|
const std = @import("../std.zig");
const testing = std.testing;
const math = std.math;
|
abscomplex/abs.zigReal part. |
pub const abs = @import("complex/abs.zig").abs;
|
acoshcomplex/acosh.zigImaginary part. |
pub const acosh = @import("complex/acosh.zig").acosh;
|
acoscomplex/acos.zigCreate a new Complex number from the given real and imaginary parts. |
pub const acos = @import("complex/acos.zig").acos;
|
argcomplex/arg.zigReturns the sum of two complex numbers. |
pub const arg = @import("complex/arg.zig").arg;
|
asinhcomplex/asinh.zigReturns the subtraction of two complex numbers. |
pub const asinh = @import("complex/asinh.zig").asinh;
|
asincomplex/asin.zigReturns the product of two complex numbers. |
pub const asin = @import("complex/asin.zig").asin;
|
atanhcomplex/atanh.zigReturns the quotient of two complex numbers. |
pub const atanh = @import("complex/atanh.zig").atanh;
|
atancomplex/atan.zigReturns the complex conjugate of a number. |
pub const atan = @import("complex/atan.zig").atan;
|
conjcomplex/conj.zigReturns the negation of a complex number. |
pub const conj = @import("complex/conj.zig").conj;
|
coshcomplex/cosh.zigReturns the product of complex number and i=sqrt(-1) |
pub const cosh = @import("complex/cosh.zig").cosh;
|
coscomplex/cos.zigReturns the reciprocal of a complex number. |
pub const cos = @import("complex/cos.zig").cos;
|
expcomplex/exp.zigReturns the magnitude of a complex number. |
pub const exp = @import("complex/exp.zig").exp;
|
logcomplex/log.zig |
pub const log = @import("complex/log.zig").log;
|
powcomplex/pow.zig |
pub const pow = @import("complex/pow.zig").pow;
|
projcomplex/proj.zig |
pub const proj = @import("complex/proj.zig").proj;
|
sinhcomplex/sinh.zig |
pub const sinh = @import("complex/sinh.zig").sinh;
|
sincomplex/sin.zig |
pub const sin = @import("complex/sin.zig").sin;
|
sqrtcomplex/sqrt.zig |
pub const sqrt = @import("complex/sqrt.zig").sqrt;
|
tanhcomplex/tanh.zig |
pub const tanh = @import("complex/tanh.zig").tanh;
|
tancomplex/tan.zig |
pub const tan = @import("complex/tan.zig").tan;
|
Complex() |
/// A complex number consisting of a real an imaginary part. T must be a floating-point value.
pub fn Complex(comptime T: type) type {
return struct {
const Self = @This();
|
init() |
/// Real part.
re: T,
|
add() |
/// Imaginary part.
im: T,
|
sub() |
/// Create a new Complex number from the given real and imaginary parts.
pub fn init(re: T, im: T) Self {
return Self{
.re = re,
.im = im,
};
}
|
mul() |
/// Returns the sum of two complex numbers.
pub fn add(self: Self, other: Self) Self {
return Self{
.re = self.re + other.re,
.im = self.im + other.im,
};
}
|
div() |
/// Returns the subtraction of two complex numbers.
pub fn sub(self: Self, other: Self) Self {
return Self{
.re = self.re - other.re,
.im = self.im - other.im,
};
}
|
conjugate() |
/// Returns the product of two complex numbers.
pub fn mul(self: Self, other: Self) Self {
return Self{
.re = self.re * other.re - self.im * other.im,
.im = self.im * other.re + self.re * other.im,
};
}
|
neg() |
/// Returns the quotient of two complex numbers.
pub fn div(self: Self, other: Self) Self {
const re_num = self.re * other.re + self.im * other.im;
const im_num = self.im * other.re - self.re * other.im;
const den = other.re * other.re + other.im * other.im;
|
mulbyi() |
return Self{
.re = re_num / den,
.im = im_num / den,
};
}
|
reciprocal() |
/// Returns the complex conjugate of a number.
