zig/lib/std / array_list.zig

A contiguous, growable list of items in memory. This is a wrapper around an array of T values. Initialize with init. This struct internally stores a std.mem.Allocator for memory management. To manually specify an allocator with each function call see ArrayListUnmanaged.

const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const math = std.math;
const Allocator = mem.Allocator;

ArrayList()

A contiguous, growable list of arbitrarily aligned items in memory. This is a wrapper around an array of T values aligned to alignment-byte addresses. If the specified alignment is null, then @alignOf(T) is used. Initialize with init. This struct internally stores a std.mem.Allocator for memory management. To manually specify an allocator with each function call see ArrayListAlignedUnmanaged.


/// A contiguous, growable list of items in memory.
/// This is a wrapper around an array of T values. Initialize with `init`.
///
/// This struct internally stores a `std.mem.Allocator` for memory management.
/// To manually specify an allocator with each function call see `ArrayListUnmanaged`.
pub fn ArrayList(comptime T: type) type {
    return ArrayListAligned(T, null);
}

ArrayListAligned()

Contents of the list. This field is intended to be accessed directly. Pointers to elements in this slice are invalidated by various functions of this ArrayList in accordance with the respective documentation. In all cases, "invalidated" means that the memory has been passed to this allocator's resize or free function.


/// A contiguous, growable list of arbitrarily aligned items in memory.
/// This is a wrapper around an array of T values aligned to `alignment`-byte
/// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used.
/// Initialize with `init`.
///
/// This struct internally stores a `std.mem.Allocator` for memory management.
/// To manually specify an allocator with each function call see `ArrayListAlignedUnmanaged`.
pub fn ArrayListAligned(comptime T: type, comptime alignment: ?u29) type {
    if (alignment) |a| {
        if (a == @alignOf(T)) {
            return ArrayListAligned(T, null);
        }
    }
    return struct {
        const Self = @This();
        /// Contents of the list. This field is intended to be accessed
        /// directly.
        ///
        /// Pointers to elements in this slice are invalidated by various
        /// functions of this ArrayList in accordance with the respective
        /// documentation. In all cases, "invalidated" means that the memory
        /// has been passed to this allocator's resize or free function.
        items: Slice,
        /// How many T values this list can hold without allocating
        /// additional memory.
        capacity: usize,
        allocator: Allocator,

Slice

How many T values this list can hold without allocating additional memory.


Slice

Deinitialize with deinit or use toOwnedSlice.

        pub const Slice = if (alignment) |a| ([]align(a) T) else []T;

init()

Initialize with capacity to hold num elements. The resulting capacity will equal num exactly. Deinitialize with deinit or use toOwnedSlice.


SentinelSlice()

Release all allocated memory.

        pub fn SentinelSlice(comptime s: T) type {
            return if (alignment) |a| ([:s]align(a) T) else [:s]T;
        }

deinit()

ArrayList takes ownership of the passed in slice. The slice must have been allocated with allocator. Deinitialize with deinit or use toOwnedSlice.


        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn init(allocator: Allocator) Self {
            return Self{
                .items = &[_]T{},
                .capacity = 0,
                .allocator = allocator,
            };
        }

fromOwnedSlice()

ArrayList takes ownership of the passed in slice. The slice must have been allocated with allocator. Deinitialize with deinit or use toOwnedSlice.


        /// Initialize with capacity to hold `num` elements.
        /// The resulting capacity will equal `num` exactly.
        /// Deinitialize with `deinit` or use `toOwnedSlice`.

initCapacity()

Initializes an ArrayListUnmanaged with the items and capacity fields of this ArrayList. Empties this ArrayList.

        pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
            var self = Self.init(allocator);
            try self.ensureTotalCapacityPrecise(num);
            return self;
        }

moveToUnmanaged()

The caller owns the returned memory. Empties this ArrayList. Its capacity is cleared, making deinit safe but unnecessary to call.


        /// Release all allocated memory.
        pub fn deinit(self: Self) void {
            if (@sizeOf(T) > 0) {
                self.allocator.free(self.allocatedSlice());
            }
        }

toOwnedSlice()

The caller owns the returned memory. Empties this ArrayList.


        /// ArrayList takes ownership of the passed in slice. The slice must have been
        /// allocated with `allocator`.
        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn fromOwnedSlice(allocator: Allocator, slice: Slice) Self {
            return Self{
                .items = slice,
                .capacity = slice.len,
                .allocator = allocator,
            };
        }

toOwnedSliceSentinel()

Creates a copy of this ArrayList, using the same allocator.


        /// ArrayList takes ownership of the passed in slice. The slice must have been
        /// allocated with `allocator`.
        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn fromOwnedSliceSentinel(allocator: Allocator, comptime sentinel: T, slice: [:sentinel]T) Self {
            return Self{
                .items = slice,
                .capacity = slice.len + 1,
                .allocator = allocator,
            };
        }

clone()

Insert item at index i. Moves list[i .. list.len] to higher indices to make room. If i is equal to the length of the list this operation is equivalent to append. This operation is O(N). Invalidates element pointers if additional memory is needed. Asserts that the index is in bounds or equal to the length.


        /// Initializes an ArrayListUnmanaged with the `items` and `capacity` fields
        /// of this ArrayList. Empties this ArrayList.
        pub fn moveToUnmanaged(self: *Self) ArrayListAlignedUnmanaged(T, alignment) {
            const allocator = self.allocator;
            const result: ArrayListAlignedUnmanaged(T, alignment) = .{ .items = self.items, .capacity = self.capacity };
            self.* = init(allocator);
            return result;
        }

insert()

Insert item at index i. Moves list[i .. list.len] to higher indices to make room. If i is equal to the length of the list this operation is equivalent to appendAssumeCapacity. This operation is O(N). Asserts that there is enough capacity for the new item. Asserts that the index is in bounds or equal to the length.


        /// The caller owns the returned memory. Empties this ArrayList.
        /// Its capacity is cleared, making `deinit` safe but unnecessary to call.
        pub fn toOwnedSlice(self: *Self) Allocator.Error!Slice {
            const allocator = self.allocator;

insertAssumeCapacity()

Add count new elements at position index, which have undefined values. Returns a slice pointing to the newly allocated elements, which becomes invalid after various ArrayList operations. Invalidates pre-existing pointers to elements at and after index. Invalidates all pre-existing element pointers if capacity must be increased to accommodate the new elements. Asserts that the index is in bounds or equal to the length.


            const old_memory = self.allocatedSlice();
            if (allocator.remap(old_memory, self.items.len)) |new_items| {
                self.* = init(allocator);
                return new_items;
            }

addManyAt()

Add count new elements at position index, which have undefined values. Returns a slice pointing to the newly allocated elements, which becomes invalid after various ArrayList operations. Asserts that there is enough capacity for the new elements. Invalidates pre-existing pointers to elements at and after index, but does not invalidate any before that. Asserts that the index is in bounds or equal to the length.


            const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
            @memcpy(new_memory, self.items);
            self.clearAndFree();
            return new_memory;
        }

addManyAtAssumeCapacity()

Insert slice items at index i by moving list[i .. list.len] to make room. This operation is O(N). Invalidates pre-existing pointers to elements at and after index. Invalidates all pre-existing element pointers if capacity must be increased to accommodate the new elements. Asserts that the index is in bounds or equal to the length.


        /// The caller owns the returned memory. Empties this ArrayList.
        pub fn toOwnedSliceSentinel(self: *Self, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
            // This addition can never overflow because `self.items` can never occupy the whole address space
            try self.ensureTotalCapacityPrecise(self.items.len + 1);
            self.appendAssumeCapacity(sentinel);
            const result = try self.toOwnedSlice();
            return result[0 .. result.len - 1 :sentinel];
        }

insertSlice()

Grows or shrinks the list as necessary. Invalidates element pointers if additional capacity is allocated. Asserts that the range is in bounds.


        /// Creates a copy of this ArrayList, using the same allocator.
        pub fn clone(self: Self) Allocator.Error!Self {
            var cloned = try Self.initCapacity(self.allocator, self.capacity);
            cloned.appendSliceAssumeCapacity(self.items);
            return cloned;
        }

replaceRange()

Grows or shrinks the list as necessary. Never invalidates element pointers. Asserts the capacity is enough for additional items.


        /// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
        /// If `i` is equal to the length of the list this operation is equivalent to append.
        /// This operation is O(N).
        /// Invalidates element pointers if additional memory is needed.
        /// Asserts that the index is in bounds or equal to the length.
        pub fn insert(self: *Self, i: usize, item: T) Allocator.Error!void {
            const dst = try self.addManyAt(i, 1);
            dst[0] = item;
        }

replaceRangeAssumeCapacity()

Extends the list by 1 element. Allocates more memory as necessary. Invalidates element pointers if additional memory is needed.


        /// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
        /// If `i` is equal to the length of the list this operation is
        /// equivalent to appendAssumeCapacity.
        /// This operation is O(N).
        /// Asserts that there is enough capacity for the new item.
        /// Asserts that the index is in bounds or equal to the length.

insertAssumeCapacity()

Extends the list by 1 element. Never invalidates element pointers. Asserts that the list can hold one additional item.

        pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void {
            assert(self.items.len < self.capacity);
            self.items.len += 1;

appendAssumeCapacity()

Remove the element at index i, shift elements after index i forward, and return the removed element. Invalidates element pointers to end of list. This operation is O(N). This preserves item order. Use swapRemove if order preservation is not important. Asserts that the index is in bounds. Asserts that the list is not empty.


            mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]);
            self.items[i] = item;
        }

orderedRemove()

Removes the element at the specified index and returns it. The empty slot is filled from the end of the list. This operation is O(1). This may not preserve item order. Use orderedRemove if you need to preserve order. Asserts that the list is not empty. Asserts that the index is in bounds.


        /// Add `count` new elements at position `index`, which have
        /// `undefined` values. Returns a slice pointing to the newly allocated
        /// elements, which becomes invalid after various `ArrayList`
        /// operations.
        /// Invalidates pre-existing pointers to elements at and after `index`.
        /// Invalidates all pre-existing element pointers if capacity must be
        /// increased to accommodate the new elements.
        /// Asserts that the index is in bounds or equal to the length.
        pub fn addManyAt(self: *Self, index: usize, count: usize) Allocator.Error![]T {
            const new_len = try addOrOom(self.items.len, count);

swapRemove()

Append the slice of items to the list. Allocates more memory as necessary. Invalidates element pointers if additional memory is needed.


            if (self.capacity >= new_len)
                return addManyAtAssumeCapacity(self, index, count);

appendSlice()

Append the slice of items to the list. Never invalidates element pointers. Asserts that the list can hold the additional items.


            // Here we avoid copying allocated but unused bytes by
            // attempting a resize in place, and falling back to allocating
            // a new buffer and doing our own copy. With a realloc() call,
            // the allocator implementation would pointlessly copy our
            // extra capacity.
            const new_capacity = ArrayListAlignedUnmanaged(T, alignment).growCapacity(self.capacity, new_len);
            const old_memory = self.allocatedSlice();
            if (self.allocator.remap(old_memory, new_capacity)) |new_memory| {
                self.items.ptr = new_memory.ptr;
                self.capacity = new_memory.len;
                return addManyAtAssumeCapacity(self, index, count);
            }

appendSliceAssumeCapacity()

Append an unaligned slice of items to the list. Allocates more memory as necessary. Only call this function if calling appendSlice instead would be a compile error. Invalidates element pointers if additional memory is needed.


