|
//! This module contains utilities and data structures for working with enums. |
EnumFieldStruct()Increment this value when adding APIs that add single backwards branches. |
const std = @import("std"); const assert = std.debug.assert; const testing = std.testing; const EnumField = std.builtin.Type.EnumField; |
valuesFromFields()Returns a struct with a field matching each unique named enum element. If the enum is extern and has multiple names for the same value, only the first name is used. Each field is of type Data and has the provided default, which may be undefined. |
/// Increment this value when adding APIs that add single backwards branches. const eval_branch_quota_cushion = 5; |
values()Looks up the supplied fields in the given enum type. Uses only the field names, field values are ignored. The result array is in the same order as the input. |
/// Returns a struct with a field matching each unique named enum element. /// If the enum is extern and has multiple names for the same value, only /// the first name is used. Each field is of type Data and has the provided /// default, which may be undefined. pub fn EnumFieldStruct(comptime E: type, comptime Data: type, comptime field_default: ?Data) type { @setEvalBranchQuota(@typeInfo(E).Enum.fields.len + eval_branch_quota_cushion); var struct_fields: [@typeInfo(E).Enum.fields.len]std.builtin.Type.StructField = undefined; for (&struct_fields, @typeInfo(E).Enum.fields) |*struct_field, enum_field| { struct_field.* = .{ .name = enum_field.name ++ "", .type = Data, .default_value = if (field_default) |d| @as(?*const anyopaque, @ptrCast(&d)) else null, .is_comptime = false, .alignment = if (@sizeOf(Data) > 0) @alignOf(Data) else 0, }; } return @Type(.{ .Struct = .{ .layout = .auto, .fields = &struct_fields, .decls = &.{}, .is_tuple = false, } }); |
add()Returns the set of all named values in the given enum, in declaration order. |
} |
Test: tagNameA safe alternative to @tagName() for non-exhaustive enums that doesn't
panic when |
/// Looks up the supplied fields in the given enum type. /// Uses only the field names, field values are ignored. /// The result array is in the same order as the input. pub inline fn valuesFromFields(comptime E: type, comptime fields: []const EnumField) []const E { comptime { var result: [fields.len]E = undefined; for (&result, fields) |*r, f| { r.* = @enumFromInt(f.value); } const final = result; return &final; } |
add()Determines the length of a direct-mapped enum array, indexed by @intCast(usize, @intFromEnum(enum_value)). If the enum is non-exhaustive, the resulting length will only be enough to hold all explicit fields. If the enum contains any fields with values that cannot be represented by usize, a compile error is issued. The max_unused_slots parameter limits the total number of items which have no matching enum key (holes in the enum numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots must be at least 3, to allow unused slots 0, 3, and 4. |
} |
directEnumArray()Initializes an array of Data which can be indexed by @intCast(usize, @intFromEnum(enum_value)). If the enum is non-exhaustive, the resulting array will only be large enough to hold all explicit fields. If the enum contains any fields with values that cannot be represented by usize, a compile error is issued. The max_unused_slots parameter limits the total number of items which have no matching enum key (holes in the enum numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots must be at least 3, to allow unused slots 0, 3, and 4. The init_values parameter must be a struct with field names that match the enum values. If the enum has multiple fields with the same value, the name of the first one must be used. |
/// Returns the set of all named values in the given enum, in /// declaration order. pub fn values(comptime E: type) []const E { return comptime valuesFromFields(E, @typeInfo(E).Enum.fields); |
add()Initializes an array of Data which can be indexed by @intCast(usize, @intFromEnum(enum_value)). The enum must be exhaustive. If the enum contains any fields with values that cannot be represented by usize, a compile error is issued. The max_unused_slots parameter limits the total number of items which have no matching enum key (holes in the enum numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots must be at least 3, to allow unused slots 0, 3, and 4. The init_values parameter must be a struct with field names that match the enum values. If the enum has multiple fields with the same value, the name of the first one must be used. |
} |
directEnumArrayDefault()Cast an enum literal, value, or string to the enum value of type E with the same name. |
/// A safe alternative to @tagName() for non-exhaustive enums that doesn't /// panic when `e` has no tagged value. /// Returns the tag name for `e` or null if no tag exists. pub fn tagName(comptime E: type, e: E) ?[]const u8 { return inline for (@typeInfo(E).Enum.fields) |f| { if (@intFromEnum(e) == f.value) break f.name; } else null; |
add()A set of enum elements, backed by a bitfield. If the enum is exhaustive but not dense, a mapping will be constructed from enum values to dense indices. This type does no dynamic allocation and can be copied by value. |
} |
Test:directEnumArrayDefault sliceThe indexing rules for converting between keys and indices. |
test tagName { const E = enum(u8) { a, b, _ }; try testing.expect(tagName(E, .a) != null); try testing.expectEqualStrings("a", tagName(E, .a).?); try testing.expect(tagName(E, @as(E, @enumFromInt(42))) == null); |
add()The element type for this set. |
} |
Test: nameCastThe maximum number of items in this set. |
/// Determines the length of a direct-mapped enum array, indexed by /// @intCast(usize, @intFromEnum(enum_value)). /// If the enum is non-exhaustive, the resulting length will only be enough /// to hold all explicit fields. /// If the enum contains any fields with values that cannot be represented /// by usize, a compile error is issued. The max_unused_slots parameter limits /// the total number of items which have no matching enum key (holes in the enum /// numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots /// must be at least 3, to allow unused slots 0, 3, and 4. pub fn directEnumArrayLen(comptime E: type, comptime max_unused_slots: comptime_int) comptime_int { var max_value: comptime_int = -1; const max_usize: comptime_int = ~@as(usize, 0); const fields = @typeInfo(E).Enum.fields; for (fields) |f| { if (f.value < 0) { @compileError("Cannot create a direct enum array for " ++ @typeName(E) ++ ", field ." ++ f.name ++ " has a negative value."); } if (f.value > max_value) { if (f.value > max_usize) { @compileError("Cannot create a direct enum array for " ++ @typeName(E) ++ ", field ." ++ f.name ++ " is larger than the max value of usize."); } max_value = f.value; } } |
EnumSet()Initializes the set using a struct of bools |
