|
//! Cryptography. |
aeadAuthenticated Encryption with Associated Data |
const root = @import("root"); |
aegisAuthentication (MAC) functions. |
/// Authenticated Encryption with Associated Data pub const aead = struct { |
aegisCore functions, that should rarely be used directly by applications. |
pub const aegis = struct { pub const Aegis128L = @import("crypto/aegis.zig").Aegis128L; |
Aegis128L_256crypto/aegis.zigModes are generic compositions to construct encryption/decryption functions from block ciphers and permutations. These modes are designed to be building blocks for higher-level constructions, and should generally not be used directly by applications, as they may not provide the expected properties and security guarantees. Most applications may want to use AEADs instead. |
pub const Aegis128L_256 = @import("crypto/aegis.zig").Aegis128L_256; |
Aegis256crypto/aegis.zigDiffie-Hellman key exchange functions. |
pub const Aegis256 = @import("crypto/aegis.zig").Aegis256; |
Aegis256_256crypto/aegis.zigKey Encapsulation Mechanisms. |
pub const Aegis256_256 = @import("crypto/aegis.zig").Aegis256_256; }; |
aes_gcmElliptic-curve arithmetic. |
pub const aes_gcm = struct { |
Aes128Gcmcrypto/aes_gcm.zigHash functions. |
pub const Aes128Gcm = @import("crypto/aes_gcm.zig").Aes128Gcm; |
Aes256Gcmcrypto/aes_gcm.zigKey derivation functions. |
pub const Aes256Gcm = @import("crypto/aes_gcm.zig").Aes256Gcm; }; |
aes_ocbMAC functions requiring single-use secret keys. |
pub const aes_ocb = struct { |
Aes128Ocbcrypto/aes_ocb.zigA password hashing function derives a uniform key from low-entropy input material such as passwords. It is intentionally slow or expensive. With the standard definition of a key derivation function, if a key space is small, an exhaustive search may be practical. Password hashing functions make exhaustive searches way slower or way more expensive, even when implemented on GPUs and ASICs, by using different, optionally combined strategies: - Requiring a lot of computation cycles to complete - Requiring a lot of memory to complete - Requiring multiple CPU cores to complete - Requiring cache-local data to complete in reasonable time - Requiring large static tables - Avoiding precomputations and time/memory tradeoffs - Requiring multi-party computations - Combining the input material with random per-entry data (salts), application-specific contexts and keys Password hashing functions must be used whenever sensitive data has to be directly derived from a password. |
pub const Aes128Ocb = @import("crypto/aes_ocb.zig").Aes128Ocb; |
Aes256Ocbcrypto/aes_ocb.zigDigital signature functions. |
pub const Aes256Ocb = @import("crypto/aes_ocb.zig").Aes256Ocb; }; |
chacha_polyStream ciphers. These do not provide any kind of authentication. Most applications should be using AEAD constructions instead of stream ciphers directly. |
pub const chacha_poly = struct { |
ChaCha20Poly1305crypto/chacha20.zigFinite-field arithmetic. |
pub const ChaCha20Poly1305 = @import("crypto/chacha20.zig").ChaCha20Poly1305; |
ChaCha12Poly1305crypto/chacha20.zigThis is a thread-local, cryptographically secure pseudo random number generator. |
pub const ChaCha12Poly1305 = @import("crypto/chacha20.zig").ChaCha12Poly1305; |