            // Make a new allocation, avoiding `ensureTotalCapacity` in order
            // to avoid extra memory copies.
            const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
            const to_move = self.items[index..];
            @memcpy(new_memory[0..index], self.items[0..index]);
            @memcpy(new_memory[index + count ..][0..to_move.len], to_move);
            self.allocator.free(old_memory);
            self.items = new_memory[0..new_len];
            self.capacity = new_memory.len;
            // The inserted elements at `new_memory[index..][0..count]` have
            // already been set to `undefined` by memory allocation.
            return new_memory[index..][0..count];
        }

appendUnalignedSlice()

Append the slice of items to the list. Never invalidates element pointers. This function is only needed when calling appendSliceAssumeCapacity instead would be a compile error due to the alignment of the items parameter. Asserts that the list can hold the additional items.


        /// Add `count` new elements at position `index`, which have
        /// `undefined` values. Returns a slice pointing to the newly allocated
        /// elements, which becomes invalid after various `ArrayList`
        /// operations.
        /// Asserts that there is enough capacity for the new elements.
        /// Invalidates pre-existing pointers to elements at and after `index`, but
        /// does not invalidate any before that.
        /// Asserts that the index is in bounds or equal to the length.

addManyAtAssumeCapacity()

Initializes a Writer which will append to the list.

        pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
            const new_len = self.items.len + count;
            assert(self.capacity >= new_len);
            const to_move = self.items[index..];
            self.items.len = new_len;
            mem.copyBackwards(T, self.items[index + count ..], to_move);
            const result = self.items[index..][0..count];
            @memset(result, undefined);
            return result;
        }

Writer

Same as append except it returns the number of bytes written, which is always the same as m.len. The purpose of this function existing is to match std.io.Writer API. Invalidates element pointers if additional memory is needed.


        /// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
        /// This operation is O(N).
        /// Invalidates pre-existing pointers to elements at and after `index`.
        /// Invalidates all pre-existing element pointers if capacity must be
        /// increased to accommodate the new elements.
        /// Asserts that the index is in bounds or equal to the length.

insertSlice()

Initializes a Writer which will append to the list but will return error.OutOfMemory rather than increasing capacity.

        pub fn insertSlice(
            self: *Self,
            index: usize,
            items: []const T,
        ) Allocator.Error!void {
            const dst = try self.addManyAt(index, items.len);
            @memcpy(dst, items);
        }

FixedWriter

The purpose of this function existing is to match std.io.Writer API.


        /// Grows or shrinks the list as necessary.
        /// Invalidates element pointers if additional capacity is allocated.
        /// Asserts that the range is in bounds.
        pub fn replaceRange(self: *Self, start: usize, len: usize, new_items: []const T) Allocator.Error!void {
            var unmanaged = self.moveToUnmanaged();
            defer self.* = unmanaged.toManaged(self.allocator);
            return unmanaged.replaceRange(self.allocator, start, len, new_items);
        }

fixedWriter()

Append a value to the list n times. Allocates more memory as necessary. Invalidates element pointers if additional memory is needed. The function is inline so that a comptime-known value parameter will have a more optimal memset codegen in case it has a repeated byte pattern.


        /// Grows or shrinks the list as necessary.
        /// Never invalidates element pointers.
        /// Asserts the capacity is enough for additional items.

replaceRangeAssumeCapacity()

Append a value to the list n times. Never invalidates element pointers. The function is inline so that a comptime-known value parameter will have a more optimal memset codegen in case it has a repeated byte pattern. Asserts that the list can hold the additional items.

        pub fn replaceRangeAssumeCapacity(self: *Self, start: usize, len: usize, new_items: []const T) void {
            var unmanaged = self.moveToUnmanaged();
            defer self.* = unmanaged.toManaged(self.allocator);
            return unmanaged.replaceRangeAssumeCapacity(start, len, new_items);
        }

appendNTimesAssumeCapacity()

Adjust the list length to new_len. Additional elements contain the value undefined. Invalidates element pointers if additional memory is needed.


        /// Extends the list by 1 element. Allocates more memory as necessary.
        /// Invalidates element pointers if additional memory is needed.
        pub fn append(self: *Self, item: T) Allocator.Error!void {
            const new_item_ptr = try self.addOne();
            new_item_ptr.* = item;
        }

resize()

Reduce allocated capacity to new_len. May invalidate element pointers. Asserts that the new length is less than or equal to the previous length.


        /// Extends the list by 1 element.
        /// Never invalidates element pointers.
        /// Asserts that the list can hold one additional item.

appendAssumeCapacity()

Reduce length to new_len. Invalidates element pointers for the elements items[new_len..]. Asserts that the new length is less than or equal to the previous length.

        pub fn appendAssumeCapacity(self: *Self, item: T) void {
            self.addOneAssumeCapacity().* = item;
        }

shrinkRetainingCapacity()

Invalidates all element pointers.


        /// Remove the element at index `i`, shift elements after index
        /// `i` forward, and return the removed element.
        /// Invalidates element pointers to end of list.
        /// This operation is O(N).
        /// This preserves item order. Use `swapRemove` if order preservation is not important.
        /// Asserts that the index is in bounds.
        /// Asserts that the list is not empty.

orderedRemove()

Invalidates all element pointers.

        pub fn orderedRemove(self: *Self, i: usize) T {
            const old_item = self.items[i];
            self.replaceRangeAssumeCapacity(i, 1, &.{});
            return old_item;
        }

clearAndFree()

If the current capacity is less than new_capacity, this function will modify the array so that it can hold at least new_capacity items. Invalidates element pointers if additional memory is needed.


        /// Removes the element at the specified index and returns it.
        /// The empty slot is filled from the end of the list.
        /// This operation is O(1).
        /// This may not preserve item order. Use `orderedRemove` if you need to preserve order.
        /// Asserts that the list is not empty.
        /// Asserts that the index is in bounds.

swapRemove()

If the current capacity is less than new_capacity, this function will modify the array so that it can hold exactly new_capacity items. Invalidates element pointers if additional memory is needed.

        pub fn swapRemove(self: *Self, i: usize) T {
            if (self.items.len - 1 == i) return self.pop().?;

ensureTotalCapacityPrecise()

Modify the array so that it can hold at least additional_count **more** items. Invalidates element pointers if additional memory is needed.


            const old_item = self.items[i];
            self.items[i] = self.pop().?;
            return old_item;
        }

ensureUnusedCapacity()

Increases the array's length to match the full capacity that is already allocated. The new elements have undefined values. Never invalidates element pointers.


        /// Append the slice of items to the list. Allocates more
        /// memory as necessary.
        /// Invalidates element pointers if additional memory is needed.
        pub fn appendSlice(self: *Self, items: []const T) Allocator.Error!void {
            try self.ensureUnusedCapacity(items.len);
            self.appendSliceAssumeCapacity(items);
        }

expandToCapacity()

Increase length by 1, returning pointer to the new item. The returned pointer becomes invalid when the list resized.


        /// Append the slice of items to the list.
        /// Never invalidates element pointers.
        /// Asserts that the list can hold the additional items.

appendSliceAssumeCapacity()

Increase length by 1, returning pointer to the new item. The returned pointer becomes invalid when the list is resized. Never invalidates element pointers. Asserts that the list can hold one additional item.

        pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
            const old_len = self.items.len;
            const new_len = old_len + items.len;
            assert(new_len <= self.capacity);
            self.items.len = new_len;
            @memcpy(self.items[old_len..][0..items.len], items);
        }

addOneAssumeCapacity()

Resize the array, adding n new elements, which have undefined values. The return value is an array pointing to the newly allocated elements. The returned pointer becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.


        /// Append an unaligned slice of items to the list. Allocates more
        /// memory as necessary. Only call this function if calling
        /// `appendSlice` instead would be a compile error.
        /// Invalidates element pointers if additional memory is needed.
        pub fn appendUnalignedSlice(self: *Self, items: []align(1) const T) Allocator.Error!void {
            try self.ensureUnusedCapacity(items.len);
            self.appendUnalignedSliceAssumeCapacity(items);
        }

addManyAsArray()

Resize the array, adding n new elements, which have undefined values. The return value is an array pointing to the newly allocated elements. Never invalidates element pointers. The returned pointer becomes invalid when the list is resized. Asserts that the list can hold the additional items.


        /// Append the slice of items to the list.
        /// Never invalidates element pointers.
        /// This function is only needed when calling
        /// `appendSliceAssumeCapacity` instead would be a compile error due to the
        /// alignment of the `items` parameter.
        /// Asserts that the list can hold the additional items.

appendUnalignedSliceAssumeCapacity()

Resize the array, adding n new elements, which have undefined values. The return value is a slice pointing to the newly allocated elements. The returned pointer becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.

        pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
            const old_len = self.items.len;
            const new_len = old_len + items.len;
            assert(new_len <= self.capacity);
            self.items.len = new_len;
            @memcpy(self.items[old_len..][0..items.len], items);
        }

addManyAsSlice()

Resize the array, adding n new elements, which have undefined values. The return value is a slice pointing to the newly allocated elements. Never invalidates element pointers. The returned pointer becomes invalid when the list is resized. Asserts that the list can hold the additional items.


Writer

Remove and return the last element from the list, or return null if list is empty. Invalidates element pointers to the removed element, if any.

        pub const Writer = if (T != u8)
            @compileError("The Writer interface is only defined for ArrayList(u8) " ++
                "but the given type is ArrayList(" ++ @typeName(T) ++ ")")
        else
            std.io.Writer(*Self, Allocator.Error, appendWrite);

pop()

Returns a slice of all the items plus the extra capacity, whose memory contents are undefined.


        /// Initializes a Writer which will append to the list.
        pub fn writer(self: *Self) Writer {
            return .{ .context = self };
        }

allocatedSlice()

Returns a slice of only the extra capacity after items. This can be useful for writing directly into an ArrayList. Note that such an operation must be followed up with a direct modification of self.items.len.


        /// Same as `append` except it returns the number of bytes written, which is always the same
        /// as `m.len`. The purpose of this function existing is to match `std.io.Writer` API.
        /// Invalidates element pointers if additional memory is needed.
        fn appendWrite(self: *Self, m: []const u8) Allocator.Error!usize {
            try self.appendSlice(m);
            return m.len;
        }

unusedCapacitySlice()

Returns the last element from the list. Asserts that the list is not empty.


FixedWriter

Returns the last element from the list, or null if list is empty.

        pub const FixedWriter = std.io.Writer(*Self, Allocator.Error, appendWriteFixed);

getLastOrNull()

An ArrayList, but the allocator is passed as a parameter to the relevant functions rather than stored in the struct itself. The same allocator must be used throughout the entire lifetime of an ArrayListUnmanaged. Initialize directly or with initCapacity, and deinitialize with deinit or use toOwnedSlice.