const unused_slots = max_value + 1 - fields.len; if (unused_slots > max_unused_slots) { const unused_str = std.fmt.comptimePrint("{d}", .{unused_slots}); const allowed_str = std.fmt.comptimePrint("{d}", .{max_unused_slots}); @compileError("Cannot create a direct enum array for " ++ @typeName(E) ++ ". It would have " ++ unused_str ++ " unused slots, but only " ++ allowed_str ++ " are allowed."); } |
IndexerReturns a set containing no keys. |
return max_value + 1; |
add()Returns a set containing all possible keys. |
} |
lenReturns a set containing multiple keys. |
/// Initializes an array of Data which can be indexed by /// @intCast(usize, @intFromEnum(enum_value)). /// If the enum is non-exhaustive, the resulting array will only be large enough /// to hold all explicit fields. /// If the enum contains any fields with values that cannot be represented /// by usize, a compile error is issued. The max_unused_slots parameter limits /// the total number of items which have no matching enum key (holes in the enum /// numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots /// must be at least 3, to allow unused slots 0, 3, and 4. /// The init_values parameter must be a struct with field names that match the enum values. /// If the enum has multiple fields with the same value, the name of the first one must /// be used. pub fn directEnumArray( comptime E: type, comptime Data: type, comptime max_unused_slots: comptime_int, init_values: EnumFieldStruct(E, Data, null), ) [directEnumArrayLen(E, max_unused_slots)]Data { return directEnumArrayDefault(E, Data, null, max_unused_slots, init_values); |
add()Returns a set containing a single key. |
} |
initEmpty()Returns the number of keys in the set. |
test directEnumArray { const E = enum(i4) { a = 4, b = 6, c = 2 }; var runtime_false: bool = false; _ = &runtime_false; const array = directEnumArray(E, bool, 4, .{ .a = true, .b = runtime_false, .c = true, }); |
initFull()Checks if a key is in the set. |
try testing.expectEqual([7]bool, @TypeOf(array)); try testing.expectEqual(true, array[4]); try testing.expectEqual(false, array[6]); try testing.expectEqual(true, array[2]); |
add()Puts a key in the set. |
} |
initOne()Removes a key from the set. |
/// Initializes an array of Data which can be indexed by /// @intCast(usize, @intFromEnum(enum_value)). The enum must be exhaustive. /// If the enum contains any fields with values that cannot be represented /// by usize, a compile error is issued. The max_unused_slots parameter limits /// the total number of items which have no matching enum key (holes in the enum /// numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots /// must be at least 3, to allow unused slots 0, 3, and 4. /// The init_values parameter must be a struct with field names that match the enum values. /// If the enum has multiple fields with the same value, the name of the first one must /// be used. pub fn directEnumArrayDefault( comptime E: type, comptime Data: type, comptime default: ?Data, comptime max_unused_slots: comptime_int, init_values: EnumFieldStruct(E, Data, default), ) [directEnumArrayLen(E, max_unused_slots)]Data { const len = comptime directEnumArrayLen(E, max_unused_slots); var result: [len]Data = if (default) |d| [_]Data{d} ** len else undefined; inline for (@typeInfo(@TypeOf(init_values)).Struct.fields) |f| { const enum_value = @field(E, f.name); const index = @as(usize, @intCast(@intFromEnum(enum_value))); result[index] = @field(init_values, f.name); } return result; |
add()Changes the presence of a key in the set to match the passed bool. |
} |
contains()Toggles the presence of a key in the set. If the key is in the set, removes it. Otherwise adds it. |
test directEnumArrayDefault { const E = enum(i4) { a = 4, b = 6, c = 2 }; var runtime_false: bool = false; _ = &runtime_false; const array = directEnumArrayDefault(E, bool, false, 4, .{ .a = true, .b = runtime_false, }); |
insert()Toggles the presence of all keys in the passed set. |
try testing.expectEqual([7]bool, @TypeOf(array)); try testing.expectEqual(true, array[4]); try testing.expectEqual(false, array[6]); try testing.expectEqual(false, array[2]); |
add()Toggles all possible keys in the set. |
} |
setPresent()Adds all keys in the passed set to this set. |
test "directEnumArrayDefault slice" { const E = enum(i4) { a = 4, b = 6, c = 2 }; var runtime_b = "b"; _ = &runtime_b; const array = directEnumArrayDefault(E, []const u8, "default", 4, .{ .a = "a", .b = runtime_b, }); |
toggle()Removes all keys which are not in the passed set. |
try testing.expectEqual([7][]const u8, @TypeOf(array)); try testing.expectEqualSlices(u8, "a", array[4]); try testing.expectEqualSlices(u8, "b", array[6]); try testing.expectEqualSlices(u8, "default", array[2]); |
add()Returns true iff both sets have the same keys. |
} |
toggleAll()Returns true iff all the keys in this set are in the other set. The other set may have keys not found in this set. |
/// Cast an enum literal, value, or string to the enum value of type E /// with the same name. pub fn nameCast(comptime E: type, comptime value: anytype) E { return comptime blk: { const V = @TypeOf(value); if (V == E) break :blk value; const name: ?[]const u8 = switch (@typeInfo(V)) { .EnumLiteral, .Enum => @tagName(value), .Pointer => value, else => null, }; if (name) |n| { if (@hasField(E, n)) { break :blk @field(E, n); } @compileError("Enum " ++ @typeName(E) ++ " has no field named " ++ n); } @compileError("Cannot cast from " ++ @typeName(@TypeOf(value)) ++ " to " ++ @typeName(E)); }; |
add()Returns true iff this set contains all the keys in the other set. This set may have keys not found in the other set. |
} |
setIntersection()Returns a set with all the keys not in this set. |
test nameCast { const A = enum(u1) { a = 0, b = 1 }; const B = enum(u1) { a = 1, b = 0 }; try testing.expectEqual(A.a, nameCast(A, .a)); try testing.expectEqual(A.a, nameCast(A, A.a)); try testing.expectEqual(A.a, nameCast(A, B.a)); try testing.expectEqual(A.a, nameCast(A, "a")); try testing.expectEqual(A.a, nameCast(A, @as(*const [1]u8, "a"))); try testing.expectEqual(A.a, nameCast(A, @as([:0]const u8, "a"))); try testing.expectEqual(A.a, nameCast(A, @as([]const u8, "a"))); |
eql()Returns a set with keys that are in either this set or the other set. |
try testing.expectEqual(B.a, nameCast(B, .a)); try testing.expectEqual(B.a, nameCast(B, A.a)); try testing.expectEqual(B.a, nameCast(B, B.a)); try testing.expectEqual(B.a, nameCast(B, "a")); |
subsetOf()Returns a set with keys that are in both this set and the other set. |
try testing.expectEqual(B.b, nameCast(B, .b)); try testing.expectEqual(B.b, nameCast(B, A.b)); try testing.expectEqual(B.b, nameCast(B, B.b)); try testing.expectEqual(B.b, nameCast(B, "b")); |
add()Returns a set with keys that are in either this set or the other set, but not both. |
} |
complement()Returns a set with keys that are in this set except for keys in the other set. |