ChaCha8Poly1305crypto/chacha20.zigSide-channels mitigations. |
pub const ChaCha8Poly1305 = @import("crypto/chacha20.zig").ChaCha8Poly1305; |
XChaCha20Poly1305crypto/chacha20.zigNo additional side-channel mitigations are applied. This is the fastest mode. |
pub const XChaCha20Poly1305 = @import("crypto/chacha20.zig").XChaCha20Poly1305; |
XChaCha12Poly1305crypto/chacha20.zigThe |
pub const XChaCha12Poly1305 = @import("crypto/chacha20.zig").XChaCha12Poly1305; |
XChaCha8Poly1305crypto/chacha20.zigThe |
pub const XChaCha8Poly1305 = @import("crypto/chacha20.zig").XChaCha8Poly1305; }; |
isapcrypto/isap.zigThe |
pub const isap = @import("crypto/isap.zig"); |
salsa_poly |
pub const salsa_poly = struct { |
XSalsa20Poly1305crypto/salsa20.zig |
pub const XSalsa20Poly1305 = @import("crypto/salsa20.zig").XSalsa20Poly1305; }; |
Error |
}; |
hmaccrypto/hmac.zig |
/// Authentication (MAC) functions. pub const auth = struct { pub const hmac = @import("crypto/hmac.zig"); |
siphashcrypto/siphash.zig |
pub const siphash = @import("crypto/siphash.zig"); |
aegis |
pub const aegis = struct { |
Aegis128LMaccrypto/aegis.zig |
pub const Aegis128LMac = @import("crypto/aegis.zig").Aegis128LMac; |
Aegis128LMac_128crypto/aegis.zig |
pub const Aegis128LMac_128 = @import("crypto/aegis.zig").Aegis128LMac_128; |
Aegis256Maccrypto/aegis.zig |
pub const Aegis256Mac = @import("crypto/aegis.zig").Aegis256Mac; |
Aegis256Mac_128crypto/aegis.zig |
pub const Aegis256Mac_128 = @import("crypto/aegis.zig").Aegis256Mac_128; }; |
cmaccrypto/cmac.zig |
pub const cmac = @import("crypto/cmac.zig"); |
Error |
}; |
aescrypto/aes.zig |
/// Core functions, that should rarely be used directly by applications. pub const core = struct { pub const aes = @import("crypto/aes.zig"); |
keccakcrypto/keccak_p.zig |
pub const keccak = @import("crypto/keccak_p.zig"); |
Asconcrypto/ascon.zig |
pub const Ascon = @import("crypto/ascon.zig").State; |
modescrypto/modes.zig |
/// Modes are generic compositions to construct encryption/decryption functions from block ciphers and permutations. /// /// These modes are designed to be building blocks for higher-level constructions, and should generally not be used directly by applications, as they may not provide the expected properties and security guarantees. /// /// Most applications may want to use AEADs instead. pub const modes = @import("crypto/modes.zig"); |
Error |
}; |
X25519crypto/25519/x25519.zig |
/// Diffie-Hellman key exchange functions. pub const dh = struct { pub const X25519 = @import("crypto/25519/x25519.zig").X25519; |
Error |
}; |
kyber_d00crypto/ml_kem.zig |
/// Key Encapsulation Mechanisms. pub const kem = struct { pub const kyber_d00 = @import("crypto/ml_kem.zig").kyber_d00; |
ml_kem_01crypto/ml_kem.zig |
pub const ml_kem_01 = @import("crypto/ml_kem.zig").ml_kem_01; |
Error |
}; |
Curve25519crypto/25519/curve25519.zig |
/// Elliptic-curve arithmetic. pub const ecc = struct { pub const Curve25519 = @import("crypto/25519/curve25519.zig").Curve25519; |
Edwards25519crypto/25519/edwards25519.zig |
pub const Edwards25519 = @import("crypto/25519/edwards25519.zig").Edwards25519; |
P256crypto/pcurves/p256.zig |
pub const P256 = @import("crypto/pcurves/p256.zig").P256; |
