zig/lib/std / Thread/Pool.zig

Runs func in the thread pool, calling WaitGroup.start beforehand, and WaitGroup.finish after it returns. In the case that queuing the function call fails to allocate memory, or the target is single-threaded, the function is called directly.

const std = @import("std");
const builtin = @import("builtin");
const Pool = @This();
const WaitGroup = @import("WaitGroup.zig");

Options

Runs func in the thread pool, calling WaitGroup.start beforehand, and WaitGroup.finish after it returns. The first argument passed to func is a dense usize thread id, the rest of the arguments are passed from args. Requires the pool to have been initialized with .track_ids = true. In the case that queuing the function call fails to allocate memory, or the target is single-threaded, the function is called directly.


mutex: std.Thread.Mutex = .{},
cond: std.Thread.Condition = .{},
run_queue: RunQueue = .{},
is_running: bool = true,
allocator: std.mem.Allocator,
threads: if (builtin.single_threaded) [0]std.Thread else []std.Thread,
ids: if (builtin.single_threaded) struct {
    inline fn deinit(_: @This(), _: std.mem.Allocator) void {}
    fn getIndex(_: @This(), _: std.Thread.Id) usize {
        return 0;
    }
} else std.AutoArrayHashMapUnmanaged(std.Thread.Id, void),

init()


const RunQueue = std.SinglyLinkedList(Runnable);
const Runnable = struct {
    runFn: RunProto,
};

deinit()


const RunProto = *const fn (*Runnable, id: ?usize) void;

spawnWg()


pub const Options = struct {
    allocator: std.mem.Allocator,
    n_jobs: ?usize = null,
    track_ids: bool = false,
    stack_size: usize = std.Thread.SpawnConfig.default_stack_size,
};

spawnWgId()


pub fn init(pool: *Pool, options: Options) !void {
    const allocator = options.allocator;

spawn()


    pool.* = .{
        .allocator = allocator,
        .threads = if (builtin.single_threaded) .{} else &.{},
        .ids = .{},
    };

Test: spawn


    if (builtin.single_threaded) {
        return;
    }

waitAndWork()


    const thread_count = options.n_jobs orelse @max(1, std.Thread.getCpuCount() catch 1);
    if (options.track_ids) {
        try pool.ids.ensureTotalCapacity(allocator, 1 + thread_count);
        pool.ids.putAssumeCapacityNoClobber(std.Thread.getCurrentId(), {});
    }

getIdCount()


    // kill and join any threads we spawned and free memory on error.
    pool.threads = try allocator.alloc(std.Thread, thread_count);
    var spawned: usize = 0;
    errdefer pool.join(spawned);

    for (pool.threads) |*thread| {
        thread.* = try std.Thread.spawn(.{
            .stack_size = options.stack_size,
            .allocator = allocator,
        }, worker, .{pool});
        spawned += 1;
    }
}

pub fn deinit(pool: *Pool) void {
    pool.join(pool.threads.len); // kill and join all threads.
    pool.ids.deinit(pool.allocator);
    pool.* = undefined;
}

fn join(pool: *Pool, spawned: usize) void {
    if (builtin.single_threaded) {
        return;
    }

    {
        pool.mutex.lock();
        defer pool.mutex.unlock();

        // ensure future worker threads exit the dequeue loop
        pool.is_running = false;
    }

    // wake up any sleeping threads (this can be done outside the mutex)
    // then wait for all the threads we know are spawned to complete.
    pool.cond.broadcast();
    for (pool.threads[0..spawned]) |thread| {
        thread.join();
    }

    pool.allocator.free(pool.threads);
}

/// Runs `func` in the thread pool, calling `WaitGroup.start` beforehand, and
/// `WaitGroup.finish` after it returns.
///
/// In the case that queuing the function call fails to allocate memory, or the
/// target is single-threaded, the function is called directly.
pub fn spawnWg(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args: anytype) void {
    wait_group.start();

    if (builtin.single_threaded) {
        @call(.auto, func, args);
        wait_group.finish();
        return;
    }

    const Args = @TypeOf(args);
    const Closure = struct {
        arguments: Args,
        pool: *Pool,
        run_node: RunQueue.Node = .{ .data = .{ .runFn = runFn } },
        wait_group: *WaitGroup,

        fn runFn(runnable: *Runnable, _: ?usize) void {
            const run_node: *RunQueue.Node = @fieldParentPtr("data", runnable);
            const closure: *@This() = @alignCast(@fieldParentPtr("run_node", run_node));
            @call(.auto, func, closure.arguments);
            closure.wait_group.finish();

            // The thread pool's allocator is protected by the mutex.
            const mutex = &closure.pool.mutex;
            mutex.lock();
            defer mutex.unlock();

            closure.pool.allocator.destroy(closure);
        }
    };

    {
        pool.mutex.lock();

        const closure = pool.allocator.create(Closure) catch {
            pool.mutex.unlock();
            @call(.auto, func, args);
            wait_group.finish();
            return;
        };
        closure.* = .{
            .arguments = args,
            .pool = pool,
            .wait_group = wait_group,
        };

        pool.run_queue.prepend(&closure.run_node);
        pool.mutex.unlock();
    }

    // Notify waiting threads outside the lock to try and keep the critical section small.
    pool.cond.signal();
}