        /// Initializes a Writer which will append to the list but will return
        /// `error.OutOfMemory` rather than increasing capacity.

fixedWriter()

A contiguous, growable list of arbitrarily aligned items in memory. This is a wrapper around an array of T values aligned to alignment-byte addresses. If the specified alignment is null, then @alignOf(T) is used. Functions that potentially allocate memory accept an Allocator parameter. Initialize directly or with initCapacity, and deinitialize with deinit or use toOwnedSlice. Default initialization of this struct is deprecated; use .empty instead.

        pub fn fixedWriter(self: *Self) FixedWriter {
            return .{ .context = self };
        }

ArrayListAlignedUnmanaged()

Contents of the list. This field is intended to be accessed directly. Pointers to elements in this slice are invalidated by various functions of this ArrayList in accordance with the respective documentation. In all cases, "invalidated" means that the memory has been passed to an allocator's resize or free function.


        /// The purpose of this function existing is to match `std.io.Writer` API.
        fn appendWriteFixed(self: *Self, m: []const u8) error{OutOfMemory}!usize {
            const available_capacity = self.capacity - self.items.len;
            if (m.len > available_capacity)
                return error.OutOfMemory;

empty:

How many T values this list can hold without allocating additional memory.


            self.appendSliceAssumeCapacity(m);
            return m.len;
        }

Slice

An ArrayList containing no elements.


        /// Append a value to the list `n` times.
        /// Allocates more memory as necessary.
        /// Invalidates element pointers if additional memory is needed.
        /// The function is inline so that a comptime-known `value` parameter will
        /// have a more optimal memset codegen in case it has a repeated byte pattern.
        pub inline fn appendNTimes(self: *Self, value: T, n: usize) Allocator.Error!void {
            const old_len = self.items.len;
            try self.resize(try addOrOom(old_len, n));
            @memset(self.items[old_len..self.items.len], value);
        }

SentinelSlice()

Initialize with capacity to hold num elements. The resulting capacity will equal num exactly. Deinitialize with deinit or use toOwnedSlice.


        /// Append a value to the list `n` times.
        /// Never invalidates element pointers.
        /// The function is inline so that a comptime-known `value` parameter will
        /// have a more optimal memset codegen in case it has a repeated byte pattern.
        /// Asserts that the list can hold the additional items.

appendNTimesAssumeCapacity()

Initialize with externally-managed memory. The buffer determines the capacity, and the length is set to zero. When initialized this way, all functions that accept an Allocator argument cause illegal behavior.

        pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
            const new_len = self.items.len + n;
            assert(new_len <= self.capacity);
            @memset(self.items.ptr[self.items.len..new_len], value);
            self.items.len = new_len;
        }

initBuffer()

Release all allocated memory.


        /// Adjust the list length to `new_len`.
        /// Additional elements contain the value `undefined`.
        /// Invalidates element pointers if additional memory is needed.
        pub fn resize(self: *Self, new_len: usize) Allocator.Error!void {
            try self.ensureTotalCapacity(new_len);
            self.items.len = new_len;
        }

deinit()

Convert this list into an analogous memory-managed one. The returned list has ownership of the underlying memory.


        /// Reduce allocated capacity to `new_len`.
        /// May invalidate element pointers.
        /// Asserts that the new length is less than or equal to the previous length.
        pub fn shrinkAndFree(self: *Self, new_len: usize) void {
            var unmanaged = self.moveToUnmanaged();
            unmanaged.shrinkAndFree(self.allocator, new_len);
            self.* = unmanaged.toManaged(self.allocator);
        }

toManaged()

ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been allocated with allocator. Deinitialize with deinit or use toOwnedSlice.


        /// Reduce length to `new_len`.
        /// Invalidates element pointers for the elements `items[new_len..]`.
        /// Asserts that the new length is less than or equal to the previous length.

shrinkRetainingCapacity()

ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been allocated with allocator. Deinitialize with deinit or use toOwnedSlice.

        pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
            assert(new_len <= self.items.len);
            self.items.len = new_len;
        }

fromOwnedSliceSentinel()

The caller owns the returned memory. Empties this ArrayList. Its capacity is cleared, making deinit() safe but unnecessary to call.


        /// Invalidates all element pointers.

clearRetainingCapacity()

The caller owns the returned memory. ArrayList becomes empty.

        pub fn clearRetainingCapacity(self: *Self) void {
            self.items.len = 0;
        }

toOwnedSliceSentinel()

Creates a copy of this ArrayList.


        /// Invalidates all element pointers.
        pub fn clearAndFree(self: *Self) void {
            self.allocator.free(self.allocatedSlice());
            self.items.len = 0;
            self.capacity = 0;
        }

clone()

Insert item at index i. Moves list[i .. list.len] to higher indices to make room. If i is equal to the length of the list this operation is equivalent to append. This operation is O(N). Invalidates element pointers if additional memory is needed. Asserts that the index is in bounds or equal to the length.


        /// If the current capacity is less than `new_capacity`, this function will
        /// modify the array so that it can hold at least `new_capacity` items.
        /// Invalidates element pointers if additional memory is needed.
        pub fn ensureTotalCapacity(self: *Self, new_capacity: usize) Allocator.Error!void {
            if (@sizeOf(T) == 0) {
                self.capacity = math.maxInt(usize);
                return;
            }

insert()

Insert item at index i. Moves list[i .. list.len] to higher indices to make room. If in` is equal to the length of the list this operation is equivalent to append. This operation is O(N). Asserts that the list has capacity for one additional item. Asserts that the index is in bounds or equal to the length.


            if (self.capacity >= new_capacity) return;

insertAssumeCapacity()

Add count new elements at position index, which have undefined values. Returns a slice pointing to the newly allocated elements, which becomes invalid after various ArrayList operations. Invalidates pre-existing pointers to elements at and after index. Invalidates all pre-existing element pointers if capacity must be increased to accommodate the new elements. Asserts that the index is in bounds or equal to the length.


            const better_capacity = ArrayListAlignedUnmanaged(T, alignment).growCapacity(self.capacity, new_capacity);
            return self.ensureTotalCapacityPrecise(better_capacity);
        }

addManyAt()

Add count new elements at position index, which have undefined values. Returns a slice pointing to the newly allocated elements, which becomes invalid after various ArrayList operations. Invalidates pre-existing pointers to elements at and after index, but does not invalidate any before that. Asserts that the list has capacity for the additional items. Asserts that the index is in bounds or equal to the length.


        /// If the current capacity is less than `new_capacity`, this function will
        /// modify the array so that it can hold exactly `new_capacity` items.
        /// Invalidates element pointers if additional memory is needed.
        pub fn ensureTotalCapacityPrecise(self: *Self, new_capacity: usize) Allocator.Error!void {
            if (@sizeOf(T) == 0) {
                self.capacity = math.maxInt(usize);
                return;
            }

addManyAtAssumeCapacity()

Insert slice items at index i by moving list[i .. list.len] to make room. This operation is O(N). Invalidates pre-existing pointers to elements at and after index. Invalidates all pre-existing element pointers if capacity must be increased to accommodate the new elements. Asserts that the index is in bounds or equal to the length.


            if (self.capacity >= new_capacity) return;

insertSlice()

Grows or shrinks the list as necessary. Invalidates element pointers if additional capacity is allocated. Asserts that the range is in bounds.


            // Here we avoid copying allocated but unused bytes by
            // attempting a resize in place, and falling back to allocating
            // a new buffer and doing our own copy. With a realloc() call,
            // the allocator implementation would pointlessly copy our
            // extra capacity.
            const old_memory = self.allocatedSlice();
            if (self.allocator.remap(old_memory, new_capacity)) |new_memory| {
                self.items.ptr = new_memory.ptr;
                self.capacity = new_memory.len;
            } else {
                const new_memory = try self.allocator.alignedAlloc(T, alignment, new_capacity);
                @memcpy(new_memory[0..self.items.len], self.items);
                self.allocator.free(old_memory);
                self.items.ptr = new_memory.ptr;
                self.capacity = new_memory.len;
            }
        }

replaceRange()

Grows or shrinks the list as necessary. Never invalidates element pointers. Asserts the capacity is enough for additional items.


        /// Modify the array so that it can hold at least `additional_count` **more** items.
        /// Invalidates element pointers if additional memory is needed.
        pub fn ensureUnusedCapacity(self: *Self, additional_count: usize) Allocator.Error!void {
            return self.ensureTotalCapacity(try addOrOom(self.items.len, additional_count));
        }

replaceRangeAssumeCapacity()

Extend the list by 1 element. Allocates more memory as necessary. Invalidates element pointers if additional memory is needed.


        /// Increases the array's length to match the full capacity that is already allocated.
        /// The new elements have `undefined` values.
        /// Never invalidates element pointers.

expandToCapacity()

Extend the list by 1 element. Never invalidates element pointers. Asserts that the list can hold one additional item.

        pub fn expandToCapacity(self: *Self) void {
            self.items.len = self.capacity;
        }

appendAssumeCapacity()

Remove the element at index i from the list and return its value. Invalidates pointers to the last element. This operation is O(N). Asserts that the list is not empty. Asserts that the index is in bounds.


        /// Increase length by 1, returning pointer to the new item.
        /// The returned pointer becomes invalid when the list resized.
        pub fn addOne(self: *Self) Allocator.Error!*T {
            // This can never overflow because `self.items` can never occupy the whole address space
            const newlen = self.items.len + 1;
            try self.ensureTotalCapacity(newlen);
            return self.addOneAssumeCapacity();
        }

orderedRemove()

Removes the element at the specified index and returns it. The empty slot is filled from the end of the list. Invalidates pointers to last element. This operation is O(1). Asserts that the list is not empty. Asserts that the index is in bounds.


        /// Increase length by 1, returning pointer to the new item.
        /// The returned pointer becomes invalid when the list is resized.
        /// Never invalidates element pointers.
        /// Asserts that the list can hold one additional item.

addOneAssumeCapacity()

Append the slice of items to the list. Allocates more memory as necessary. Invalidates element pointers if additional memory is needed.

        pub fn addOneAssumeCapacity(self: *Self) *T {
            assert(self.items.len < self.capacity);
            self.items.len += 1;
            return &self.items[self.items.len - 1];
        }

appendSlice()

Append the slice of items to the list. Asserts that the list can hold the additional items.


        /// Resize the array, adding `n` new elements, which have `undefined` values.
        /// The return value is an array pointing to the newly allocated elements.
        /// The returned pointer becomes invalid when the list is resized.
        /// Resizes list if `self.capacity` is not large enough.
        pub fn addManyAsArray(self: *Self, comptime n: usize) Allocator.Error!*[n]T {
            const prev_len = self.items.len;
            try self.resize(try addOrOom(self.items.len, n));
            return self.items[prev_len..][0..n];
        }

appendSliceAssumeCapacity()

Append the slice of items to the list. Allocates more memory as necessary. Only call this function if a call to appendSlice instead would be a compile error. Invalidates element pointers if additional memory is needed.


        /// Resize the array, adding `n` new elements, which have `undefined` values.
        /// The return value is an array pointing to the newly allocated elements.
        /// Never invalidates element pointers.
        /// The returned pointer becomes invalid when the list is resized.
        /// Asserts that the list can hold the additional items.

addManyAsArrayAssumeCapacity()

Append an unaligned slice of items to the list. Only call this function if a call to appendSliceAssumeCapacity instead would be a compile error. Asserts that the list can hold the additional items.

        pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
            assert(self.items.len + n <= self.capacity);
            const prev_len = self.items.len;
            self.items.len += n;
            return self.items[prev_len..][0..n];
        }

appendUnalignedSliceAssumeCapacity()

Initializes a Writer which will append to the list.