P384crypto/pcurves/p384.zig |
pub const P384 = @import("crypto/pcurves/p384.zig").P384; |
Ristretto255crypto/25519/ristretto255.zig |
pub const Ristretto255 = @import("crypto/25519/ristretto255.zig").Ristretto255; |
Secp256k1crypto/pcurves/secp256k1.zig |
pub const Secp256k1 = @import("crypto/pcurves/secp256k1.zig").Secp256k1; |
Error |
}; |
blake2crypto/blake2.zig |
/// Hash functions. pub const hash = struct { pub const blake2 = @import("crypto/blake2.zig"); |
Blake3crypto/blake3.zig |
pub const Blake3 = @import("crypto/blake3.zig").Blake3; |
Md5crypto/md5.zig |
pub const Md5 = @import("crypto/md5.zig").Md5; |
Sha1crypto/sha1.zig |
pub const Sha1 = @import("crypto/sha1.zig").Sha1; |
sha2crypto/sha2.zig |
pub const sha2 = @import("crypto/sha2.zig"); |
sha3crypto/sha3.zig |
pub const sha3 = @import("crypto/sha3.zig"); |
compositioncrypto/hash_composition.zig |
pub const composition = @import("crypto/hash_composition.zig"); |
Error |
}; |
hkdfcrypto/hkdf.zig |
/// Key derivation functions. pub const kdf = struct { pub const hkdf = @import("crypto/hkdf.zig"); |
Error |
}; |
Ghashcrypto/ghash_polyval.zig |
/// MAC functions requiring single-use secret keys. pub const onetimeauth = struct { pub const Ghash = @import("crypto/ghash_polyval.zig").Ghash; |
Polyvalcrypto/ghash_polyval.zig |
pub const Polyval = @import("crypto/ghash_polyval.zig").Polyval; |
Poly1305crypto/poly1305.zig |
pub const Poly1305 = @import("crypto/poly1305.zig").Poly1305; |
Error |
}; |
Encoding |
/// A password hashing function derives a uniform key from low-entropy input material such as passwords. /// It is intentionally slow or expensive. /// /// With the standard definition of a key derivation function, if a key space is small, an exhaustive search may be practical. /// Password hashing functions make exhaustive searches way slower or way more expensive, even when implemented on GPUs and ASICs, by using different, optionally combined strategies: /// /// - Requiring a lot of computation cycles to complete /// - Requiring a lot of memory to complete /// - Requiring multiple CPU cores to complete /// - Requiring cache-local data to complete in reasonable time /// - Requiring large static tables /// - Avoiding precomputations and time/memory tradeoffs /// - Requiring multi-party computations /// - Combining the input material with random per-entry data (salts), application-specific contexts and keys /// /// Password hashing functions must be used whenever sensitive data has to be directly derived from a password. pub const pwhash = struct { pub const Encoding = enum { phc, crypt, }; |
Error |
pub const Error = HasherError || error{AllocatorRequired}; |
HasherError |
pub const HasherError = KdfError || phc_format.Error; |
KdfError |
pub const KdfError = errors.Error || std.mem.Allocator.Error || std.Thread.SpawnError; |
argon2crypto/argon2.zig |
pub const argon2 = @import("crypto/argon2.zig"); |
bcryptcrypto/bcrypt.zig |
pub const bcrypt = @import("crypto/bcrypt.zig"); |
scryptcrypto/scrypt.zig |
pub const scrypt = @import("crypto/scrypt.zig"); |
pbkdf2crypto/pbkdf2.zig |
pub const pbkdf2 = @import("crypto/pbkdf2.zig").pbkdf2; |
phc_formatcrypto/phc_encoding.zig |