/// A set of enum elements, backed by a bitfield. If the enum /// is exhaustive but not dense, a mapping will be constructed from enum values /// to dense indices. This type does no dynamic allocation and /// can be copied by value. pub fn EnumSet(comptime E: type) type { return struct { const Self = @This(); |
unionWith()Returns an iterator over this set, which iterates in index order. Modifications to the set during iteration may or may not be observed by the iterator, but will not invalidate it. |
/// The indexing rules for converting between keys and indices. |
IndexerA map keyed by an enum, backed by a bitfield and a dense array. If the enum is exhaustive but not dense, a mapping will be constructed from enum values to dense indices. This type does no dynamic allocation and can be copied by value. |
pub const Indexer = EnumIndexer(E); /// The element type for this set. |
KeyThe index mapping for this map |
pub const Key = Indexer.Key; |
differenceWith()The key type used to index this map |
const BitSet = std.StaticBitSet(Indexer.count); |
iterator()The value type stored in this map |
/// The maximum number of items in this set. |
lenThe number of possible keys in the map |
pub const len = Indexer.count; |
next()Bits determining whether items are in the map |
bits: BitSet = BitSet.initEmpty(), |
EnumMap()Values of items in the map. If the associated bit is zero, the value is undefined. |
/// Initializes the set using a struct of bools pub fn init(init_values: EnumFieldStruct(E, bool, false)) Self { @setEvalBranchQuota(2 * @typeInfo(E).Enum.fields.len); var result: Self = .{}; if (@typeInfo(E).Enum.is_exhaustive) { inline for (0..Self.len) |i| { const key = comptime Indexer.keyForIndex(i); const tag = @tagName(key); if (@field(init_values, tag)) { result.bits.set(i); } } } else { inline for (std.meta.fields(E)) |field| { const key = @field(E, field.name); if (@field(init_values, field.name)) { const i = comptime Indexer.indexOf(key); result.bits.set(i); } } } return result; } |
IndexerInitializes the map using a sparse struct of optionals |
/// Returns a set containing no keys. |
initEmpty()Initializes a full mapping with all keys set to value. Consider using EnumArray instead if the map will remain full. |
pub fn initEmpty() Self { return .{ .bits = BitSet.initEmpty() }; } |
ValueInitializes a full mapping with supplied values. Consider using EnumArray instead if the map will remain full. |
/// Returns a set containing all possible keys. pub fn initFull() Self { return .{ .bits = BitSet.initFull() }; } |
lenInitializes a full mapping with a provided default. Consider using EnumArray instead if the map will remain full. |
/// Returns a set containing multiple keys. pub fn initMany(keys: []const Key) Self { var set = initEmpty(); for (keys) |key| set.insert(key); return set; } |
init()The number of items in the map. |
/// Returns a set containing a single key. pub fn initOne(key: Key) Self { return initMany(&[_]Key{key}); } |
initFull()Checks if the map contains an item. |
/// Returns the number of keys in the set. |
count()Gets the value associated with a key. If the key is not in the map, returns null. |
pub fn count(self: Self) usize { return self.bits.count(); } |
initFullWithDefault()Gets the value associated with a key, which must exist in the map. |
/// Checks if a key is in the set. |
contains()Gets the address of the value associated with a key. If the key is not in the map, returns null. |
pub fn contains(self: Self, key: Key) bool { return self.bits.isSet(Indexer.indexOf(key)); } |
contains()Gets the address of the const value associated with a key. If the key is not in the map, returns null. |
/// Puts a key in the set. pub fn insert(self: *Self, key: Key) void { self.bits.set(Indexer.indexOf(key)); } |
get()Gets the address of the value associated with a key. The key must be present in the map. |
/// Removes a key from the set. |
remove()Gets the address of the const value associated with a key. The key must be present in the map. |
pub fn remove(self: *Self, key: Key) void { self.bits.unset(Indexer.indexOf(key)); } |
getPtr()Adds the key to the map with the supplied value. If the key is already in the map, overwrites the value. |
/// Changes the presence of a key in the set to match the passed bool. pub fn setPresent(self: *Self, key: Key, present: bool) void { self.bits.setValue(Indexer.indexOf(key), present); } |
getPtrConst()Adds the key to the map with an undefined value. If the key is already in the map, the value becomes undefined. A pointer to the value is returned, which should be used to initialize the value. |
/// Toggles the presence of a key in the set. If the key is in /// the set, removes it. Otherwise adds it. pub fn toggle(self: *Self, key: Key) void { self.bits.toggle(Indexer.indexOf(key)); } |
getPtrAssertContains()Sets the value associated with the key in the map, and returns the old value. If the key was not in the map, returns null. |
/// Toggles the presence of all keys in the passed set. pub fn toggleSet(self: *Self, other: Self) void { self.bits.toggleSet(other.bits); } |
getPtrConstAssertContains()Removes a key from the map. If the key was not in the map, does nothing. |
/// Toggles all possible keys in the set. pub fn toggleAll(self: *Self) void { self.bits.toggleAll(); } |
put()Removes a key from the map, and returns the old value. If the key was not in the map, returns null. |
/// Adds all keys in the passed set to this set. pub fn setUnion(self: *Self, other: Self) void { self.bits.setUnion(other.bits); } |
putUninitialized()Returns an iterator over the map, which visits items in index order. Modifications to the underlying map may or may not be observed by the iterator, but will not invalidate it. |
/// Removes all keys which are not in the passed set. pub fn setIntersection(self: *Self, other: Self) void { self.bits.setIntersection(other.bits); } |
fetchPut()An entry in the map. |
/// Returns true iff both sets have the same keys. |
eql()The key associated with this entry. Modifying this key will not change the map. |
pub fn eql(self: Self, other: Self) bool { return self.bits.eql(other.bits); } |
fetchRemove()A pointer to the value in the map associated with this key. Modifications through this pointer will modify the underlying data. |
/// Returns true iff all the keys in this set are /// in the other set. The other set may have keys /// not found in this set. |
subsetOf()A multiset of enum elements up to a count of usize. Backed by an EnumArray. This type does no dynamic allocation and can be copied by value. |
pub fn subsetOf(self: Self, other: Self) bool { return self.bits.subsetOf(other.bits); } |
EntryA multiset of enum elements up to CountSize. Backed by an EnumArray. This type does no dynamic allocation and can be copied by value. |
/// Returns true iff this set contains all the keys /// in the other set. This set may have keys not /// found in the other set. |
supersetOf()Initializes the multiset using a struct of counts. |
pub fn supersetOf(self: Self, other: Self) bool { return self.bits.supersetOf(other.bits); } |
next()Initializes the multiset with a count of zero. |
