the hash map. pub fn removeByPtr(self: *Self, key_ptr: *K) void { // TODO: replace with pointer subtraction once supported by zig // if @sizeOf(K) == 0 then there is at most one item in the hash // map, which is assumed to exist as key_ptr must be valid. This // item must be at index 0. const idx = if (@sizeOf(K) > 0) (@intFromPtr(key_ptr) - @intFromPtr(self.keys())) / @sizeOf(K) else 0; self.removeByIndex(idx); } fn initMetadatas(self: *Self) void { @memset(@as([*]u8, @ptrCast(self.metadata.?))[0 .. @sizeOf(Metadata) * self.capacity()], 0); } // This counts the number of occupied slots (not counting tombstones), which is // what has to stay under the max_load_percentage of capacity. fn load(self: *const Self) Size { const max_load = (self.capacity() * max_load_percentage) / 100; assert(max_load >= self.available); return @as(Size, @truncate(max_load - self.available)); } fn growIfNeeded(self: *Self, allocator: Allocator, new_count: Size, ctx: Context) Allocator.Error!void { if (new_count > self.available) { try self.grow(allocator, capacityForSize(self.load() + new_count), ctx); } } pub fn clone(self: Self, allocator: Allocator) Allocator.Error!Self { if (@sizeOf(Context) != 0) @compileError("Cannot infer context " ++ @typeName(Context) ++ ", call cloneContext instead."); return self.cloneContext(allocator, @as(Context, undefined)); } pub fn cloneContext(self: Self, allocator: Allocator, new_ctx: anytype) Allocator.Error!HashMapUnmanaged(K, V, @TypeOf(new_ctx), max_load_percentage) { var other = HashMapUnmanaged(K, V, @TypeOf(new_ctx), max_load_percentage){}; if (self.size == 0) return other; const new_cap = capacityForSize(self.size); try other.allocate(allocator, new_cap); other.initMetadatas(); other.available = @truncate((new_cap * max_load_percentage) / 100); var i: Size = 0; var metadata = self.metadata.?; const keys_ptr = self.keys(); const values_ptr = self.values(); while (i < self.capacity()) : (i += 1) { if (metadata[i].isUsed()) { other.putAssumeCapacityNoClobberContext(keys_ptr[i], values_ptr[i], new_ctx); if (other.size == self.size) break; } } return other; } /// Set the map to an empty state, making deinitialization a no-op, and /// returning a copy of the original. pub fn move(self: *Self) Self { self.pointer_stability.assertUnlocked(); const result = self.*; self.* = .{}; return result; } fn grow(self: *Self, allocator: Allocator, new_capacity: Size, ctx: Context) Allocator.Error!void { @setCold(true); const new_cap = @max(new_capacity, minimal_capacity); assert(new_cap > self.capacity()); assert(std.math.isPowerOfTwo(new_cap)); var map: Self = .{}; try map.allocate(allocator, new_cap); errdefer comptime unreachable; map.pointer_stability.lock(); map.initMetadatas(); map.available = @truncate((new_cap * max_load_percentage) / 100); if (self.size != 0) { const old_capacity = self.capacity(); for ( self.metadata.?[0..old_capacity], self.keys()[0..old_capacity], self.values()[0..old_capacity], ) |m, k, v| { if (!m.isUsed()) continue; map.putAssumeCapacityNoClobberContext(k, v, ctx); if (map.size == self.size) break; } } self.size = 0; self.pointer_stability = .{ .state = .unlocked }; std.mem.swap(Self, self, &map); map.deinit(allocator); } fn allocate(self: *Self, allocator: Allocator, new_capacity: Size) Allocator.Error!void { const header_align = @alignOf(Header); const key_align = if (@sizeOf(K) == 0) 1 else @alignOf(K); const val_align = if (@sizeOf(V) == 0) 1 else @alignOf(V); const max_align = comptime @max(header_align, key_align, val_align); const new_cap: usize = new_capacity; const meta_size = @sizeOf(Header) + new_cap * @sizeOf(Metadata); comptime assert(@alignOf(Metadata) == 1); const keys_start = std.mem.alignForward(usize, meta_size, key_align); const keys_end = keys_start + new_cap * @sizeOf(K); const vals_start = std.mem.alignForward(usize, keys_end, val_align); const vals_end = vals_start + new_cap * @sizeOf(V); const total_size = std.mem.alignForward(usize, vals_end, max_align); const slice = try allocator.alignedAlloc(u8, max_align, total_size); const ptr = @intFromPtr(slice.ptr); const metadata = ptr + @sizeOf(Header); const hdr = @as(*Header, @ptrFromInt(ptr)); if (@sizeOf([*]V) != 0) { hdr.values = @as([*]V, @ptrFromInt(ptr + vals_start)); } if (@sizeOf([*]K) != 0) { hdr.keys = @as([*]K, @ptrFromInt(ptr + keys_start)); } hdr.capacity = new_capacity; self.metadata = @as([*]Metadata, @ptrFromInt(metadata)); } fn deallocate(self: *Self, allocator: Allocator) void { if (self.metadata == null) return; const header_align = @alignOf(Header); const key_align = if (@sizeOf(K) == 0) 1 else @alignOf(K); const val_align = if (@sizeOf(V) == 0) 1 else @alignOf(V); const max_align = comptime @max(header_align, key_align, val_align); const cap: usize = self.capacity(); const meta_size = @sizeOf(Header) + cap * @sizeOf(Metadata); comptime assert(@alignOf(Metadata) == 1); const keys_start = std.mem.alignForward(usize, meta_size, key_align); const keys_end = keys_start + cap * @sizeOf(K); const vals_start = std.mem.alignForward(usize, keys_end, val_align); const vals_end = vals_start + cap * @sizeOf(V); const total_size = std.mem.alignForward(usize, vals_end, max_align); const slice = @as([*]align(max_align) u8, @ptrFromInt(@intFromPtr(self.header())))[0..total_size]; allocator.free(slice); self.metadata = null; self.available = 0; } /// This function is used in the debugger pretty formatters in tools/ to fetch the /// header type to facilitate fancy debug printing for this type. fn dbHelper(self: *Self, hdr: *Header, entry: *Entry) void { _ = self; _ = hdr; _ = entry; } comptime { if (!builtin.strip_debug_info) { _ = &dbHelper; } } }; } const testing = std.testing; const expect = std.testing.expect; const expectEqual = std.testing.expectEqual; test "basic usage" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); const count = 5; var i: u32 = 0; var total: u32 = 0; while (i < count) : (i += 1) { try map.put(i, i); total += i; } var sum: u32 = 0; var it = map.iterator(); while (it.next()) |kv| { sum += kv.key_ptr.*; } try expectEqual(total, sum); i = 0; sum = 0; while (i < count) : (i += 1) { try expectEqual(i, map.get(i).?); sum += map.get(i).?; } try expectEqual(total, sum); } test "ensureTotalCapacity" { var map = AutoHashMap(i32, i32).init(std.testing.allocator); defer map.deinit(); try map.ensureTotalCapacity(20); const initial_capacity = map.capacity(); try testing.expect(initial_capacity >= 20); var i: i32 = 0; while (i < 20) : (i += 1) { try testing.expect(map.fetchPutAssumeCapacity(i, i + 10) == null); } // shouldn't resize from putAssumeCapacity try testing.expect(initial_capacity == map.capacity()); } test "ensureUnusedCapacity with tombstones" { var map = AutoHashMap(i32, i32).init(std.testing.allocator); defer map.deinit(); var i: i32 = 0; while (i < 100) : (i += 1) { try map.ensureUnusedCapacity(1); map.putAssumeCapacity(i, i); _ = map.remove(i); } } test "clearRetainingCapacity" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); map.clearRetainingCapacity(); try map.put(1, 1); try expectEqual(map.get(1).?, 1); try expectEqual(map.count(), 1); map.clearRetainingCapacity(); map.putAssumeCapacity(1, 1); try expectEqual(map.get(1).?, 1); try expectEqual(map.count(), 1); const cap = map.capacity(); try expect(cap > 0); map.clearRetainingCapacity(); map.clearRetainingCapacity(); try expectEqual(map.count(), 0); try expectEqual(map.capacity(), cap); try expect(!map.contains(1)); } test "grow" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); const growTo = 12456; var i: u32 = 0; while (i < growTo) : (i += 1) { try map.put(i, i); } try expectEqual(map.count(), growTo); i = 0; var it = map.iterator(); while (it.next()) |kv| { try expectEqual(kv.key_ptr.