pub const phc_format = @import("crypto/phc_encoding.zig"); }; |
sign |
/// Digital signature functions. pub const sign = struct { |
Ed25519crypto/25519/ed25519.zig |
pub const Ed25519 = @import("crypto/25519/ed25519.zig").Ed25519; |
ecdsacrypto/ecdsa.zig |
pub const ecdsa = @import("crypto/ecdsa.zig"); }; |
stream |
/// Stream ciphers. These do not provide any kind of authentication. /// Most applications should be using AEAD constructions instead of stream ciphers directly. pub const stream = struct { |
chacha |
pub const chacha = struct { |
ChaCha20IETFcrypto/chacha20.zig |
pub const ChaCha20IETF = @import("crypto/chacha20.zig").ChaCha20IETF; |
ChaCha12IETFcrypto/chacha20.zig |
pub const ChaCha12IETF = @import("crypto/chacha20.zig").ChaCha12IETF; |
ChaCha8IETFcrypto/chacha20.zig |
pub const ChaCha8IETF = @import("crypto/chacha20.zig").ChaCha8IETF; |
ChaCha20With64BitNoncecrypto/chacha20.zig |
pub const ChaCha20With64BitNonce = @import("crypto/chacha20.zig").ChaCha20With64BitNonce; |
ChaCha12With64BitNoncecrypto/chacha20.zig |
pub const ChaCha12With64BitNonce = @import("crypto/chacha20.zig").ChaCha12With64BitNonce; |
ChaCha8With64BitNoncecrypto/chacha20.zig |
pub const ChaCha8With64BitNonce = @import("crypto/chacha20.zig").ChaCha8With64BitNonce; |
XChaCha20IETFcrypto/chacha20.zig |
pub const XChaCha20IETF = @import("crypto/chacha20.zig").XChaCha20IETF; |
XChaCha12IETFcrypto/chacha20.zig |
pub const XChaCha12IETF = @import("crypto/chacha20.zig").XChaCha12IETF; |
XChaCha8IETFcrypto/chacha20.zig |
pub const XChaCha8IETF = @import("crypto/chacha20.zig").XChaCha8IETF; }; |
salsa |
pub const salsa = struct { |
Salsacrypto/salsa20.zig |
pub const Salsa = @import("crypto/salsa20.zig").Salsa; |
XSalsacrypto/salsa20.zig |
pub const XSalsa = @import("crypto/salsa20.zig").XSalsa; |
Salsa20crypto/salsa20.zig |
pub const Salsa20 = @import("crypto/salsa20.zig").Salsa20; |
XSalsa20crypto/salsa20.zig |
pub const XSalsa20 = @import("crypto/salsa20.zig").XSalsa20; }; }; |
nacl |
pub const nacl = struct { const salsa20 = @import("crypto/salsa20.zig"); |
Box |
pub const Box = salsa20.Box; |
SecretBox |
pub const SecretBox = salsa20.SecretBox; |
SealedBox |
pub const SealedBox = salsa20.SealedBox; }; |
utilscrypto/utils.zig |
pub const utils = @import("crypto/utils.zig"); |
ffcrypto/ff.zig |
/// Finite-field arithmetic. pub const ff = @import("crypto/ff.zig"); |
randomcrypto/tlcsprng.zig |
/// This is a thread-local, cryptographically secure pseudo random number generator. pub const random = @import("crypto/tlcsprng.zig").interface; |
errorscrypto/errors.zig |
const std = @import("std.zig"); |
tlscrypto/tls.zig |
pub const errors = @import("crypto/errors.zig"); |
Certificatecrypto/Certificate.zig |
pub const tls = @import("crypto/tls.zig"); pub const Certificate = @import("crypto/Certificate.zig"); |
SideChannelsMitigations |