        /// Resize the array, adding `n` new elements, which have `undefined` values.
        /// The return value is a slice pointing to the newly allocated elements.
        /// The returned pointer becomes invalid when the list is resized.
        /// Resizes list if `self.capacity` is not large enough.
        pub fn addManyAsSlice(self: *Self, n: usize) Allocator.Error![]T {
            const prev_len = self.items.len;
            try self.resize(try addOrOom(self.items.len, n));
            return self.items[prev_len..][0..n];
        }

WriterContext

Same as append except it returns the number of bytes written, which is always the same as m.len. The purpose of this function existing is to match std.io.Writer API. Invalidates element pointers if additional memory is needed.


        /// Resize the array, adding `n` new elements, which have `undefined` values.
        /// The return value is a slice pointing to the newly allocated elements.
        /// Never invalidates element pointers.
        /// The returned pointer becomes invalid when the list is resized.
        /// Asserts that the list can hold the additional items.

addManyAsSliceAssumeCapacity()

Initializes a Writer which will append to the list but will return error.OutOfMemory rather than increasing capacity.

        pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
            assert(self.items.len + n <= self.capacity);
            const prev_len = self.items.len;
            self.items.len += n;
            return self.items[prev_len..][0..n];
        }

writer()

The purpose of this function existing is to match std.io.Writer API.


        /// Remove and return the last element from the list, or return `null` if list is empty.
        /// Invalidates element pointers to the removed element, if any.

pop()

Append a value to the list n times. Allocates more memory as necessary. Invalidates element pointers if additional memory is needed. The function is inline so that a comptime-known value parameter will have a more optimal memset codegen in case it has a repeated byte pattern.

        pub fn pop(self: *Self) ?T {
            if (self.items.len == 0) return null;
            const val = self.items[self.items.len - 1];
            self.items.len -= 1;
            return val;
        }

fixedWriter()

Append a value to the list n times. Never invalidates element pointers. The function is inline so that a comptime-known value parameter will have better memset codegen in case it has a repeated byte pattern. Asserts that the list can hold the additional items.


        /// Returns a slice of all the items plus the extra capacity, whose memory
        /// contents are `undefined`.

allocatedSlice()

Adjust the list length to new_len. Additional elements contain the value undefined. Invalidates element pointers if additional memory is needed.

        pub fn allocatedSlice(self: Self) Slice {
            // `items.len` is the length, not the capacity.
            return self.items.ptr[0..self.capacity];
        }

appendNTimesAssumeCapacity()

Reduce allocated capacity to new_len. May invalidate element pointers. Asserts that the new length is less than or equal to the previous length.


        /// Returns a slice of only the extra capacity after items.
        /// This can be useful for writing directly into an ArrayList.
        /// Note that such an operation must be followed up with a direct
        /// modification of `self.items.len`.

unusedCapacitySlice()

Reduce length to new_len. Invalidates pointers to elements items[new_len..]. Keeps capacity the same. Asserts that the new length is less than or equal to the previous length.

        pub fn unusedCapacitySlice(self: Self) []T {
            return self.allocatedSlice()[self.items.len..];
        }

shrinkAndFree()

Invalidates all element pointers.


        /// Returns the last element from the list.
        /// Asserts that the list is not empty.

getLast()

Invalidates all element pointers.

        pub fn getLast(self: Self) T {
            const val = self.items[self.items.len - 1];
            return val;
        }

clearRetainingCapacity()

Modify the array so that it can hold at least new_capacity items. Implements super-linear growth to achieve amortized O(1) append operations. Invalidates element pointers if additional memory is needed.


        /// Returns the last element from the list, or `null` if list is empty.

getLastOrNull()

If the current capacity is less than new_capacity, this function will modify the array so that it can hold exactly new_capacity items. Invalidates element pointers if additional memory is needed.

        pub fn getLastOrNull(self: Self) ?T {
            if (self.items.len == 0) return null;
            return self.getLast();
        }
    };
}

ensureTotalCapacity()

Modify the array so that it can hold at least additional_count **more** items. Invalidates element pointers if additional memory is needed.


/// An ArrayList, but the allocator is passed as a parameter to the relevant functions
/// rather than stored in the struct itself. The same allocator must be used throughout
/// the entire lifetime of an ArrayListUnmanaged. Initialize directly or with
/// `initCapacity`, and deinitialize with `deinit` or use `toOwnedSlice`.
pub fn ArrayListUnmanaged(comptime T: type) type {
    return ArrayListAlignedUnmanaged(T, null);
}

ensureTotalCapacityPrecise()

Increases the array's length to match the full capacity that is already allocated. The new elements have undefined values. Never invalidates element pointers.


/// A contiguous, growable list of arbitrarily aligned items in memory.
/// This is a wrapper around an array of T values aligned to `alignment`-byte
/// addresses. If the specified alignment is `null`, then `@alignOf(T)` is used.
///
/// Functions that potentially allocate memory accept an `Allocator` parameter.
/// Initialize directly or with `initCapacity`, and deinitialize with `deinit`
/// or use `toOwnedSlice`.
///
/// Default initialization of this struct is deprecated; use `.empty` instead.
pub fn ArrayListAlignedUnmanaged(comptime T: type, comptime alignment: ?u29) type {
    if (alignment) |a| {
        if (a == @alignOf(T)) {
            return ArrayListAlignedUnmanaged(T, null);
        }
    }
    return struct {
        const Self = @This();
        /// Contents of the list. This field is intended to be accessed
        /// directly.
        ///
        /// Pointers to elements in this slice are invalidated by various
        /// functions of this ArrayList in accordance with the respective
        /// documentation. In all cases, "invalidated" means that the memory
        /// has been passed to an allocator's resize or free function.
        items: Slice = &[_]T{},
        /// How many T values this list can hold without allocating
        /// additional memory.
        capacity: usize = 0,

ensureUnusedCapacity()

Increase length by 1, returning pointer to the new item. The returned element pointer becomes invalid when the list is resized.


        /// An ArrayList containing no elements.
        pub const empty: Self = .{
            .items = &.{},
            .capacity = 0,
        };

expandToCapacity()

Increase length by 1, returning pointer to the new item. Never invalidates element pointers. The returned element pointer becomes invalid when the list is resized. Asserts that the list can hold one additional item.


        pub const Slice = if (alignment) |a| ([]align(a) T) else []T;

addOne()

Resize the array, adding n new elements, which have undefined values. The return value is an array pointing to the newly allocated elements. The returned pointer becomes invalid when the list is resized.


        pub fn SentinelSlice(comptime s: T) type {
            return if (alignment) |a| ([:s]align(a) T) else [:s]T;
        }

addOneAssumeCapacity()

Resize the array, adding n new elements, which have undefined values. The return value is an array pointing to the newly allocated elements. Never invalidates element pointers. The returned pointer becomes invalid when the list is resized. Asserts that the list can hold the additional items.


        /// Initialize with capacity to hold `num` elements.
        /// The resulting capacity will equal `num` exactly.
        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn initCapacity(allocator: Allocator, num: usize) Allocator.Error!Self {
            var self = Self{};
            try self.ensureTotalCapacityPrecise(allocator, num);
            return self;
        }

addManyAsArray()

Resize the array, adding n new elements, which have undefined values. The return value is a slice pointing to the newly allocated elements. The returned pointer becomes invalid when the list is resized. Resizes list if self.capacity is not large enough.


        /// Initialize with externally-managed memory. The buffer determines the
        /// capacity, and the length is set to zero.
        /// When initialized this way, all functions that accept an Allocator
        /// argument cause illegal behavior.
        pub fn initBuffer(buffer: Slice) Self {
            return .{
                .items = buffer[0..0],
                .capacity = buffer.len,
            };
        }

addManyAsArrayAssumeCapacity()

Resize the array, adding n new elements, which have undefined values. The return value is a slice pointing to the newly allocated elements. Never invalidates element pointers. The returned pointer becomes invalid when the list is resized. Asserts that the list can hold the additional items.


        /// Release all allocated memory.
        pub fn deinit(self: *Self, allocator: Allocator) void {
            allocator.free(self.allocatedSlice());
            self.* = undefined;
        }

addManyAsSlice()

Remove and return the last element from the list. If the list is empty, returns null. Invalidates pointers to last element.


        /// Convert this list into an analogous memory-managed one.
        /// The returned list has ownership of the underlying memory.
        pub fn toManaged(self: *Self, allocator: Allocator) ArrayListAligned(T, alignment) {
            return .{ .items = self.items, .capacity = self.capacity, .allocator = allocator };
        }

addManyAsSliceAssumeCapacity()

Returns a slice of all the items plus the extra capacity, whose memory contents are undefined.


        /// ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been
        /// allocated with `allocator`.
        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn fromOwnedSlice(slice: Slice) Self {
            return Self{
                .items = slice,
                .capacity = slice.len,
            };
        }

pop()

Returns a slice of only the extra capacity after items. This can be useful for writing directly into an ArrayList. Note that such an operation must be followed up with a direct modification of self.items.len.


        /// ArrayListUnmanaged takes ownership of the passed in slice. The slice must have been
        /// allocated with `allocator`.
        /// Deinitialize with `deinit` or use `toOwnedSlice`.
        pub fn fromOwnedSliceSentinel(comptime sentinel: T, slice: [:sentinel]T) Self {
            return Self{
                .items = slice,
                .capacity = slice.len + 1,
            };
        }

allocatedSlice()

Return the last element from the list. Asserts that the list is not empty.


        /// The caller owns the returned memory. Empties this ArrayList.
        /// Its capacity is cleared, making deinit() safe but unnecessary to call.
        pub fn toOwnedSlice(self: *Self, allocator: Allocator) Allocator.Error!Slice {
            const old_memory = self.allocatedSlice();
            if (allocator.remap(old_memory, self.items.len)) |new_items| {
                self.* = .empty;
                return new_items;
            }

unusedCapacitySlice()

Return the last element from the list, or return null if list is empty.


            const new_memory = try allocator.alignedAlloc(T, alignment, self.items.len);
            @memcpy(new_memory, self.items);
            self.clearAndFree(allocator);
            return new_memory;
        }

getLast()

Called when memory growth is necessary. Returns a capacity larger than minimum that grows super-linearly.


        /// The caller owns the returned memory. ArrayList becomes empty.
        pub fn toOwnedSliceSentinel(self: *Self, allocator: Allocator, comptime sentinel: T) Allocator.Error!SentinelSlice(sentinel) {
            // This addition can never overflow because `self.items` can never occupy the whole address space
            try self.ensureTotalCapacityPrecise(allocator, self.items.len + 1);
            self.appendAssumeCapacity(sentinel);
            const result = try self.toOwnedSlice(allocator);
            return result[0 .. result.len - 1 :sentinel];
        }

getLastOrNull()

Integer addition returning error.OutOfMemory on overflow.