*, kv.value_ptr.*); i += 1; } try expectEqual(i, growTo); i = 0; while (i < growTo) : (i += 1) { try expectEqual(map.get(i).?, i); } } test "clone" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); var a = try map.clone(); defer a.deinit(); try expectEqual(a.count(), 0); try a.put(1, 1); try a.put(2, 2); try a.put(3, 3); var b = try a.clone(); defer b.deinit(); try expectEqual(b.count(), 3); try expectEqual(b.get(1).?, 1); try expectEqual(b.get(2).?, 2); try expectEqual(b.get(3).?, 3); var original = AutoHashMap(i32, i32).init(std.testing.allocator); defer original.deinit(); var i: u8 = 0; while (i < 10) : (i += 1) { try original.putNoClobber(i, i * 10); } var copy = try original.clone(); defer copy.deinit(); i = 0; while (i < 10) : (i += 1) { try testing.expect(copy.get(i).? == i * 10); } } test "ensureTotalCapacity with existing elements" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); try map.put(0, 0); try expectEqual(map.count(), 1); try expectEqual(map.capacity(), @TypeOf(map).Unmanaged.minimal_capacity); try map.ensureTotalCapacity(65); try expectEqual(map.count(), 1); try expectEqual(map.capacity(), 128); } test "ensureTotalCapacity satisfies max load factor" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); try map.ensureTotalCapacity(127); try expectEqual(map.capacity(), 256); } test "remove" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); var i: u32 = 0; while (i < 16) : (i += 1) { try map.put(i, i); } i = 0; while (i < 16) : (i += 1) { if (i % 3 == 0) { _ = map.remove(i); } } try expectEqual(map.count(), 10); var it = map.iterator(); while (it.next()) |kv| { try expectEqual(kv.key_ptr.*, kv.value_ptr.*); try expect(kv.key_ptr.* % 3 != 0); } i = 0; while (i < 16) : (i += 1) { if (i % 3 == 0) { try expect(!map.contains(i)); } else { try expectEqual(map.get(i).?, i); } } } test "reverse removes" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); var i: u32 = 0; while (i < 16) : (i += 1) { try map.putNoClobber(i, i); } i = 16; while (i > 0) : (i -= 1) { _ = map.remove(i - 1); try expect(!map.contains(i - 1)); var j: u32 = 0; while (j < i - 1) : (j += 1) { try expectEqual(map.get(j).?, j); } } try expectEqual(map.count(), 0); } test "multiple removes on same metadata" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); var i: u32 = 0; while (i < 16) : (i += 1) { try map.put(i, i); } _ = map.remove(7); _ = map.remove(15); _ = map.remove(14); _ = map.remove(13); try expect(!map.contains(7)); try expect(!map.contains(15)); try expect(!map.contains(14)); try expect(!map.contains(13)); i = 0; while (i < 13) : (i += 1) { if (i == 7) { try expect(!map.contains(i)); } else { try expectEqual(map.get(i).?, i); } } try map.put(15, 15); try map.put(13, 13); try map.put(14, 14); try map.put(7, 7); i = 0; while (i < 16) : (i += 1) { try expectEqual(map.get(i).?, i); } } test "put and remove loop in random order" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); var keys = std.ArrayList(u32).init(std.testing.allocator); defer keys.deinit(); const size = 32; const iterations = 100; var i: u32 = 0; while (i < size) : (i += 1) { try keys.append(i); } var prng = std.Random.DefaultPrng.init(0); const random = prng.random(); while (i < iterations) : (i += 1) { random.shuffle(u32, keys.items); for (keys.items) |key| { try map.put(key, key); } try expectEqual(map.count(), size); for (keys.items) |key| { _ = map.remove(key); } try expectEqual(map.count(), 0); } } test "remove one million elements in random order" { const Map = AutoHashMap(u32, u32); const n = 1000 * 1000; var map = Map.init(std.heap.page_allocator); defer map.deinit(); var keys = std.ArrayList(u32).init(std.heap.page_allocator); defer keys.deinit(); var i: u32 = 0; while (i < n) : (i += 1) { keys.append(i) catch unreachable; } var prng = std.Random.DefaultPrng.init(0); const random = prng.random(); random.shuffle(u32, keys.items); for (keys.items) |key| { map.put(key, key) catch unreachable; } random.shuffle(u32, keys.items); i = 0; while (i < n) : (i += 1) { const key = keys.items[i]; _ = map.remove(key); } } test "put" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); var i: u32 = 0; while (i < 16) : (i += 1) { try map.put(i, i); } i = 0; while (i < 16) : (i += 1) { try expectEqual(map.get(i).?, i); } i = 0; while (i < 16) : (i += 1) { try map.put(i, i * 16 + 1); } i = 0; while (i < 16) : (i += 1) { try expectEqual(map.get(i).?, i * 16 + 1); } } test "putAssumeCapacity" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); try map.ensureTotalCapacity(20); var i: u32 = 0; while (i < 20) : (i += 1) { map.putAssumeCapacityNoClobber(i, i); } i = 0; var sum = i; while (i < 20) : (i += 1) { sum += map.getPtr(i).?.*; } try expectEqual(sum, 190); i = 0; while (i < 20) : (i += 1) { map.putAssumeCapacity(i, 1); } i = 0; sum = i; while (i < 20) : (i += 1) { sum += map.get(i).?; } try expectEqual(sum, 20); } test "repeat putAssumeCapacity/remove" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); try map.ensureTotalCapacity(20); const limit = map.unmanaged.available; var i: u32 = 0; while (i < limit) : (i += 1) { map.putAssumeCapacityNoClobber(i, i); } // Repeatedly delete/insert an entry without resizing the map. // Put to different keys so entries don't land in the just-freed slot. i = 0; while (i < 10 * limit) : (i += 1) { try testing.expect(map.remove(i)); if (i % 2 == 0) { map.putAssumeCapacityNoClobber(limit + i, i); } else { map.putAssumeCapacity(limit + i, i); } } i = 9 * limit; while (i < 10 * limit) : (i += 1) { try expectEqual(map.get(limit + i), i); } try expectEqual(map.unmanaged.available, 0); try expectEqual(map.unmanaged.count(), limit); } test "getOrPut" { var map = AutoHashMap(u32, u32).init(std.testing.allocator); defer map.deinit(); var i: u32 = 0; while (i < 10) : (i += 1) { try map.put(i * 2, 2); } i = 0; while (i < 20) : (i += 1) { _ = try map.getOrPutValue(i, 1); } i = 0; var sum = i; while (i < 20) : (i += 1) { sum += map.get(i).?; } try expectEqual(sum, 30); } test "basic hash map usage" { var map = AutoHashMap(i32, i32).init(std.testing.allocator); defer map.deinit(); try testing.expect((try map.fetchPut(1, 11)) == null); try testing.expect((try map.fetchPut(2, 22)) == null); try testing.expect((try map.fetchPut(3, 33)) == null); try testing.expect((try map.fetchPut(4, 44)) == null); try map.putNoClobber(5, 55); try testing.expect((try map.fetchPut(5, 66)).?.value == 55); try testing.expect((try map.fetchPut(5, 55)).?.value == 66); const gop1 = try map.getOrPut(5); try testing.expect(gop1.found_existing == true); try testing.expect(gop1.value_ptr.* == 55); gop1.value_ptr.* = 77; try testing.expect(map.getEntry(5).?.value_ptr.* == 77); const gop2 = try map.getOrPut(99); try testing.expect(gop2.found_existing == false); gop2.value_ptr.* = 42; try testing.expect(map.getEntry(99).?.value_ptr.* == 42); const gop3 = try map.getOrPutValue(5, 5); try testing.expect(gop3.value_ptr.* == 77); const gop4 = try map.getOrPutValue(100, 41); try testing.expect(gop4.value_ptr.* == 41); try testing.expect(map.contains(2)); try testing.expect(map.getEntry(2).?.value_ptr.