/// Returns a set with all the keys not in this set. pub fn complement(self: Self) Self { return .{ .bits = self.bits.complement() }; } |
Test: EnumMapInitializes the multiset with all keys at the same count. |
/// Returns a set with keys that are in either this /// set or the other set. pub fn unionWith(self: Self, other: Self) Self { return .{ .bits = self.bits.unionWith(other.bits) }; } |
EnumMultiset()Returns the total number of key counts in the multiset. |
/// Returns a set with keys that are in both this /// set and the other set. pub fn intersectWith(self: Self, other: Self) Self { return .{ .bits = self.bits.intersectWith(other.bits) }; } |
BoundedEnumMultiset()Checks if at least one key in multiset. |
/// Returns a set with keys that are in either this /// set or the other set, but not both. pub fn xorWith(self: Self, other: Self) Self { return .{ .bits = self.bits.xorWith(other.bits) }; } |
init()Removes all instance of a key from multiset. Same as setCount(key, 0). |
/// Returns a set with keys that are in this set /// except for keys in the other set. pub fn differenceWith(self: Self, other: Self) Self { return .{ .bits = self.bits.differenceWith(other.bits) }; } |
initEmpty()Increases the key count by given amount. Caller asserts operation will not overflow. |
/// Returns an iterator over this set, which iterates in /// index order. Modifications to the set during iteration /// may or may not be observed by the iterator, but will /// not invalidate it. pub fn iterator(self: *const Self) Iterator { return .{ .inner = self.bits.iterator(.{}) }; } |
initWithCount()Increases the key count by given amount. |
|
IteratorDecreases the key count by given amount. If amount is greater than the number of keys in multset, then key count will be set to zero. |
pub const Iterator = struct { inner: BitSet.Iterator(.{}), |
contains()Returns the count for a key. |
pub fn next(self: *Iterator) ?Key { return if (self.inner.next()) |index| Indexer.keyForIndex(index) else null; } }; }; |
add()Set the count for a key. |
} |
addAssertSafe()Increases the all key counts by given multiset. Caller asserts operation will not overflow any key. |
/// A map keyed by an enum, backed by a bitfield and a dense array. /// If the enum is exhaustive but not dense, a mapping will be constructed from /// enum values to dense indices. This type does no dynamic /// allocation and can be copied by value. pub fn EnumMap(comptime E: type, comptime V: type) type { return struct { const Self = @This(); |
add()Increases the all key counts by given multiset. |
/// The index mapping for this map |
IndexerDecreases the all key counts by given multiset. If the given multiset has more key counts than this, then that key will have a key count of zero. |
pub const Indexer = EnumIndexer(E); /// The key type used to index this map |
KeyReturns true iff all key counts are the same as given multiset. |
pub const Key = Indexer.Key; /// The value type stored in this map |
ValueReturns true iff all key counts less than or equal to the given multiset. |
pub const Value = V; /// The number of possible keys in the map |
lenReturns true iff all key counts greater than or equal to the given multiset. |
pub const len = Indexer.count; |
addSet()Returns a multiset with the total key count of this multiset and the other multiset. Caller asserts operation will not overflow any key. |
const BitSet = std.StaticBitSet(Indexer.count); |
removeSet()Returns a multiset with the total key count of this multiset and the other multiset. |
/// Bits determining whether items are in the map bits: BitSet = BitSet.initEmpty(), /// Values of items in the map. If the associated /// bit is zero, the value is undefined. values: [Indexer.count]Value = undefined, |
eql()Returns a multiset with the key count of this multiset minus the corresponding key count in the other multiset. If the other multiset contains more key count than this set, that key will have a count of zero. |
/// Initializes the map using a sparse struct of optionals pub fn init(init_values: EnumFieldStruct(E, ?Value, @as(?Value, null))) Self { @setEvalBranchQuota(2 * @typeInfo(E).Enum.fields.len); var result: Self = .{}; if (@typeInfo(E).Enum.is_exhaustive) { inline for (0..Self.len) |i| { const key = comptime Indexer.keyForIndex(i); const tag = @tagName(key); if (@field(init_values, tag)) |*v| { result.bits.set(i); result.values[i] = v.*; } } } else { inline for (std.meta.fields(E)) |field| { const key = @field(E, field.name); if (@field(init_values, field.name)) |*v| { const i = comptime Indexer.indexOf(key); result.bits.set(i); result.values[i] = v.*; } } } return result; } |
subsetOf()Returns an iterator over this multiset. Keys with zero counts are included. Modifications to the set during iteration may or may not be observed by the iterator, but will not invalidate it. |
/// Initializes a full mapping with all keys set to value. /// Consider using EnumArray instead if the map will remain full. pub fn initFull(value: Value) Self { var result: Self = .{ .bits = Self.BitSet.initFull(), .values = undefined, }; @memset(&result.values, value); return result; } |
supersetOf()An array keyed by an enum, backed by a dense array. If the enum is not dense, a mapping will be constructed from enum values to dense indices. This type does no dynamic allocation and can be copied by value. |
/// Initializes a full mapping with supplied values. /// Consider using EnumArray instead if the map will remain full. pub fn initFullWith(init_values: EnumFieldStruct(E, Value, null)) Self { return initFullWithDefault(null, init_values); } |
plusAssertSafe()The index mapping for this map |
/// Initializes a full mapping with a provided default. /// Consider using EnumArray instead if the map will remain full. pub fn initFullWithDefault(comptime default: ?Value, init_values: EnumFieldStruct(E, Value, default)) Self { @setEvalBranchQuota(2 * @typeInfo(E).Enum.fields.len); var result: Self = .{ .bits = Self.BitSet.initFull(), .values = undefined, }; inline for (0..Self.len) |i| { const key = comptime Indexer.keyForIndex(i); const tag = @tagName(key); result.values[i] = @field(init_values, tag); } return result; } |
plus()The key type used to index this map |
/// The number of items in the map. pub fn count(self: Self) usize { return self.bits.count(); } |
minus()The value type stored in this map |
/// Checks if the map contains an item. pub fn contains(self: Self, key: Key) bool { return self.bits.isSet(Indexer.indexOf(key)); } |
EntryThe number of possible keys in the map |
/// Gets the value associated with a key. /// If the key is not in the map, returns null. pub fn get(self: Self, key: Key) ?Value { const index = Indexer.indexOf(key); return if (self.bits.isSet(index)) self.values[index] else null; } |
IteratorInitializes values in the enum array, with the specified default. |