        /// Creates a copy of this ArrayList.
        pub fn clone(self: Self, allocator: Allocator) Allocator.Error!Self {
            var cloned = try Self.initCapacity(allocator, self.capacity);
            cloned.appendSliceAssumeCapacity(self.items);
            return cloned;
        }

Test:

init


        /// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
        /// If `i` is equal to the length of the list this operation is equivalent to append.
        /// This operation is O(N).
        /// Invalidates element pointers if additional memory is needed.
        /// Asserts that the index is in bounds or equal to the length.
        pub fn insert(self: *Self, allocator: Allocator, i: usize, item: T) Allocator.Error!void {
            const dst = try self.addManyAt(allocator, i, 1);
            dst[0] = item;
        }

Test:

initCapacity


        /// Insert `item` at index `i`. Moves `list[i .. list.len]` to higher indices to make room.
        /// If in` is equal to the length of the list this operation is equivalent to append.
        /// This operation is O(N).
        /// Asserts that the list has capacity for one additional item.
        /// Asserts that the index is in bounds or equal to the length.
        pub fn insertAssumeCapacity(self: *Self, i: usize, item: T) void {
            assert(self.items.len < self.capacity);
            self.items.len += 1;

Test:

clone


            mem.copyBackwards(T, self.items[i + 1 .. self.items.len], self.items[i .. self.items.len - 1]);
            self.items[i] = item;
        }

Test:

basic


        /// Add `count` new elements at position `index`, which have
        /// `undefined` values. Returns a slice pointing to the newly allocated
        /// elements, which becomes invalid after various `ArrayList`
        /// operations.
        /// Invalidates pre-existing pointers to elements at and after `index`.
        /// Invalidates all pre-existing element pointers if capacity must be
        /// increased to accommodate the new elements.
        /// Asserts that the index is in bounds or equal to the length.
        pub fn addManyAt(
            self: *Self,
            allocator: Allocator,
            index: usize,
            count: usize,
        ) Allocator.Error![]T {
            var managed = self.toManaged(allocator);
            defer self.* = managed.moveToUnmanaged();
            return managed.addManyAt(index, count);
        }

Test:

appendNTimes


        /// Add `count` new elements at position `index`, which have
        /// `undefined` values. Returns a slice pointing to the newly allocated
        /// elements, which becomes invalid after various `ArrayList`
        /// operations.
        /// Invalidates pre-existing pointers to elements at and after `index`, but
        /// does not invalidate any before that.
        /// Asserts that the list has capacity for the additional items.
        /// Asserts that the index is in bounds or equal to the length.
        pub fn addManyAtAssumeCapacity(self: *Self, index: usize, count: usize) []T {
            const new_len = self.items.len + count;
            assert(self.capacity >= new_len);
            const to_move = self.items[index..];
            self.items.len = new_len;
            mem.copyBackwards(T, self.items[index + count ..], to_move);
            const result = self.items[index..][0..count];
            @memset(result, undefined);
            return result;
        }

Test:

appendNTimes with failing allocator


        /// Insert slice `items` at index `i` by moving `list[i .. list.len]` to make room.
        /// This operation is O(N).
        /// Invalidates pre-existing pointers to elements at and after `index`.
        /// Invalidates all pre-existing element pointers if capacity must be
        /// increased to accommodate the new elements.
        /// Asserts that the index is in bounds or equal to the length.
        pub fn insertSlice(
            self: *Self,
            allocator: Allocator,
            index: usize,
            items: []const T,
        ) Allocator.Error!void {
            const dst = try self.addManyAt(
                allocator,
                index,
                items.len,
            );
            @memcpy(dst, items);
        }

Test:

orderedRemove


        /// Grows or shrinks the list as necessary.
        /// Invalidates element pointers if additional capacity is allocated.
        /// Asserts that the range is in bounds.
        pub fn replaceRange(
            self: *Self,
            allocator: Allocator,
            start: usize,
            len: usize,
            new_items: []const T,
        ) Allocator.Error!void {
            const after_range = start + len;
            const range = self.items[start..after_range];
            if (range.len < new_items.len) {
                const first = new_items[0..range.len];
                const rest = new_items[range.len..];
                @memcpy(range[0..first.len], first);
                try self.insertSlice(allocator, after_range, rest);
            } else {
                self.replaceRangeAssumeCapacity(start, len, new_items);
            }
        }

Test:

swapRemove


        /// Grows or shrinks the list as necessary.
        /// Never invalidates element pointers.
        /// Asserts the capacity is enough for additional items.
        pub fn replaceRangeAssumeCapacity(self: *Self, start: usize, len: usize, new_items: []const T) void {
            const after_range = start + len;
            const range = self.items[start..after_range];

Test:

insert


            if (range.len == new_items.len)
                @memcpy(range[0..new_items.len], new_items)
            else if (range.len < new_items.len) {
                const first = new_items[0..range.len];
                const rest = new_items[range.len..];
                @memcpy(range[0..first.len], first);
                const dst = self.addManyAtAssumeCapacity(after_range, rest.len);
                @memcpy(dst, rest);
            } else {
                const extra = range.len - new_items.len;
                @memcpy(range[0..new_items.len], new_items);
                std.mem.copyForwards(
                    T,
                    self.items[after_range - extra ..],
                    self.items[after_range..],
                );
                @memset(self.items[self.items.len - extra ..], undefined);
                self.items.len -= extra;
            }
        }

Test:

insertSlice


        /// Extend the list by 1 element. Allocates more memory as necessary.
        /// Invalidates element pointers if additional memory is needed.
        pub fn append(self: *Self, allocator: Allocator, item: T) Allocator.Error!void {
            const new_item_ptr = try self.addOne(allocator);
            new_item_ptr.* = item;
        }

Test:

ArrayList.replaceRange


        /// Extend the list by 1 element.
        /// Never invalidates element pointers.
        /// Asserts that the list can hold one additional item.
        pub fn appendAssumeCapacity(self: *Self, item: T) void {
            self.addOneAssumeCapacity().* = item;
        }

Test:

ArrayList.replaceRangeAssumeCapacity


        /// Remove the element at index `i` from the list and return its value.
        /// Invalidates pointers to the last element.
        /// This operation is O(N).
        /// Asserts that the list is not empty.
        /// Asserts that the index is in bounds.
        pub fn orderedRemove(self: *Self, i: usize) T {
            const old_item = self.items[i];
            self.replaceRangeAssumeCapacity(i, 1, &.{});
            return old_item;
        }

Test:

ArrayListUnmanaged.replaceRange


        /// Removes the element at the specified index and returns it.
        /// The empty slot is filled from the end of the list.
        /// Invalidates pointers to last element.
        /// This operation is O(1).
        /// Asserts that the list is not empty.
        /// Asserts that the index is in bounds.
        pub fn swapRemove(self: *Self, i: usize) T {
            if (self.items.len - 1 == i) return self.pop().?;

Test:

ArrayListUnmanaged.replaceRangeAssumeCapacity


            const old_item = self.items[i];
            self.items[i] = self.pop().?;
            return old_item;
        }

Test:

ArrayList(T) of struct T


        /// Append the slice of items to the list. Allocates more
        /// memory as necessary.
        /// Invalidates element pointers if additional memory is needed.
        pub fn appendSlice(self: *Self, allocator: Allocator, items: []const T) Allocator.Error!void {
            try self.ensureUnusedCapacity(allocator, items.len);
            self.appendSliceAssumeCapacity(items);
        }

Test:

ArrayList(u8) implements writer


        /// Append the slice of items to the list.
        /// Asserts that the list can hold the additional items.
        pub fn appendSliceAssumeCapacity(self: *Self, items: []const T) void {
            const old_len = self.items.len;
            const new_len = old_len + items.len;
            assert(new_len <= self.capacity);
            self.items.len = new_len;
            @memcpy(self.items[old_len..][0..items.len], items);
        }

Test:

ArrayListUnmanaged(u8) implements writer


        /// Append the slice of items to the list. Allocates more
        /// memory as necessary. Only call this function if a call to `appendSlice` instead would
        /// be a compile error.
        /// Invalidates element pointers if additional memory is needed.
        pub fn appendUnalignedSlice(self: *Self, allocator: Allocator, items: []align(1) const T) Allocator.Error!void {
            try self.ensureUnusedCapacity(allocator, items.len);
            self.appendUnalignedSliceAssumeCapacity(items);
        }

Test:

shrink still sets length when resizing is disabled


        /// Append an unaligned slice of items to the list.
        /// Only call this function if a call to `appendSliceAssumeCapacity`
        /// instead would be a compile error.
        /// Asserts that the list can hold the additional items.
        pub fn appendUnalignedSliceAssumeCapacity(self: *Self, items: []align(1) const T) void {
            const old_len = self.items.len;
            const new_len = old_len + items.len;
            assert(new_len <= self.capacity);
            self.items.len = new_len;
            @memcpy(self.items[old_len..][0..items.len], items);
        }

Test:

shrinkAndFree with a copy


        pub const WriterContext = struct {
            self: *Self,
            allocator: Allocator,
        };

Test:

addManyAsArray


        pub const Writer = if (T != u8)
            @compileError("The Writer interface is only defined for ArrayList(u8) " ++
                "but the given type is ArrayList(" ++ @typeName(T) ++ ")")
        else
            std.io.Writer(WriterContext, Allocator.Error, appendWrite);

Test:

growing memory preserves contents


        /// Initializes a Writer which will append to the list.
        pub fn writer(self: *Self, allocator: Allocator) Writer {
            return .{ .context = .{ .self = self, .allocator = allocator } };
        }

Test:

fromOwnedSlice


        /// Same as `append` except it returns the number of bytes written,
        /// which is always the same as `m.len`. The purpose of this function
        /// existing is to match `std.io.Writer` API.
        /// Invalidates element pointers if additional memory is needed.
        fn appendWrite(context: WriterContext, m: []const u8) Allocator.Error!usize {
            try context.self.appendSlice(context.allocator, m);
            return m.len;
        }

Test:

fromOwnedSliceSentinel


        pub const FixedWriter = std.io.Writer(*Self, Allocator.Error, appendWriteFixed);

Test:

toOwnedSliceSentinel


        /// Initializes a Writer which will append to the list but will return
        /// `error.OutOfMemory` rather than increasing capacity.
        pub fn fixedWriter(self: *Self) FixedWriter {
            return .{ .context = self };
        }

Test:

accepts unaligned slices


        /// The purpose of this function existing is to match `std.io.Writer` API.
        fn appendWriteFixed(self: *Self, m: []const u8) error{OutOfMemory}!usize {
            const available_capacity = self.capacity - self.items.len;
            if (m.len > available_capacity)
                return error.OutOfMemory;

Test:

ArrayList(u0)


            self.appendSliceAssumeCapacity(m);
            return m.len;
        }

Test:

ArrayList(?u32).pop()


        /// Append a value to the list `n` times.
        /// Allocates more memory as necessary.
        /// Invalidates element pointers if additional memory is needed.
        /// The function is inline so that a comptime-known `value` parameter will
        /// have a more optimal memset codegen in case it has a repeated byte pattern.
        pub inline fn appendNTimes(self: *Self, allocator: Allocator, value: T, n: usize) Allocator.Error!void {
            const old_len = self.items.len;
            try self.resize(allocator, try addOrOom(old_len, n));
            @memset(self.items[old_len..self.items.len], value);
        }

Test:

ArrayList(u32).getLast()