/// Side-channels mitigations. pub const SideChannelsMitigations = enum { /// No additional side-channel mitigations are applied. /// This is the fastest mode. none, /// The `basic` mode protects against most practical attacks, provided that the /// application or implements proper defenses against brute-force attacks. /// It offers a good balance between performance and security. basic, /// The `medium` mode offers increased resilience against side-channel attacks, /// making most attacks unpractical even on shared/low latency environements. /// This is the default mode. medium, /// The `full` mode offers the highest level of protection against side-channel attacks. /// Note that this doesn't cover all possible attacks (especially power analysis or /// thread-local attacks such as cachebleed), and that the performance impact is significant. full, }; |
default_side_channels_mitigations |
pub const default_side_channels_mitigations = .medium; |
Test:CSPRNG |
test { _ = aead.aegis.Aegis128L; _ = aead.aegis.Aegis256; |
Test:issue #4532: no index out of bounds |
_ = aead.aes_gcm.Aes128Gcm; _ = aead.aes_gcm.Aes256Gcm; _ = aead.aes_ocb.Aes128Ocb; _ = aead.aes_ocb.Aes256Ocb; _ = aead.chacha_poly.ChaCha20Poly1305; _ = aead.chacha_poly.ChaCha12Poly1305; _ = aead.chacha_poly.ChaCha8Poly1305; _ = aead.chacha_poly.XChaCha20Poly1305; _ = aead.chacha_poly.XChaCha12Poly1305; _ = aead.chacha_poly.XChaCha8Poly1305; _ = aead.isap; _ = aead.salsa_poly.XSalsa20Poly1305; _ = auth.hmac; _ = auth.cmac; _ = auth.siphash; _ = core.aes; _ = core.Ascon; _ = core.modes; _ = dh.X25519; _ = kem.kyber_d00; _ = ecc.Curve25519; _ = ecc.Edwards25519; _ = ecc.P256; _ = ecc.P384; _ = ecc.Ristretto255; _ = ecc.Secp256k1; _ = hash.blake2; _ = hash.Blake3; _ = hash.Md5; _ = hash.Sha1; _ = hash.sha2; _ = hash.sha3; _ = hash.composition; _ = kdf.hkdf; _ = onetimeauth.Ghash; _ = onetimeauth.Poly1305; _ = pwhash.Encoding; _ = pwhash.Error; _ = pwhash.HasherError; _ = pwhash.KdfError; _ = pwhash.argon2; _ = pwhash.bcrypt; _ = pwhash.scrypt; _ = pwhash.pbkdf2; _ = pwhash.phc_format; _ = sign.Ed25519; _ = sign.ecdsa; _ = stream.chacha.ChaCha20IETF; _ = stream.chacha.ChaCha12IETF; _ = stream.chacha.ChaCha8IETF; _ = stream.chacha.ChaCha20With64BitNonce; _ = stream.chacha.ChaCha12With64BitNonce; _ = stream.chacha.ChaCha8With64BitNonce; _ = stream.chacha.XChaCha20IETF; _ = stream.chacha.XChaCha12IETF; _ = stream.chacha.XChaCha8IETF; _ = stream.salsa.Salsa20; _ = stream.salsa.XSalsa20; _ = nacl.Box; _ = nacl.SecretBox; _ = nacl.SealedBox; _ = utils; _ = ff; _ = random; _ = errors; _ = tls; _ = Certificate; } test "CSPRNG" { const a = random.int(u64); const b = random.int(u64); const c = random.int(u64); try std.testing.expect(a ^ b ^ c != 0); } test "issue #4532: no index out of bounds" { const types = [_]type{ hash.Md5, hash.Sha1, hash.sha2.Sha224, hash.sha2.Sha256, hash.sha2.Sha384, hash.sha2.Sha512, hash.sha3.Sha3_224, hash.sha3.Sha3_256, hash.sha3.Sha3_384, hash.sha3.Sha3_512, hash.blake2.Blake2s128, hash.blake2.Blake2s224, hash.blake2.Blake2s256, hash.blake2.Blake2b128, hash.blake2.Blake2b256, hash.blake2.Blake2b384, hash.blake2.Blake2b512, }; inline for (types) |Hasher| { var block = [_]u8{'#'} ** Hasher.block_length; var out1: [Hasher.digest_length]u8 = undefined; var out2: [Hasher.digest_length]u8 = undefined; const h0 = Hasher.init(.{}); var h = h0; h.update(block[0..]); h.final(&out1); h = h0; h.update(block[0..1]); h.update(block[1..]); h.final(&out2); try std.testing.expectEqual(out1, out2); } } |
Generated by zstd-live on 2025-08-10 02:46:00 UTC. |