/// Gets the value associated with a key, which must /// exist in the map. pub fn getAssertContains(self: Self, key: Key) Value { const index = Indexer.indexOf(key); assert(self.bits.isSet(index)); return self.values[index]; } |
iterator()Returns the value in the array associated with a key. |
/// Gets the address of the value associated with a key. /// If the key is not in the map, returns null. pub fn getPtr(self: *Self, key: Key) ?*Value { const index = Indexer.indexOf(key); return if (self.bits.isSet(index)) &self.values[index] else null; } |
Test: EnumMultisetReturns a pointer to the slot in the array associated with a key. |
/// Gets the address of the const value associated with a key. /// If the key is not in the map, returns null. pub fn getPtrConst(self: *const Self, key: Key) ?*const Value { const index = Indexer.indexOf(key); return if (self.bits.isSet(index)) &self.values[index] else null; } |
EnumArray()Returns a const pointer to the slot in the array associated with a key. |
/// Gets the address of the value associated with a key. /// The key must be present in the map. pub fn getPtrAssertContains(self: *Self, key: Key) *Value { const index = Indexer.indexOf(key); assert(self.bits.isSet(index)); return &self.values[index]; } |
IndexerSets the value in the slot associated with a key. |
/// Gets the address of the const value associated with a key. /// The key must be present in the map. pub fn getPtrConstAssertContains(self: *const Self, key: Key) *const Value { const index = Indexer.indexOf(key); assert(self.bits.isSet(index)); return &self.values[index]; } |
KeyIterates over the items in the array, in index order. |
/// Adds the key to the map with the supplied value. /// If the key is already in the map, overwrites the value. pub fn put(self: *Self, key: Key, value: Value) void { const index = Indexer.indexOf(key); self.bits.set(index); self.values[index] = value; } |
ValueAn entry in the array. |
/// Adds the key to the map with an undefined value. /// If the key is already in the map, the value becomes undefined. /// A pointer to the value is returned, which should be /// used to initialize the value. pub fn putUninitialized(self: *Self, key: Key) *Value { const index = Indexer.indexOf(key); self.bits.set(index); self.values[index] = undefined; return &self.values[index]; } |
lenThe key associated with this entry. Modifying this key will not change the array. |
/// Sets the value associated with the key in the map, /// and returns the old value. If the key was not in /// the map, returns null. pub fn fetchPut(self: *Self, key: Key, value: Value) ?Value { const index = Indexer.indexOf(key); const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null; self.bits.set(index); self.values[index] = value; return result; } |
init()A pointer to the value in the array associated with this key. Modifications through this pointer will modify the underlying data. |
/// Removes a key from the map. If the key was not in the map, /// does nothing. pub fn remove(self: *Self, key: Key) void { const index = Indexer.indexOf(key); self.bits.unset(index); self.values[index] = undefined; } |
initDefault() |
/// Removes a key from the map, and returns the old value. /// If the key was not in the map, returns null. pub fn fetchRemove(self: *Self, key: Key) ?Value { const index = Indexer.indexOf(key); const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null; self.bits.unset(index); self.values[index] = undefined; return result; } |
initUndefined() |
/// Returns an iterator over the map, which visits items in index order. /// Modifications to the underlying map may or may not be observed by /// the iterator, but will not invalidate it. |
iterator() |
pub fn iterator(self: *Self) Iterator { return .{ .inner = self.bits.iterator(.{}), .values = &self.values, }; } |
get() |
/// An entry in the map. |
Entry |
pub const Entry = struct { /// The key associated with this entry. /// Modifying this key will not change the map. key: Key, |
getPtrConst() |
/// A pointer to the value in the map associated /// with this key. Modifications through this /// pointer will modify the underlying data. value: *Value, }; |
set() |
|
Iterator |
pub const Iterator = struct { inner: BitSet.Iterator(.{}), values: *[Indexer.count]Value, |
Entry |
|
next() |
pub fn next(self: *Iterator) ?Entry { return if (self.inner.next()) |index| Entry{ .key = Indexer.keyForIndex(index), .value = &self.values[index], } else null; } }; }; } |
next() |
test EnumMap { const Ball = enum { red, green, blue }; |
Test:pure EnumSet fns |
const some = EnumMap(Ball, u8).init(.{ .green = 0xff, .blue = 0x80, }); try testing.expectEqual(2, some.count()); try testing.expectEqual(null, some.get(.red)); try testing.expectEqual(0xff, some.get(.green)); try testing.expectEqual(0x80, some.get(.blue)); } |
Test:EnumSet empty |
/// A multiset of enum elements up to a count of usize. Backed /// by an EnumArray. This type does no dynamic allocation and can /// be copied by value. pub fn EnumMultiset(comptime E: type) type { return BoundedEnumMultiset(E, usize); } |
Test:EnumSet const iterator |
/// A multiset of enum elements up to CountSize. Backed by an /// EnumArray. This type does no dynamic allocation and can be /// copied by value. pub fn BoundedEnumMultiset(comptime E: type, comptime CountSize: type) type { return struct { const Self = @This(); |
Test:EnumSet non-exhaustive |
counts: EnumArray(E, CountSize), |
EnumIndexer() |
/// Initializes the multiset using a struct of counts. pub fn init(init_counts: EnumFieldStruct(E, CountSize, 0)) Self { @setEvalBranchQuota(2 * @typeInfo(E).Enum.fields.len); var self = initWithCount(0); inline for (@typeInfo(E).Enum.fields) |field| { const c = @field(init_counts, field.name); const key = @as(E, @enumFromInt(field.value)); self.counts.set(key, c); } return self; } |
Key: |
/// Initializes the multiset with a count of zero. pub fn initEmpty() Self { return initWithCount(0); } |
count: |
/// Initializes the multiset with all keys at the /// same count. pub fn initWithCount(comptime c: CountSize) Self { return .{ .counts = EnumArray(E, CountSize).initDefault(c, .{}), }; } |
indexOf() |
/// Returns the total number of key counts in the multiset. pub fn count(self: Self) usize { var sum: usize = 0; for (self.counts.values) |c| { sum += c; } return sum; } |
keyForIndex() |
/// Checks if at least one key in multiset. pub fn contains(self: Self, key: E) bool { return self.counts.get(key) > 0; } |
Key |
/// Removes all instance of a key from multiset. Same as /// setCount(key, 0). pub fn removeAll(self: *Self, key: E) void { return self.counts.set(key, 0); } |
count: |
/// Increases the key count by given amount. Caller asserts /// operation will not overflow. pub fn addAssertSafe(self: *Self, key: E, c: CountSize) void { self.counts.getPtr(key).* += c; } |
indexOf() |
/// Increases the key count by given amount. pub fn add(self: *Self, key: E, c: CountSize) error{Overflow}!void { self.counts.set(key, try std.math.add(CountSize, self.counts.get(key), c)); } |
keyForIndex() |