        /// Append a value to the list `n` times.
        /// Never invalidates element pointers.
        /// The function is inline so that a comptime-known `value` parameter will
        /// have better memset codegen in case it has a repeated byte pattern.
        /// Asserts that the list can hold the additional items.
        pub inline fn appendNTimesAssumeCapacity(self: *Self, value: T, n: usize) void {
            const new_len = self.items.len + n;
            assert(new_len <= self.capacity);
            @memset(self.items.ptr[self.items.len..new_len], value);
            self.items.len = new_len;
        }

Test:

ArrayList(u32).getLastOrNull()


        /// Adjust the list length to `new_len`.
        /// Additional elements contain the value `undefined`.
        /// Invalidates element pointers if additional memory is needed.
        pub fn resize(self: *Self, allocator: Allocator, new_len: usize) Allocator.Error!void {
            try self.ensureTotalCapacity(allocator, new_len);
            self.items.len = new_len;
        }

Test:

return OutOfMemory when capacity would exceed maximum usize integer value


        /// Reduce allocated capacity to `new_len`.
        /// May invalidate element pointers.
        /// Asserts that the new length is less than or equal to the previous length.
        pub fn shrinkAndFree(self: *Self, allocator: Allocator, new_len: usize) void {
            assert(new_len <= self.items.len);

            if (@sizeOf(T) == 0) {
                self.items.len = new_len;
                return;
            }

            const old_memory = self.allocatedSlice();
            if (allocator.remap(old_memory, new_len)) |new_items| {
                self.capacity = new_items.len;
                self.items = new_items;
                return;
            }

            const new_memory = allocator.alignedAlloc(T, alignment, new_len) catch |e| switch (e) {
                error.OutOfMemory => {
                    // No problem, capacity is still correct then.
                    self.items.len = new_len;
                    return;
                },
            };

            @memcpy(new_memory, self.items[0..new_len]);
            allocator.free(old_memory);
            self.items = new_memory;
            self.capacity = new_memory.len;
        }

        /// Reduce length to `new_len`.
        /// Invalidates pointers to elements `items[new_len..]`.
        /// Keeps capacity the same.
        /// Asserts that the new length is less than or equal to the previous length.
        pub fn shrinkRetainingCapacity(self: *Self, new_len: usize) void {
            assert(new_len <= self.items.len);
            self.items.len = new_len;
        }

        /// Invalidates all element pointers.
        pub fn clearRetainingCapacity(self: *Self) void {
            self.items.len = 0;
        }

        /// Invalidates all element pointers.
        pub fn clearAndFree(self: *Self, allocator: Allocator) void {
            allocator.free(self.allocatedSlice());
            self.items.len = 0;
            self.capacity = 0;
        }

        /// Modify the array so that it can hold at least `new_capacity` items.
        /// Implements super-linear growth to achieve amortized O(1) append operations.
        /// Invalidates element pointers if additional memory is needed.
        pub fn ensureTotalCapacity(self: *Self, gpa: Allocator, new_capacity: usize) Allocator.Error!void {
            if (self.capacity >= new_capacity) return;
            return self.ensureTotalCapacityPrecise(gpa, growCapacity(self.capacity, new_capacity));
        }

        /// If the current capacity is less than `new_capacity`, this function will
        /// modify the array so that it can hold exactly `new_capacity` items.
        /// Invalidates element pointers if additional memory is needed.
        pub fn ensureTotalCapacityPrecise(self: *Self, allocator: Allocator, new_capacity: usize) Allocator.Error!void {
            if (@sizeOf(T) == 0) {
                self.capacity = math.maxInt(usize);
                return;
            }

            if (self.capacity >= new_capacity) return;

            // Here we avoid copying allocated but unused bytes by
            // attempting a resize in place, and falling back to allocating
            // a new buffer and doing our own copy. With a realloc() call,
            // the allocator implementation would pointlessly copy our
            // extra capacity.
            const old_memory = self.allocatedSlice();
            if (allocator.remap(old_memory, new_capacity)) |new_memory| {
                self.items.ptr = new_memory.ptr;
                self.capacity = new_memory.len;
            } else {
                const new_memory = try allocator.alignedAlloc(T, alignment, new_capacity);
                @memcpy(new_memory[0..self.items.len], self.items);
                allocator.free(old_memory);
                self.items.ptr = new_memory.ptr;
                self.capacity = new_memory.len;
            }
        }

        /// Modify the array so that it can hold at least `additional_count` **more** items.
        /// Invalidates element pointers if additional memory is needed.
        pub fn ensureUnusedCapacity(
            self: *Self,
            allocator: Allocator,
            additional_count: usize,
        ) Allocator.Error!void {
            return self.ensureTotalCapacity(allocator, try addOrOom(self.items.len, additional_count));
        }

        /// Increases the array's length to match the full capacity that is already allocated.
        /// The new elements have `undefined` values.
        /// Never invalidates element pointers.
        pub fn expandToCapacity(self: *Self) void {
            self.items.len = self.capacity;
        }

        /// Increase length by 1, returning pointer to the new item.
        /// The returned element pointer becomes invalid when the list is resized.
        pub fn addOne(self: *Self, allocator: Allocator) Allocator.Error!*T {
            // This can never overflow because `self.items` can never occupy the whole address space
            const newlen = self.items.len + 1;
            try self.ensureTotalCapacity(allocator, newlen);
            return self.addOneAssumeCapacity();
        }

        /// Increase length by 1, returning pointer to the new item.
        /// Never invalidates element pointers.
        /// The returned element pointer becomes invalid when the list is resized.
        /// Asserts that the list can hold one additional item.
        pub fn addOneAssumeCapacity(self: *Self) *T {
            assert(self.items.len < self.capacity);

            self.items.len += 1;
            return &self.items[self.items.len - 1];
        }

        /// Resize the array, adding `n` new elements, which have `undefined` values.
        /// The return value is an array pointing to the newly allocated elements.
        /// The returned pointer becomes invalid when the list is resized.
        pub fn addManyAsArray(self: *Self, allocator: Allocator, comptime n: usize) Allocator.Error!*[n]T {
            const prev_len = self.items.len;
            try self.resize(allocator, try addOrOom(self.items.len, n));
            return self.items[prev_len..][0..n];
        }

        /// Resize the array, adding `n` new elements, which have `undefined` values.
        /// The return value is an array pointing to the newly allocated elements.
        /// Never invalidates element pointers.
        /// The returned pointer becomes invalid when the list is resized.
        /// Asserts that the list can hold the additional items.
        pub fn addManyAsArrayAssumeCapacity(self: *Self, comptime n: usize) *[n]T {
            assert(self.items.len + n <= self.capacity);
            const prev_len = self.items.len;
            self.items.len += n;
            return self.items[prev_len..][0..n];
        }

        /// Resize the array, adding `n` new elements, which have `undefined` values.
        /// The return value is a slice pointing to the newly allocated elements.
        /// The returned pointer becomes invalid when the list is resized.
        /// Resizes list if `self.capacity` is not large enough.
        pub fn addManyAsSlice(self: *Self, allocator: Allocator, n: usize) Allocator.Error![]T {
            const prev_len = self.items.len;
            try self.resize(allocator, try addOrOom(self.items.len, n));
            return self.items[prev_len..][0..n];
        }

        /// Resize the array, adding `n` new elements, which have `undefined` values.
        /// The return value is a slice pointing to the newly allocated elements.
        /// Never invalidates element pointers.
        /// The returned pointer becomes invalid when the list is resized.
        /// Asserts that the list can hold the additional items.
        pub fn addManyAsSliceAssumeCapacity(self: *Self, n: usize) []T {
            assert(self.items.len + n <= self.capacity);
            const prev_len = self.items.len;
            self.items.len += n;
            return self.items[prev_len..][0..n];
        }

        /// Remove and return the last element from the list.
        /// If the list is empty, returns `null`.
        /// Invalidates pointers to last element.
        pub fn pop(self: *Self) ?T {
            if (self.items.len == 0) return null;
            const val = self.items[self.items.len - 1];
            self.items.len -= 1;
            return val;
        }

        /// Returns a slice of all the items plus the extra capacity, whose memory
        /// contents are `undefined`.
        pub fn allocatedSlice(self: Self) Slice {
            return self.items.ptr[0..self.capacity];
        }

        /// Returns a slice of only the extra capacity after items.
        /// This can be useful for writing directly into an ArrayList.
        /// Note that such an operation must be followed up with a direct
        /// modification of `self.items.len`.
        pub fn unusedCapacitySlice(self: Self) []T {
            return self.allocatedSlice()[self.items.len..];
        }

        /// Return the last element from the list.
        /// Asserts that the list is not empty.
        pub fn getLast(self: Self) T {
            const val = self.items[self.items.len - 1];
            return val;
        }

        /// Return the last element from the list, or
        /// return `null` if list is empty.
        pub fn getLastOrNull(self: Self) ?T {
            if (self.items.len == 0) return null;
            return self.getLast();
        }

        const init_capacity = @as(comptime_int, @max(1, std.atomic.cache_line / @sizeOf(T)));

        /// Called when memory growth is necessary. Returns a capacity larger than
        /// minimum that grows super-linearly.
        fn growCapacity(current: usize, minimum: usize) usize {
            var new = current;
            while (true) {
                new +|= new / 2 + init_capacity;
                if (new >= minimum)
                    return new;
            }
        }
    };
}

/// Integer addition returning `error.OutOfMemory` on overflow.
fn addOrOom(a: usize, b: usize) error{OutOfMemory}!usize {
    const result, const overflow = @addWithOverflow(a, b);
    if (overflow != 0) return error.OutOfMemory;
    return result;
}

test "init" {
    {
        var list = ArrayList(i32).init(testing.allocator);
        defer list.deinit();

        try testing.expect(list.items.len == 0);
        try testing.expect(list.capacity == 0);
    }

    {
        const list: ArrayListUnmanaged(i32) = .empty;

        try testing.expect(list.items.len == 0);
        try testing.expect(list.capacity == 0);
    }
}

test "initCapacity" {
    const a = testing.allocator;
    {
        var list = try ArrayList(i8).initCapacity(a, 200);
        defer list.deinit();
        try testing.expect(list.items.len == 0);
        try testing.expect(list.capacity >= 200);
    }
    {
        var list = try ArrayListUnmanaged(i8).initCapacity(a, 200);
        defer list.deinit(a);
        try testing.expect(list.items.len == 0);
        try testing.expect(list.capacity >= 200);
    }
}

test "clone" {
    const a = testing.allocator;
    {
        var array = ArrayList(i32).init(a);
        try array.append(-1);
        try array.append(3);
        try array.append(5);

        const cloned = try array.clone();
        defer cloned.deinit();

        try testing.expectEqualSlices(i32, array.items, cloned.items);
        try testing.expectEqual(array.allocator, cloned.allocator);
        try testing.expect(cloned.capacity >= array.capacity);

        array.deinit();

        try testing.expectEqual(@as(i32, -1), cloned.items[0]);
        try testing.expectEqual(@as(i32, 3), cloned.items[1]);
        try testing.expectEqual(@as(i32, 5), cloned.items[2]);
    }
    {
        var array: ArrayListUnmanaged(i32) = .empty;
        try array.append(a, -1);
        try array.append(a, 3);
        try array.append(a, 5);

        var cloned = try array.clone(a);
        defer cloned.deinit(a);

        try testing.expectEqualSlices(i32, array.items, cloned.items);
        try testing.expect(cloned.capacity >= array.capacity);

        array.deinit(a);

        try testing.expectEqual(@as(i32, -1), cloned.items[0]);
        try testing.expectEqual(@as(i32, 3), cloned.items[1]);
        try testing.expectEqual(@as(i32, 5), cloned.items[2]);
    }
}

test "basic" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        {
            var i: usize = 0;
            while (i < 10) : (i += 1) {
                list.append(@as(i32, @intCast(i + 1))) catch unreachable;
            }
        }