pub fn conjugate(self: Self) Self {
return Self{
.re = self.re,
.im = -self.im,
};
}
|
magnitude() |
/// Returns the negation of a complex number.
pub fn neg(self: Self) Self {
return Self{
.re = -self.re,
.im = -self.im,
};
}
|
Test:add |
/// Returns the product of complex number and i=sqrt(-1)
pub fn mulbyi(self: Self) Self {
return Self{
.re = -self.im,
.im = self.re,
};
}
|
Test:sub |
/// Returns the reciprocal of a complex number.
pub fn reciprocal(self: Self) Self {
const m = self.re * self.re + self.im * self.im;
return Self{
.re = self.re / m,
.im = -self.im / m,
};
}
|
Test:mul |
/// Returns the magnitude of a complex number.
pub fn magnitude(self: Self) T {
return @sqrt(self.re * self.re + self.im * self.im);
}
};
}
|
Test:div |
const epsilon = 0.0001; |
Test:conjugate |
test "add" {
const a = Complex(f32).init(5, 3);
const b = Complex(f32).init(2, 7);
const c = a.add(b);
|
Test:neg |
try testing.expect(c.re == 7 and c.im == 10);
}
|
Test:mulbyi |
test "sub" {
const a = Complex(f32).init(5, 3);
const b = Complex(f32).init(2, 7);
const c = a.sub(b);
|
Test:reciprocal |
try testing.expect(c.re == 3 and c.im == -4);
}
|
Test:magnitude |
test "mul" {
const a = Complex(f32).init(5, 3);
const b = Complex(f32).init(2, 7);
const c = a.mul(b);
try testing.expect(c.re == -11 and c.im == 41);
}
test "div" {
const a = Complex(f32).init(5, 3);
const b = Complex(f32).init(2, 7);
const c = a.div(b);
try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 31) / 53, epsilon) and
math.approxEqAbs(f32, c.im, @as(f32, -29) / 53, epsilon));
}
test "conjugate" {
const a = Complex(f32).init(5, 3);
const c = a.conjugate();
try testing.expect(c.re == 5 and c.im == -3);
}
test "neg" {
const a = Complex(f32).init(5, 3);
const c = a.neg();
try testing.expect(c.re == -5 and c.im == -3);
}
test "mulbyi" {
const a = Complex(f32).init(5, 3);
const c = a.mulbyi();
try testing.expect(c.re == -3 and c.im == 5);
}
test "reciprocal" {
const a = Complex(f32).init(5, 3);
const c = a.reciprocal();
try testing.expect(math.approxEqAbs(f32, c.re, @as(f32, 5) / 34, epsilon) and
math.approxEqAbs(f32, c.im, @as(f32, -3) / 34, epsilon));
}
test "magnitude" {
const a = Complex(f32).init(5, 3);
const c = a.magnitude();
try testing.expect(math.approxEqAbs(f32, c, 5.83095, epsilon));
}
test {
_ = @import("complex/abs.zig");
_ = @import("complex/acosh.zig");
_ = @import("complex/acos.zig");
_ = @import("complex/arg.zig");
_ = @import("complex/asinh.zig");
_ = @import("complex/asin.zig");
_ = @import("complex/atanh.zig");
_ = @import("complex/atan.zig");
_ = @import("complex/conj.zig");
_ = @import("complex/cosh.zig");
_ = @import("complex/cos.zig");
_ = @import("complex/exp.zig");
_ = @import("complex/log.zig");
_ = @import("complex/pow.zig");
_ = @import("complex/proj.zig");
_ = @import("complex/sinh.zig");
_ = @import("complex/sin.zig");
_ = @import("complex/sqrt.zig");
_ = @import("complex/tanh.zig");
_ = @import("complex/tan.zig");
}
|
| Generated by zstd-live on 2025-10-12 02:30:40 UTC. |