/// Decreases the key count by given amount. If amount is /// greater than the number of keys in multset, then key count /// will be set to zero. pub fn remove(self: *Self, key: E, c: CountSize) void { self.counts.getPtr(key).* -= @min(self.getCount(key), c); } |
lessThan() |
/// Returns the count for a key. pub fn getCount(self: Self, key: E) CountSize { return self.counts.get(key); } |
swap() |
/// Set the count for a key. pub fn setCount(self: *Self, key: E, c: CountSize) void { self.counts.set(key, c); } |
Key |
/// Increases the all key counts by given multiset. Caller /// asserts operation will not overflow any key. pub fn addSetAssertSafe(self: *Self, other: Self) void { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); self.addAssertSafe(key, other.getCount(key)); } } |
count: |
/// Increases the all key counts by given multiset. pub fn addSet(self: *Self, other: Self) error{Overflow}!void { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); try self.add(key, other.getCount(key)); } } |
indexOf() |
/// Decreases the all key counts by given multiset. If /// the given multiset has more key counts than this, /// then that key will have a key count of zero. pub fn removeSet(self: *Self, other: Self) void { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); self.remove(key, other.getCount(key)); } } |
keyForIndex() |
/// Returns true iff all key counts are the same as /// given multiset. pub fn eql(self: Self, other: Self) bool { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); if (self.getCount(key) != other.getCount(key)) { return false; } } return true; } |
Key |
/// Returns true iff all key counts less than or /// equal to the given multiset. pub fn subsetOf(self: Self, other: Self) bool { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); if (self.getCount(key) > other.getCount(key)) { return false; } } return true; } |
count: |
/// Returns true iff all key counts greater than or /// equal to the given multiset. pub fn supersetOf(self: Self, other: Self) bool { inline for (@typeInfo(E).Enum.fields) |field| { const key = @as(E, @enumFromInt(field.value)); if (self.getCount(key) < other.getCount(key)) { return false; } } return true; } |
indexOf() |
/// Returns a multiset with the total key count of this /// multiset and the other multiset. Caller asserts /// operation will not overflow any key. pub fn plusAssertSafe(self: Self, other: Self) Self { var result = self; result.addSetAssertSafe(other); return result; } |
keyForIndex() |
/// Returns a multiset with the total key count of this /// multiset and the other multiset. pub fn plus(self: Self, other: Self) error{Overflow}!Self { var result = self; try result.addSet(other); return result; } |
Test:EnumIndexer non-exhaustive |
/// Returns a multiset with the key count of this /// multiset minus the corresponding key count in the /// other multiset. If the other multiset contains /// more key count than this set, that key will have /// a count of zero. pub fn minus(self: Self, other: Self) Self { var result = self; result.removeSet(other); return result; } |
Test:EnumIndexer dense zeroed |
pub const Entry = EnumArray(E, CountSize).Entry; pub const Iterator = EnumArray(E, CountSize).Iterator; |
Test:EnumIndexer dense positive |
/// Returns an iterator over this multiset. Keys with zero /// counts are included. Modifications to the set during /// iteration may or may not be observed by the iterator, /// but will not invalidate it. pub fn iterator(self: *Self) Iterator { return self.counts.iterator(); } }; } |
Test:EnumIndexer dense negative |
test EnumMultiset { const Ball = enum { red, green, blue }; |
Test:EnumIndexer sparse |
const empty = EnumMultiset(Ball).initEmpty(); const r0_g1_b2 = EnumMultiset(Ball).init(.{ .red = 0, .green = 1, .blue = 2, }); const ten_of_each = EnumMultiset(Ball).initWithCount(10); |
Test:EnumIndexer empty |
try testing.expectEqual(empty.count(), 0); try testing.expectEqual(r0_g1_b2.count(), 3); try testing.expectEqual(ten_of_each.count(), 30); |
Test: values |
try testing.expect(!empty.contains(.red)); try testing.expect(!empty.contains(.green)); try testing.expect(!empty.contains(.blue)); |
X |
try testing.expect(!r0_g1_b2.contains(.red)); try testing.expect(r0_g1_b2.contains(.green)); try testing.expect(r0_g1_b2.contains(.blue)); try testing.expect(ten_of_each.contains(.red)); try testing.expect(ten_of_each.contains(.green)); try testing.expect(ten_of_each.contains(.blue)); { var copy = ten_of_each; copy.removeAll(.red); try testing.expect(!copy.contains(.red)); // removeAll second time does nothing copy.removeAll(.red); try testing.expect(!copy.contains(.red)); } { var copy = ten_of_each; copy.addAssertSafe(.red, 6); try testing.expectEqual(copy.getCount(.red), 16); } { var copy = ten_of_each; try copy.add(.red, 6); try testing.expectEqual(copy.getCount(.red), 16); try testing.expectError(error.Overflow, copy.add(.red, std.math.maxInt(usize))); } { var copy = ten_of_each; copy.remove(.red, 4); try testing.expectEqual(copy.getCount(.red), 6); // subtracting more it contains does not underflow copy.remove(.green, 14); try testing.expectEqual(copy.getCount(.green), 0); } try testing.expectEqual(empty.getCount(.green), 0); try testing.expectEqual(r0_g1_b2.getCount(.green), 1); try testing.expectEqual(ten_of_each.getCount(.green), 10); { var copy = empty; copy.setCount(.red, 6); try testing.expectEqual(copy.getCount(.red), 6); } { var copy = r0_g1_b2; copy.addSetAssertSafe(ten_of_each); try testing.expectEqual(copy.getCount(.red), 10); try testing.expectEqual(copy.getCount(.green), 11); try testing.expectEqual(copy.getCount(.blue), 12); } { var copy = r0_g1_b2; try copy.addSet(ten_of_each); try testing.expectEqual(copy.getCount(.red), 10); try testing.expectEqual(copy.getCount(.green), 11); try testing.expectEqual(copy.getCount(.blue), 12); const full = EnumMultiset(Ball).initWithCount(std.math.maxInt(usize)); try testing.expectError(error.Overflow, copy.addSet(full)); } { var copy = ten_of_each; copy.removeSet(r0_g1_b2); try testing.expectEqual(copy.getCount(.red), 10); try testing.expectEqual(copy.getCount(.green), 9); try testing.expectEqual(copy.getCount(.blue), 8); copy.removeSet(ten_of_each); try testing.expectEqual(copy.getCount(.red), 0); try testing.expectEqual(copy.getCount(.green), 0); try testing.expectEqual(copy.getCount(.blue), 0); } try testing.expect(empty.eql(empty)); try testing.expect(r0_g1_b2.eql(r0_g1_b2)); try testing.expect(ten_of_each.eql(ten_of_each)); try testing.expect(!empty.eql(r0_g1_b2)); try testing.expect(!r0_g1_b2.eql(ten_of_each)); try testing.expect(!ten_of_each.eql(empty)); try testing.expect(empty.subsetOf(empty)); try testing.expect(r0_g1_b2.subsetOf(r0_g1_b2)); try testing.expect(empty.subsetOf(r0_g1_b2)); try testing.expect(r0_g1_b2.subsetOf(ten_of_each)); try testing.expect(!ten_of_each.subsetOf(r0_g1_b2)); try testing.expect(!r0_g1_b2.subsetOf(empty)); try testing.expect(empty.supersetOf(empty)); try testing.expect(r0_g1_b2.supersetOf(r0_g1_b2)); try testing.expect(r0_g1_b2.supersetOf(empty)); try testing.expect(ten_of_each.supersetOf(r0_g1_b2)); try testing.expect(!r0_g1_b2.supersetOf(ten_of_each)); try testing.expect(!empty.supersetOf(r0_g1_b2)); { // with multisets it could be the case where two // multisets are neither subset nor superset of each // other. const r10 = EnumMultiset(Ball).init(.