* == 22); try testing.expect(map.get(2).? == 22); const rmv1 = map.fetchRemove(2); try testing.expect(rmv1.?.key == 2); try testing.expect(rmv1.?.value == 22); try testing.expect(map.fetchRemove(2) == null); try testing.expect(map.remove(2) == false); try testing.expect(map.getEntry(2) == null); try testing.expect(map.get(2) == null); try testing.expect(map.remove(3) == true); } test "getOrPutAdapted" { const AdaptedContext = struct { fn eql(self: @This(), adapted_key: []const u8, test_key: u64) bool { _ = self; return std.fmt.parseInt(u64, adapted_key, 10) catch unreachable == test_key; } fn hash(self: @This(), adapted_key: []const u8) u64 { _ = self; const key = std.fmt.parseInt(u64, adapted_key, 10) catch unreachable; return (AutoContext(u64){}).hash(key); } }; var map = AutoHashMap(u64, u64).init(testing.allocator); defer map.deinit(); const keys = [_][]const u8{ "1231", "4564", "7894", "1132", "65235", "95462", "0112305", "00658", "0", "2", }; var real_keys: [keys.len]u64 = undefined; inline for (keys, 0..) |key_str, i| { const result = try map.getOrPutAdapted(key_str, AdaptedContext{}); try testing.expect(!result.found_existing); real_keys[i] = std.fmt.parseInt(u64, key_str, 10) catch unreachable; result.key_ptr.* = real_keys[i]; result.value_ptr.* = i * 2; } try testing.expectEqual(map.count(), keys.len); inline for (keys, 0..) |key_str, i| { const result = map.getOrPutAssumeCapacityAdapted(key_str, AdaptedContext{}); try testing.expect(result.found_existing); try testing.expectEqual(real_keys[i], result.key_ptr.*); try testing.expectEqual(@as(u64, i) * 2, result.value_ptr.*); try testing.expectEqual(real_keys[i], map.getKeyAdapted(key_str, AdaptedContext{}).?); } } test "ensureUnusedCapacity" { var map = AutoHashMap(u64, u64).init(testing.allocator); defer map.deinit(); try map.ensureUnusedCapacity(32); const capacity = map.capacity(); try map.ensureUnusedCapacity(32); // Repeated ensureUnusedCapacity() calls with no insertions between // should not change the capacity. try testing.expectEqual(capacity, map.capacity()); } test "removeByPtr" { var map = AutoHashMap(i32, u64).init(testing.allocator); defer map.deinit(); var i: i32 = undefined; i = 0; while (i < 10) : (i += 1) { try map.put(i, 0); } try testing.expect(map.count() == 10); i = 0; while (i < 10) : (i += 1) { const key_ptr = map.getKeyPtr(i); try testing.expect(key_ptr != null); if (key_ptr) |ptr| { map.removeByPtr(ptr); } } try testing.expect(map.count() == 0); } test "removeByPtr 0 sized key" { var map = AutoHashMap(u0, u64).init(testing.allocator); defer map.deinit(); try map.put(0, 0); try testing.expect(map.count() == 1); const key_ptr = map.getKeyPtr(0); try testing.expect(key_ptr != null); if (key_ptr) |ptr| { map.removeByPtr(ptr); } try testing.expect(map.count() == 0); } test "repeat fetchRemove" { var map = AutoHashMapUnmanaged(u64, void){}; defer map.deinit(testing.allocator); try map.ensureTotalCapacity(testing.allocator, 4); map.putAssumeCapacity(0, {}); map.putAssumeCapacity(1, {}); map.putAssumeCapacity(2, {}); map.putAssumeCapacity(3, {}); // fetchRemove() should make slots available. var i: usize = 0; while (i < 10) : (i += 1) { try testing.expect(map.fetchRemove(3) != null); map.putAssumeCapacity(3, {}); } try testing.expect(map.get(0) != null); try testing.expect(map.get(1) != null); try testing.expect(map.get(2) != null); try testing.expect(map.get(3) != null); } test "getOrPut allocation failure" { var map: std.StringHashMapUnmanaged(void) = .{}; try testing.expectError(error.OutOfMemory, map.getOrPut(std.testing.failing_allocator, "hello")); } |
Generated by zstd-live on 2025-08-10 02:46:01 UTC. |