        {
            var i: usize = 0;
            while (i < 10) : (i += 1) {
                try testing.expect(list.items[i] == @as(i32, @intCast(i + 1)));
            }
        }

        for (list.items, 0..) |v, i| {
            try testing.expect(v == @as(i32, @intCast(i + 1)));
        }

        try testing.expect(list.pop() == 10);
        try testing.expect(list.items.len == 9);

        list.appendSlice(&[_]i32{ 1, 2, 3 }) catch unreachable;
        try testing.expect(list.items.len == 12);
        try testing.expect(list.pop() == 3);
        try testing.expect(list.pop() == 2);
        try testing.expect(list.pop() == 1);
        try testing.expect(list.items.len == 9);

        var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
        list.appendUnalignedSlice(&unaligned) catch unreachable;
        try testing.expect(list.items.len == 12);
        try testing.expect(list.pop() == 6);
        try testing.expect(list.pop() == 5);
        try testing.expect(list.pop() == 4);
        try testing.expect(list.items.len == 9);

        list.appendSlice(&[_]i32{}) catch unreachable;
        try testing.expect(list.items.len == 9);

        // can only set on indices < self.items.len
        list.items[7] = 33;
        list.items[8] = 42;

        try testing.expect(list.pop() == 42);
        try testing.expect(list.pop() == 33);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);

        {
            var i: usize = 0;
            while (i < 10) : (i += 1) {
                list.append(a, @as(i32, @intCast(i + 1))) catch unreachable;
            }
        }

        {
            var i: usize = 0;
            while (i < 10) : (i += 1) {
                try testing.expect(list.items[i] == @as(i32, @intCast(i + 1)));
            }
        }

        for (list.items, 0..) |v, i| {
            try testing.expect(v == @as(i32, @intCast(i + 1)));
        }

        try testing.expect(list.pop() == 10);
        try testing.expect(list.items.len == 9);

        list.appendSlice(a, &[_]i32{ 1, 2, 3 }) catch unreachable;
        try testing.expect(list.items.len == 12);
        try testing.expect(list.pop() == 3);
        try testing.expect(list.pop() == 2);
        try testing.expect(list.pop() == 1);
        try testing.expect(list.items.len == 9);

        var unaligned: [3]i32 align(1) = [_]i32{ 4, 5, 6 };
        list.appendUnalignedSlice(a, &unaligned) catch unreachable;
        try testing.expect(list.items.len == 12);
        try testing.expect(list.pop() == 6);
        try testing.expect(list.pop() == 5);
        try testing.expect(list.pop() == 4);
        try testing.expect(list.items.len == 9);

        list.appendSlice(a, &[_]i32{}) catch unreachable;
        try testing.expect(list.items.len == 9);

        // can only set on indices < self.items.len
        list.items[7] = 33;
        list.items[8] = 42;

        try testing.expect(list.pop() == 42);
        try testing.expect(list.pop() == 33);
    }
}

test "appendNTimes" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.appendNTimes(2, 10);
        try testing.expectEqual(@as(usize, 10), list.items.len);
        for (list.items) |element| {
            try testing.expectEqual(@as(i32, 2), element);
        }
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);

        try list.appendNTimes(a, 2, 10);
        try testing.expectEqual(@as(usize, 10), list.items.len);
        for (list.items) |element| {
            try testing.expectEqual(@as(i32, 2), element);
        }
    }
}

test "appendNTimes with failing allocator" {
    const a = testing.failing_allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try testing.expectError(error.OutOfMemory, list.appendNTimes(2, 10));
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try testing.expectError(error.OutOfMemory, list.appendNTimes(a, 2, 10));
    }
}

test "orderedRemove" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.append(1);
        try list.append(2);
        try list.append(3);
        try list.append(4);
        try list.append(5);
        try list.append(6);
        try list.append(7);

        //remove from middle
        try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
        try testing.expectEqual(@as(i32, 5), list.items[3]);
        try testing.expectEqual(@as(usize, 6), list.items.len);

        //remove from end
        try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
        try testing.expectEqual(@as(usize, 5), list.items.len);

        //remove from front
        try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
        try testing.expectEqual(@as(i32, 2), list.items[0]);
        try testing.expectEqual(@as(usize, 4), list.items.len);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);

        try list.append(a, 1);
        try list.append(a, 2);
        try list.append(a, 3);
        try list.append(a, 4);
        try list.append(a, 5);
        try list.append(a, 6);
        try list.append(a, 7);

        //remove from middle
        try testing.expectEqual(@as(i32, 4), list.orderedRemove(3));
        try testing.expectEqual(@as(i32, 5), list.items[3]);
        try testing.expectEqual(@as(usize, 6), list.items.len);

        //remove from end
        try testing.expectEqual(@as(i32, 7), list.orderedRemove(5));
        try testing.expectEqual(@as(usize, 5), list.items.len);

        //remove from front
        try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
        try testing.expectEqual(@as(i32, 2), list.items[0]);
        try testing.expectEqual(@as(usize, 4), list.items.len);
    }
    {
        // remove last item
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.append(1);
        try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
        try testing.expectEqual(@as(usize, 0), list.items.len);
    }
    {
        // remove last item
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.append(a, 1);
        try testing.expectEqual(@as(i32, 1), list.orderedRemove(0));
        try testing.expectEqual(@as(usize, 0), list.items.len);
    }
}

test "swapRemove" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.append(1);
        try list.append(2);
        try list.append(3);
        try list.append(4);
        try list.append(5);
        try list.append(6);
        try list.append(7);

        //remove from middle
        try testing.expect(list.swapRemove(3) == 4);
        try testing.expect(list.items[3] == 7);
        try testing.expect(list.items.len == 6);

        //remove from end
        try testing.expect(list.swapRemove(5) == 6);
        try testing.expect(list.items.len == 5);

        //remove from front
        try testing.expect(list.swapRemove(0) == 1);
        try testing.expect(list.items[0] == 5);
        try testing.expect(list.items.len == 4);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);

        try list.append(a, 1);
        try list.append(a, 2);
        try list.append(a, 3);
        try list.append(a, 4);
        try list.append(a, 5);
        try list.append(a, 6);
        try list.append(a, 7);

        //remove from middle
        try testing.expect(list.swapRemove(3) == 4);
        try testing.expect(list.items[3] == 7);
        try testing.expect(list.items.len == 6);

        //remove from end
        try testing.expect(list.swapRemove(5) == 6);
        try testing.expect(list.items.len == 5);

        //remove from front
        try testing.expect(list.swapRemove(0) == 1);
        try testing.expect(list.items[0] == 5);
        try testing.expect(list.items.len == 4);
    }
}

test "insert" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.insert(0, 1);
        try list.append(2);
        try list.insert(2, 3);
        try list.insert(0, 5);
        try testing.expect(list.items[0] == 5);
        try testing.expect(list.items[1] == 1);
        try testing.expect(list.items[2] == 2);
        try testing.expect(list.items[3] == 3);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);

        try list.insert(a, 0, 1);
        try list.append(a, 2);
        try list.insert(a, 2, 3);
        try list.insert(a, 0, 5);
        try testing.expect(list.items[0] == 5);
        try testing.expect(list.items[1] == 1);
        try testing.expect(list.items[2] == 2);
        try testing.expect(list.items[3] == 3);
    }
}

test "insertSlice" {
    const a = testing.allocator;
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.append(1);
        try list.append(2);
        try list.append(3);
        try list.append(4);
        try list.insertSlice(1, &[_]i32{ 9, 8 });
        try testing.expect(list.items[0] == 1);
        try testing.expect(list.items[1] == 9);
        try testing.expect(list.items[2] == 8);
        try testing.expect(list.items[3] == 2);
        try testing.expect(list.items[4] == 3);
        try testing.expect(list.items[5] == 4);

        const items = [_]i32{1};
        try list.insertSlice(0, items[0..0]);
        try testing.expect(list.items.len == 6);
        try testing.expect(list.items[0] == 1);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);

        try list.append(a, 1);
        try list.append(a, 2);
        try list.append(a, 3);
        try list.append(a, 4);
        try list.insertSlice(a, 1, &[_]i32{ 9, 8 });
        try testing.expect(list.items[0] == 1);
        try testing.expect(list.items[1] == 9);
        try testing.expect(list.items[2] == 8);
        try testing.expect(list.items[3] == 2);
        try testing.expect(list.items[4] == 3);
        try testing.expect(list.items[5] == 4);

        const items = [_]i32{1};
        try list.insertSlice(a, 0, items[0..0]);
        try testing.expect(list.items.len == 6);
        try testing.expect(list.items[0] == 1);
    }
}

test "ArrayList.replaceRange" {
    const a = testing.allocator;

    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(1, 0, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
    }
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(1, 1, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(
            i32,
            &[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
            list.items,
        );
    }
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(1, 2, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
    }
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(1, 3, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
    }
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(1, 4, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
    }
}

test "ArrayList.replaceRangeAssumeCapacity" {
    const a = testing.allocator;

    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 0, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
    }
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 1, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(
            i32,
            &[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
            list.items,
        );
    }
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 2, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
    }
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 3, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
    }
    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();
        try list.appendSlice(&[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 4, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
    }
}

test "ArrayListUnmanaged.replaceRange" {
    const a = testing.allocator;

    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(a, 1, 0, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(a, 1, 1, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(
            i32,
            &[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
            list.items,
        );
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(a, 1, 2, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(a, 1, 3, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        try list.replaceRange(a, 1, 4, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
    }
}

test "ArrayListUnmanaged.replaceRangeAssumeCapacity" {
    const a = testing.allocator;

    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 0, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 2, 3, 4, 5 }, list.items);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 1, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(
            i32,
            &[_]i32{ 1, 0, 0, 0, 3, 4, 5 },
            list.items,
        );
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 2, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 4, 5 }, list.items);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 3, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0, 5 }, list.items);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);
        try list.appendSlice(a, &[_]i32{ 1, 2, 3, 4, 5 });

        list.replaceRangeAssumeCapacity(1, 4, &[_]i32{ 0, 0, 0 });

        try testing.expectEqualSlices(i32, &[_]i32{ 1, 0, 0, 0 }, list.items);
    }
}

const Item = struct {
    integer: i32,
    sub_items: ArrayList(Item),
};

const ItemUnmanaged = struct {
    integer: i32,
    sub_items: ArrayListUnmanaged(ItemUnmanaged),
};

test "ArrayList(T) of struct T" {
    const a = std.testing.allocator;
    {
        var root = Item{ .integer = 1, .sub_items = .init(a) };
        defer root.sub_items.deinit();
        try root.sub_items.append(Item{ .integer = 42, .sub_items = .init(a) });
        try testing.expect(root.sub_items.items[0].integer == 42);
    }
    {
        var root = ItemUnmanaged{ .integer = 1, .sub_items = .empty };
        defer root.sub_items.deinit(a);
        try root.sub_items.append(a, ItemUnmanaged{ .integer = 42, .sub_items = .empty });
        try testing.expect(root.sub_items.items[0].integer == 42);
    }
}

test "ArrayList(u8) implements writer" {
    const a = testing.allocator;