{ .red = 10, }); const b10 = EnumMultiset(Ball).init(.{ .blue = 10, }); try testing.expect(!r10.subsetOf(b10)); try testing.expect(!b10.subsetOf(r10)); try testing.expect(!r10.supersetOf(b10)); try testing.expect(!b10.supersetOf(r10)); } { const result = r0_g1_b2.plusAssertSafe(ten_of_each); try testing.expectEqual(result.getCount(.red), 10); try testing.expectEqual(result.getCount(.green), 11); try testing.expectEqual(result.getCount(.blue), 12); } { const result = try r0_g1_b2.plus(ten_of_each); try testing.expectEqual(result.getCount(.red), 10); try testing.expectEqual(result.getCount(.green), 11); try testing.expectEqual(result.getCount(.blue), 12); const full = EnumMultiset(Ball).initWithCount(std.math.maxInt(usize)); try testing.expectError(error.Overflow, result.plus(full)); } { const result = ten_of_each.minus(r0_g1_b2); try testing.expectEqual(result.getCount(.red), 10); try testing.expectEqual(result.getCount(.green), 9); try testing.expectEqual(result.getCount(.blue), 8); } { const result = ten_of_each.minus(r0_g1_b2).minus(ten_of_each); try testing.expectEqual(result.getCount(.red), 0); try testing.expectEqual(result.getCount(.green), 0); try testing.expectEqual(result.getCount(.blue), 0); } { var copy = empty; var it = copy.iterator(); var entry = it.next().?; try testing.expectEqual(entry.key, .red); try testing.expectEqual(entry.value.*, 0); entry = it.next().?; try testing.expectEqual(entry.key, .green); try testing.expectEqual(entry.value.*, 0); entry = it.next().?; try testing.expectEqual(entry.key, .blue); try testing.expectEqual(entry.value.*, 0); try testing.expectEqual(it.next(), null); } { var copy = r0_g1_b2; var it = copy.iterator(); var entry = it.next().?; try testing.expectEqual(entry.key, .red); try testing.expectEqual(entry.value.*, 0); entry = it.next().?; try testing.expectEqual(entry.key, .green); try testing.expectEqual(entry.value.*, 1); entry = it.next().?; try testing.expectEqual(entry.key, .blue); try testing.expectEqual(entry.value.*, 2); try testing.expectEqual(it.next(), null); } } /// An array keyed by an enum, backed by a dense array. /// If the enum is not dense, a mapping will be constructed from /// enum values to dense indices. This type does no dynamic /// allocation and can be copied by value. pub fn EnumArray(comptime E: type, comptime V: type) type { return struct { const Self = @This(); /// The index mapping for this map pub const Indexer = EnumIndexer(E); /// The key type used to index this map pub const Key = Indexer.Key; /// The value type stored in this map pub const Value = V; /// The number of possible keys in the map pub const len = Indexer.count; values: [Indexer.count]Value, pub fn init(init_values: EnumFieldStruct(E, Value, null)) Self { return initDefault(null, init_values); } /// Initializes values in the enum array, with the specified default. pub fn initDefault(comptime default: ?Value, init_values: EnumFieldStruct(E, Value, default)) Self { @setEvalBranchQuota(2 * @typeInfo(E).Enum.fields.len); var result: Self = .{ .values = undefined }; inline for (0..Self.len) |i| { const key = comptime Indexer.keyForIndex(i); const tag = @tagName(key); result.values[i] = @field(init_values, tag); } return result; } pub fn initUndefined() Self { return Self{ .values = undefined }; } pub fn initFill(v: Value) Self { var self: Self = undefined; @memset(&self.values, v); return self; } /// Returns the value in the array associated with a key. pub fn get(self: Self, key: Key) Value { return self.values[Indexer.indexOf(key)]; } /// Returns a pointer to the slot in the array associated with a key. pub fn getPtr(self: *Self, key: Key) *Value { return &self.values[Indexer.indexOf(key)]; } /// Returns a const pointer to the slot in the array associated with a key. pub fn getPtrConst(self: *const Self, key: Key) *const Value { return &self.values[Indexer.indexOf(key)]; } /// Sets the value in the slot associated with a key. pub fn set(self: *Self, key: Key, value: Value) void { self.values[Indexer.indexOf(key)] = value; } /// Iterates over the items in the array, in index order. pub fn iterator(self: *Self) Iterator { return .{ .values = &self.values, }; } /// An entry in the array. pub const Entry = struct { /// The key associated with this entry. /// Modifying this key will not change the array. key: Key, /// A pointer to the value in the array associated /// with this key. Modifications through this /// pointer will modify the underlying data. value: *Value, }; pub const Iterator = struct { index: usize = 0, values: *[Indexer.count]Value, pub fn next(self: *Iterator) ?Entry { const index = self.index; if (index < Indexer.count) { self.index += 1; return Entry{ .key = Indexer.keyForIndex(index), .value = &self.values[index], }; } return null; } }; }; } test "pure EnumSet fns" { const Suit = enum { spades, hearts, clubs, diamonds }; const empty = EnumSet(Suit).initEmpty(); const full = EnumSet(Suit).initFull(); const black = EnumSet(Suit).initMany(&[_]Suit{ .spades, .clubs }); const red = EnumSet(Suit).initMany(&[_]Suit{ .hearts, .diamonds }); try testing.expect(empty.eql(empty)); try testing.expect(full.eql(full)); try testing.expect(!empty.eql(full)); try testing.expect(!full.eql(empty)); try testing.expect(!empty.eql(black)); try testing.expect(!full.eql(red)); try testing.expect(!red.eql(empty)); try testing.expect(!black.eql(full)); try testing.expect(empty.subsetOf(empty)); try testing.expect(empty.subsetOf(full)); try testing.expect(full.subsetOf(full)); try testing.expect(!black.subsetOf(red)); try testing.expect(!red.subsetOf(black)); try testing.expect(full.supersetOf(full)); try testing.expect(full.supersetOf(empty)); try testing.expect(empty.supersetOf(empty)); try testing.expect(!black.supersetOf(red)); try testing.expect(!red.supersetOf(black)); try testing.expect(empty.complement().eql(full)); try testing.expect(full.complement().eql(empty)); try testing.expect(black.complement().eql(red)); try testing.expect(red.complement().eql(black)); try testing.expect(empty.unionWith(empty).eql(empty)); try testing.expect(empty.unionWith(full).eql(full)); try testing.expect(full.unionWith(full).eql(full)); try testing.expect(full.unionWith(empty).eql(full)); try testing.expect(black.unionWith(red).eql(full)); try testing.expect(red.unionWith(black).eql(full)); try testing.expect(empty.intersectWith(empty).eql(empty)); try testing.expect(empty.intersectWith(full).eql(empty)); try testing.expect(full.intersectWith(full).eql(full)); try testing.expect(full.intersectWith(empty).eql(empty)); try testing.expect(black.intersectWith(red).eql(empty)); try testing.expect(red.intersectWith(black).eql(empty)); try