/// Runs `func` in the thread pool, calling `WaitGroup.start` beforehand, and
/// `WaitGroup.finish` after it returns.
///
/// The first argument passed to `func` is a dense `usize` thread id, the rest
/// of the arguments are passed from `args`. Requires the pool to have been
/// initialized with `.track_ids = true`.
///
/// In the case that queuing the function call fails to allocate memory, or the
/// target is single-threaded, the function is called directly.
pub fn spawnWgId(pool: *Pool, wait_group: *WaitGroup, comptime func: anytype, args: anytype) void {
    wait_group.start();

    if (builtin.single_threaded) {
        @call(.auto, func, .{0} ++ args);
        wait_group.finish();
        return;
    }

    const Args = @TypeOf(args);
    const Closure = struct {
        arguments: Args,
        pool: *Pool,
        run_node: RunQueue.Node = .{ .data = .{ .runFn = runFn } },
        wait_group: *WaitGroup,

        fn runFn(runnable: *Runnable, id: ?usize) void {
            const run_node: *RunQueue.Node = @fieldParentPtr("data", runnable);
            const closure: *@This() = @alignCast(@fieldParentPtr("run_node", run_node));
            @call(.auto, func, .{id.?} ++ closure.arguments);
            closure.wait_group.finish();

            // The thread pool's allocator is protected by the mutex.
            const mutex = &closure.pool.mutex;
            mutex.lock();
            defer mutex.unlock();

            closure.pool.allocator.destroy(closure);
        }
    };

    {
        pool.mutex.lock();

        const closure = pool.allocator.create(Closure) catch {
            const id: ?usize = pool.ids.getIndex(std.Thread.getCurrentId());
            pool.mutex.unlock();
            @call(.auto, func, .{id.?} ++ args);
            wait_group.finish();
            return;
        };
        closure.* = .{
            .arguments = args,
            .pool = pool,
            .wait_group = wait_group,
        };

        pool.run_queue.prepend(&closure.run_node);
        pool.mutex.unlock();
    }

    // Notify waiting threads outside the lock to try and keep the critical section small.
    pool.cond.signal();
}

pub fn spawn(pool: *Pool, comptime func: anytype, args: anytype) !void {
    if (builtin.single_threaded) {
        @call(.auto, func, args);
        return;
    }

    const Args = @TypeOf(args);
    const Closure = struct {
        arguments: Args,
        pool: *Pool,
        run_node: RunQueue.Node = .{ .data = .{ .runFn = runFn } },

        fn runFn(runnable: *Runnable, _: ?usize) void {
            const run_node: *RunQueue.Node = @fieldParentPtr("data", runnable);
            const closure: *@This() = @alignCast(@fieldParentPtr("run_node", run_node));
            @call(.auto, func, closure.arguments);

            // The thread pool's allocator is protected by the mutex.
            const mutex = &closure.pool.mutex;
            mutex.lock();
            defer mutex.unlock();

            closure.pool.allocator.destroy(closure);
        }
    };

    {
        pool.mutex.lock();
        defer pool.mutex.unlock();

        const closure = try pool.allocator.create(Closure);
        closure.* = .{
            .arguments = args,
            .pool = pool,
        };

        pool.run_queue.prepend(&closure.run_node);
    }

    // Notify waiting threads outside the lock to try and keep the critical section small.
    pool.cond.signal();
}

test spawn {
    const TestFn = struct {
        fn checkRun(completed: *bool) void {
            completed.* = true;
        }
    };

    var completed: bool = false;

    {
        var pool: Pool = undefined;
        try pool.init(.{
            .allocator = std.testing.allocator,
        });
        defer pool.deinit();
        try pool.spawn(TestFn.checkRun, .{&completed});
    }

    try std.testing.expectEqual(true, completed);
}

fn worker(pool: *Pool) void {
    pool.mutex.lock();
    defer pool.mutex.unlock();

    const id: ?usize = if (pool.ids.count() > 0) @intCast(pool.ids.count()) else null;
    if (id) |_| pool.ids.putAssumeCapacityNoClobber(std.Thread.getCurrentId(), {});

    while (true) {
        while (pool.run_queue.popFirst()) |run_node| {
            // Temporarily unlock the mutex in order to execute the run_node
            pool.mutex.unlock();
            defer pool.mutex.lock();

            run_node.data.runFn(&run_node.data, id);
        }

        // Stop executing instead of waiting if the thread pool is no longer running.
        if (pool.is_running) {
            pool.cond.wait(&pool.mutex);
        } else {
            break;
        }
    }
}

pub fn waitAndWork(pool: *Pool, wait_group: *WaitGroup) void {
    var id: ?usize = null;

    while (!wait_group.isDone()) {
        pool.mutex.lock();
        if (pool.run_queue.popFirst()) |run_node| {
            id = id orelse pool.ids.getIndex(std.Thread.getCurrentId());
            pool.mutex.unlock();
            run_node.data.runFn(&run_node.data, id);
            continue;
        }

        pool.mutex.unlock();
        wait_group.wait();
        return;
    }
}

pub fn getIdCount(pool: *Pool) usize {
    return @intCast(1 + pool.threads.len);
}