    {
        var buffer = ArrayList(u8).init(a);
        defer buffer.deinit();

        const x: i32 = 42;
        const y: i32 = 1234;
        try buffer.writer().print("x: {}\ny: {}\n", .{ x, y });

        try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
    }
    {
        var list = ArrayListAligned(u8, 2).init(a);
        defer list.deinit();

        const writer = list.writer();
        try writer.writeAll("a");
        try writer.writeAll("bc");
        try writer.writeAll("d");
        try writer.writeAll("efg");

        try testing.expectEqualSlices(u8, list.items, "abcdefg");
    }
}

test "ArrayListUnmanaged(u8) implements writer" {
    const a = testing.allocator;

    {
        var buffer: ArrayListUnmanaged(u8) = .empty;
        defer buffer.deinit(a);

        const x: i32 = 42;
        const y: i32 = 1234;
        try buffer.writer(a).print("x: {}\ny: {}\n", .{ x, y });

        try testing.expectEqualSlices(u8, "x: 42\ny: 1234\n", buffer.items);
    }
    {
        var list: ArrayListAlignedUnmanaged(u8, 2) = .empty;
        defer list.deinit(a);

        const writer = list.writer(a);
        try writer.writeAll("a");
        try writer.writeAll("bc");
        try writer.writeAll("d");
        try writer.writeAll("efg");

        try testing.expectEqualSlices(u8, list.items, "abcdefg");
    }
}

test "shrink still sets length when resizing is disabled" {
    var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 });
    const a = failing_allocator.allocator();

    {
        var list = ArrayList(i32).init(a);
        defer list.deinit();

        try list.append(1);
        try list.append(2);
        try list.append(3);

        list.shrinkAndFree(1);
        try testing.expect(list.items.len == 1);
    }
    {
        var list: ArrayListUnmanaged(i32) = .empty;
        defer list.deinit(a);

        try list.append(a, 1);
        try list.append(a, 2);
        try list.append(a, 3);

        list.shrinkAndFree(a, 1);
        try testing.expect(list.items.len == 1);
    }
}

test "shrinkAndFree with a copy" {
    var failing_allocator = testing.FailingAllocator.init(testing.allocator, .{ .resize_fail_index = 0 });
    const a = failing_allocator.allocator();

    var list = ArrayList(i32).init(a);
    defer list.deinit();

    try list.appendNTimes(3, 16);
    list.shrinkAndFree(4);
    try testing.expect(mem.eql(i32, list.items, &.{ 3, 3, 3, 3 }));
}

test "addManyAsArray" {
    const a = std.testing.allocator;
    {
        var list = ArrayList(u8).init(a);
        defer list.deinit();

        (try list.addManyAsArray(4)).* = "aoeu".*;
        try list.ensureTotalCapacity(8);
        list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;

        try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
    }
    {
        var list: ArrayListUnmanaged(u8) = .empty;
        defer list.deinit(a);

        (try list.addManyAsArray(a, 4)).* = "aoeu".*;
        try list.ensureTotalCapacity(a, 8);
        list.addManyAsArrayAssumeCapacity(4).* = "asdf".*;

        try testing.expectEqualSlices(u8, list.items, "aoeuasdf");
    }
}

test "growing memory preserves contents" {
    // Shrink the list after every insertion to ensure that a memory growth
    // will be triggered in the next operation.
    const a = std.testing.allocator;
    {
        var list = ArrayList(u8).init(a);
        defer list.deinit();

        (try list.addManyAsArray(4)).* = "abcd".*;
        list.shrinkAndFree(4);

        try list.appendSlice("efgh");
        try testing.expectEqualSlices(u8, list.items, "abcdefgh");
        list.shrinkAndFree(8);

        try list.insertSlice(4, "ijkl");
        try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
    }
    {
        var list: ArrayListUnmanaged(u8) = .empty;
        defer list.deinit(a);

        (try list.addManyAsArray(a, 4)).* = "abcd".*;
        list.shrinkAndFree(a, 4);

        try list.appendSlice(a, "efgh");
        try testing.expectEqualSlices(u8, list.items, "abcdefgh");
        list.shrinkAndFree(a, 8);

        try list.insertSlice(a, 4, "ijkl");
        try testing.expectEqualSlices(u8, list.items, "abcdijklefgh");
    }
}

test "fromOwnedSlice" {
    const a = testing.allocator;
    {
        var orig_list = ArrayList(u8).init(a);
        defer orig_list.deinit();
        try orig_list.appendSlice("foobar");

        const slice = try orig_list.toOwnedSlice();
        var list = ArrayList(u8).fromOwnedSlice(a, slice);
        defer list.deinit();
        try testing.expectEqualStrings(list.items, "foobar");
    }
    {
        var list = ArrayList(u8).init(a);
        defer list.deinit();
        try list.appendSlice("foobar");

        const slice = try list.toOwnedSlice();
        var unmanaged = ArrayListUnmanaged(u8).fromOwnedSlice(slice);
        defer unmanaged.deinit(a);
        try testing.expectEqualStrings(unmanaged.items, "foobar");
    }
}

test "fromOwnedSliceSentinel" {
    const a = testing.allocator;
    {
        var orig_list = ArrayList(u8).init(a);
        defer orig_list.deinit();
        try orig_list.appendSlice("foobar");

        const sentinel_slice = try orig_list.toOwnedSliceSentinel(0);
        var list = ArrayList(u8).fromOwnedSliceSentinel(a, 0, sentinel_slice);
        defer list.deinit();
        try testing.expectEqualStrings(list.items, "foobar");
    }
    {
        var list = ArrayList(u8).init(a);
        defer list.deinit();
        try list.appendSlice("foobar");

        const sentinel_slice = try list.toOwnedSliceSentinel(0);
        var unmanaged = ArrayListUnmanaged(u8).fromOwnedSliceSentinel(0, sentinel_slice);
        defer unmanaged.deinit(a);
        try testing.expectEqualStrings(unmanaged.items, "foobar");
    }
}

test "toOwnedSliceSentinel" {
    const a = testing.allocator;
    {
        var list = ArrayList(u8).init(a);
        defer list.deinit();

        try list.appendSlice("foobar");

        const result = try list.toOwnedSliceSentinel(0);
        defer a.free(result);
        try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
    }
    {
        var list: ArrayListUnmanaged(u8) = .empty;
        defer list.deinit(a);

        try list.appendSlice(a, "foobar");

        const result = try list.toOwnedSliceSentinel(a, 0);
        defer a.free(result);
        try testing.expectEqualStrings(result, mem.sliceTo(result.ptr, 0));
    }
}

test "accepts unaligned slices" {
    const a = testing.allocator;
    {
        var list = std.ArrayListAligned(u8, 8).init(a);
        defer list.deinit();

        try list.appendSlice(&.{ 0, 1, 2, 3 });
        try list.insertSlice(2, &.{ 4, 5, 6, 7 });
        try list.replaceRange(1, 3, &.{ 8, 9 });

        try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
    }
    {
        var list: std.ArrayListAlignedUnmanaged(u8, 8) = .empty;
        defer list.deinit(a);

        try list.appendSlice(a, &.{ 0, 1, 2, 3 });
        try list.insertSlice(a, 2, &.{ 4, 5, 6, 7 });
        try list.replaceRange(a, 1, 3, &.{ 8, 9 });

        try testing.expectEqualSlices(u8, list.items, &.{ 0, 8, 9, 6, 7, 2, 3 });
    }
}

test "ArrayList(u0)" {
    // An ArrayList on zero-sized types should not need to allocate
    const a = testing.failing_allocator;

    var list = ArrayList(u0).init(a);
    defer list.deinit();

    try list.append(0);
    try list.append(0);
    try list.append(0);
    try testing.expectEqual(list.items.len, 3);

    var count: usize = 0;
    for (list.items) |x| {
        try testing.expectEqual(x, 0);
        count += 1;
    }
    try testing.expectEqual(count, 3);
}

test "ArrayList(?u32).pop()" {
    const a = testing.allocator;

    var list = ArrayList(?u32).init(a);
    defer list.deinit();

    try list.append(null);
    try list.append(1);
    try list.append(2);
    try testing.expectEqual(list.items.len, 3);

    try testing.expect(list.pop().? == @as(u32, 2));
    try testing.expect(list.pop().? == @as(u32, 1));
    try testing.expect(list.pop().? == null);
    try testing.expect(list.pop() == null);
}

test "ArrayList(u32).getLast()" {
    const a = testing.allocator;

    var list = ArrayList(u32).init(a);
    defer list.deinit();

    try list.append(2);
    const const_list = list;
    try testing.expectEqual(const_list.getLast(), 2);
}

test "ArrayList(u32).getLastOrNull()" {
    const a = testing.allocator;

    var list = ArrayList(u32).init(a);
    defer list.deinit();

    try testing.expectEqual(list.getLastOrNull(), null);

    try list.append(2);
    const const_list = list;
    try testing.expectEqual(const_list.getLastOrNull().?, 2);
}

test "return OutOfMemory when capacity would exceed maximum usize integer value" {
    const a = testing.allocator;
    const new_item: u32 = 42;
    const items = &.{ 42, 43 };

    {
        var list: ArrayListUnmanaged(u32) = .{
            .items = undefined,
            .capacity = math.maxInt(usize) - 1,
        };
        list.items.len = math.maxInt(usize) - 1;

        try testing.expectError(error.OutOfMemory, list.appendSlice(a, items));
        try testing.expectError(error.OutOfMemory, list.appendNTimes(a, new_item, 2));
        try testing.expectError(error.OutOfMemory, list.appendUnalignedSlice(a, &.{ new_item, new_item }));
        try testing.expectError(error.OutOfMemory, list.addManyAt(a, 0, 2));
        try testing.expectError(error.OutOfMemory, list.addManyAsArray(a, 2));
        try testing.expectError(error.OutOfMemory, list.addManyAsSlice(a, 2));
        try testing.expectError(error.OutOfMemory, list.insertSlice(a, 0, items));
        try testing.expectError(error.OutOfMemory, list.ensureUnusedCapacity(a, 2));
    }

    {
        var list: ArrayList(u32) = .{
            .items = undefined,
            .capacity = math.maxInt(usize) - 1,
            .allocator = a,
        };
        list.items.len = math.maxInt(usize) - 1;

        try testing.expectError(error.OutOfMemory, list.appendSlice(items));
        try testing.expectError(error.OutOfMemory, list.appendNTimes(new_item, 2));
        try testing.expectError(error.OutOfMemory, list.appendUnalignedSlice(&.{ new_item, new_item }));
        try testing.expectError(error.OutOfMemory, list.addManyAt(0, 2));
        try testing.expectError(error.OutOfMemory, list.addManyAsArray(2));
        try testing.expectError(error.OutOfMemory, list.addManyAsSlice(2));
        try testing.expectError(error.OutOfMemory, list.insertSlice(0, items));
        try testing.expectError(error.OutOfMemory, list.ensureUnusedCapacity(2));
    }
}