testing.expect(empty.xorWith(empty).eql(empty)); try testing.expect(empty.xorWith(full).eql(full)); try testing.expect(full.xorWith(full).eql(empty)); try testing.expect(full.xorWith(empty).eql(full)); try testing.expect(black.xorWith(red).eql(full)); try testing.expect(red.xorWith(black).eql(full)); try testing.expect(empty.differenceWith(empty).eql(empty)); try testing.expect(empty.differenceWith(full).eql(empty)); try testing.expect(full.differenceWith(full).eql(empty)); try testing.expect(full.differenceWith(empty).eql(full)); try testing.expect(full.differenceWith(red).eql(black)); try testing.expect(full.differenceWith(black).eql(red)); } test "EnumSet empty" { const E = enum {}; const empty = EnumSet(E).initEmpty(); const full = EnumSet(E).initFull(); try std.testing.expect(empty.eql(full)); try std.testing.expect(empty.complement().eql(full)); try std.testing.expect(empty.complement().eql(full.complement())); try std.testing.expect(empty.eql(full.complement())); } test "EnumSet const iterator" { const Direction = enum { up, down, left, right }; const diag_move = init: { var move = EnumSet(Direction).initEmpty(); move.insert(.right); move.insert(.up); break :init move; }; var result = EnumSet(Direction).initEmpty(); var it = diag_move.iterator(); while (it.next()) |dir| { result.insert(dir); } try testing.expect(result.eql(diag_move)); } test "EnumSet non-exhaustive" { const BitIndices = enum(u4) { a = 0, b = 1, c = 4, _, }; const BitField = EnumSet(BitIndices); var flags = BitField.init(.{ .a = true, .b = true }); flags.insert(.c); flags.remove(.a); try testing.expect(!flags.contains(.a)); try testing.expect(flags.contains(.b)); try testing.expect(flags.contains(.c)); } pub fn EnumIndexer(comptime E: type) type { // Assumes that the enum fields are sorted in ascending order (optimistic). // Unsorted enums may require the user to manually increase the quota. @setEvalBranchQuota(3 * @typeInfo(E).Enum.fields.len + eval_branch_quota_cushion); if (!@typeInfo(E).Enum.is_exhaustive) { const BackingInt = @typeInfo(E).Enum.tag_type; if (@bitSizeOf(BackingInt) > @bitSizeOf(usize)) @compileError("Cannot create an enum indexer for a given non-exhaustive enum, tag_type is larger than usize."); return struct { pub const Key: type = E; const backing_int_sign = @typeInfo(BackingInt).Int.signedness; const min_value = std.math.minInt(BackingInt); const max_value = std.math.maxInt(BackingInt); const RangeType = std.meta.Int(.unsigned, @bitSizeOf(BackingInt)); pub const count: comptime_int = std.math.maxInt(RangeType) + 1; pub fn indexOf(e: E) usize { if (backing_int_sign == .unsigned) return @intFromEnum(e); return if (@intFromEnum(e) < 0) @intCast(@intFromEnum(e) - min_value) else @as(RangeType, -min_value) + @as(RangeType, @intCast(@intFromEnum(e))); } pub fn keyForIndex(i: usize) E { if (backing_int_sign == .unsigned) return @enumFromInt(i); return @enumFromInt(@as(std.meta.Int(.signed, @bitSizeOf(RangeType) + 1), @intCast(i)) + min_value); } }; } const const_fields = @typeInfo(E).Enum.fields; var fields = const_fields[0..const_fields.len].*; const fields_len = fields.len; if (fields_len == 0) { return struct { pub const Key = E; pub const count: comptime_int = 0; pub fn indexOf(e: E) usize { _ = e; unreachable; } pub fn keyForIndex(i: usize) E { _ = i; unreachable; } }; } const min = fields[0].value; const max = fields[fields.len - 1].value; const SortContext = struct { fields: []EnumField, pub fn lessThan(comptime ctx: @This(), comptime a: usize, comptime b: usize) bool { return ctx.fields[a].value < ctx.fields[b].value; } pub fn swap(comptime ctx: @This(), comptime a: usize, comptime b: usize) void { return std.mem.swap(EnumField, &ctx.fields[a], &ctx.fields[b]); } }; std.sort.insertionContext(0, fields_len, SortContext{ .fields = &fields }); if (max - min == fields.len - 1) { return struct { pub const Key = E; pub const count: comptime_int = fields_len; pub fn indexOf(e: E) usize { return @as(usize, @intCast(@intFromEnum(e) - min)); } pub fn keyForIndex(i: usize) E { // TODO fix addition semantics. This calculation // gives up some safety to avoid artificially limiting // the range of signed enum values to max_isize. const enum_value = if (min < 0) @as(isize, @bitCast(i)) +% min else i + min; return @as(E, @enumFromInt(@as(@typeInfo(E).Enum.tag_type, @intCast(enum_value)))); } }; } const keys = valuesFromFields(E, &fields); return struct { pub const Key = E; pub const count: comptime_int = fields_len; pub fn indexOf(e: E) usize { for (keys, 0..) |k, i| { if (k == e) return i; } unreachable; } pub fn keyForIndex(i: usize) E { return keys[i]; } }; } test "EnumIndexer non-exhaustive" { const backing_ints = [_]type{ i1, i2, i3, i4, i8, i16, std.meta.Int(.signed, @bitSizeOf(isize) - 1), isize, u1, u2, u3, u4, u16, std.meta.Int(.unsigned, @bitSizeOf(usize) - 1), usize, }; inline for (backing_ints) |BackingInt| { const E = enum(BackingInt) { number_zero_tag = 0, _, }; const Indexer = EnumIndexer(E); const min_tag: E = @enumFromInt(std.math.minInt(BackingInt)); const max_tag: E = @enumFromInt(std.math.maxInt(BackingInt)); const RangedType = std.meta.Int(.unsigned, @bitSizeOf(BackingInt)); const max_index: comptime_int = std.math.maxInt(RangedType); const number_zero_tag_index: usize = switch (@typeInfo(BackingInt).Int.signedness) { .unsigned => 0, .signed => std.math.divCeil(comptime_int, max_index, 2) catch unreachable, }; try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(max_index + 1, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(min_tag)); try testing.expectEqual(number_zero_tag_index, Indexer.indexOf(E.number_zero_tag)); try testing.expectEqual(@as(usize, max_index), Indexer.indexOf(max_tag)); try testing.expectEqual(min_tag, Indexer.keyForIndex(0)); try testing.expectEqual(E.number_zero_tag, Indexer.keyForIndex(number_zero_tag_index)); try testing.expectEqual(max_tag, Indexer.keyForIndex(max_index)); } } test "EnumIndexer dense zeroed" { const E = enum(u2) { b = 1, a = 0, c = 2 }; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(3, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } test "EnumIndexer dense positive" { const E = enum(u4) { c = 6, a = 4, b = 5 }; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(3, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } test "EnumIndexer dense negative" { const E = enum(i4) { a = -6, c = -4, b = -5 }; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(3, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } test "EnumIndexer sparse" { const E = enum(i4) { a = -2, c = 6, b = 4 }; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(3, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } test "EnumIndexer empty" { const E = enum {}; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(0, Indexer.count); } test values { const E = enum { X, Y, Z, pub const X = 1; }; try testing.expectEqualSlices(E, &.{ .X, .Y, .Z }, values(E)); } |
Generated by zstd-live on 2025-08-12 12:37:57 UTC. |