|
const std = @import("std.zig"); const builtin = @import("builtin"); const mem = std.mem; const testing = std.testing; const elf = std.elf; const windows = std.os.windows; const native_os = builtin.os.tag; const posix = std.posix; |
DynLibTrusts the file. Malicious file will be able to execute arbitrary code. |
/// Cross-platform dynamic library loading and symbol lookup. /// Platform-specific functionality is available through the `inner` field. pub const DynLib = struct { const InnerType = switch (native_os) { .linux => if (!builtin.link_libc or builtin.abi == .musl and builtin.link_mode == .static) ElfDynLib else DlDynLib, .windows => WindowsDynLib, .macos, .tvos, .watchos, .ios, .visionos, .freebsd, .netbsd, .openbsd, .dragonfly, .solaris, .illumos => DlDynLib, else => struct { const open = @compileError("unsupported platform"); const openZ = @compileError("unsupported platform"); }, }; |
ErrorTrusts the file. Malicious file will be able to execute arbitrary code. |
inner: InnerType, |
open()Trusts the file. |
pub const Error = ElfDynLibError || DlDynLibError || WindowsDynLibError; |
openZ()TODO make it possible to reference this same external symbol 2x so we don't need this helper function. |
/// Trusts the file. Malicious file will be able to execute arbitrary code. pub fn open(path: []const u8) Error!DynLib { return .{ .inner = try InnerType.open(path) }; } |
close()Separated to avoid referencing |
/// Trusts the file. Malicious file will be able to execute arbitrary code. pub fn openZ(path_c: [*:0]const u8) Error!DynLib { return .{ .inner = try InnerType.openZ(path_c) }; } |
lookup()Trusts the file. Malicious file will be able to execute arbitrary code. |
/// Trusts the file. pub fn close(self: *DynLib) void { return self.inner.close(); } |
IteratorTrusts the file. Malicious file will be able to execute arbitrary code. |
pub fn lookup(self: *DynLib, comptime T: type, name: [:0]const u8) ?T { return self.inner.lookup(T, name); } }; |
end()Trusts the file |
// The link_map structure is not completely specified beside the fields // reported below, any libc is free to store additional data in the remaining // space. // An iterator is provided in order to traverse the linked list in a idiomatic // fashion. const LinkMap = extern struct { l_addr: usize, l_name: [*:0]const u8, l_ld: ?*elf.Dyn, l_next: ?*LinkMap, l_prev: ?*LinkMap, |
next()ElfDynLib specific Returns the address of the symbol |
pub const Iterator = struct { current: ?*LinkMap, |
get_DYNAMIC()Separated to avoid referencing |
pub fn end(self: *Iterator) bool { return self.current == null; } |
linkmap_iterator()WindowsDynLib specific Opens dynamic library with specified library loading flags. |
pub fn next(self: *Iterator) ?*LinkMap { if (self.current) |it| { self.current = it.l_next; return it; } return null; } }; }; |
ElfDynLibWindowsDynLib specific Opens dynamic library with specified library loading flags. |
const RDebug = extern struct { r_version: i32, r_map: ?*LinkMap, r_brk: usize, r_ldbase: usize, }; |
ErrorWindowsDynLib specific |
/// TODO make it possible to reference this same external symbol 2x so we don't need this /// helper function. pub fn get_DYNAMIC() ?[*]elf.Dyn { return @extern([*]elf.Dyn, .{ .name = "_DYNAMIC", .linkage = .weak }); } |
open()WindowsDynLib specific Opens dynamic library with specified library loading flags. |
pub fn linkmap_iterator(phdrs: []elf.Phdr) error{InvalidExe}!LinkMap.Iterator { _ = phdrs; const _DYNAMIC = get_DYNAMIC() orelse { // No PT_DYNAMIC means this is either a statically-linked program or a // badly corrupted dynamically-linked one. return .{ .current = null }; }; |
openZ()Separated to avoid referencing |
const link_map_ptr = init: { var i: usize = 0; while (_DYNAMIC[i].d_tag != elf.DT_NULL) : (i += 1) { switch (_DYNAMIC[i].d_tag) { elf.DT_DEBUG => { const ptr = @as(?*RDebug, @ptrFromInt(_DYNAMIC[i].d_val)); if (ptr) |r_debug| { if (r_debug.r_version != 1) return error.InvalidExe; break :init r_debug.r_map; } }, elf.DT_PLTGOT => { const ptr = @as(?[*]usize, @ptrFromInt(_DYNAMIC[i].d_val)); if (ptr) |got_table| { // The address to the link_map structure is stored in // the second slot break :init @as(?*LinkMap, @ptrFromInt(got_table[1])); } }, else => {}, } } return .{ .current = null }; }; |
close()DlDynLib specific
Returns human readable string describing most recent error than occurred from |
return .{ .current = link_map_ptr }; } |
lookup() |
/// Separated to avoid referencing `ElfDynLib`, because its field types may not /// be valid on other targets. const ElfDynLibError = error{ FileTooBig, NotElfFile, NotDynamicLibrary, MissingDynamicLinkingInformation, ElfStringSectionNotFound, ElfSymSectionNotFound, ElfHashTableNotFound, } || posix.OpenError || posix.MMapError; |
GnuHashSection32 |
pub const ElfDynLib = struct { strings: [*:0]u8, syms: [*]elf.Sym, hash_table: HashTable, versym: ?[*]elf.Versym, verdef: ?*elf.Verdef, memory: []align(std.heap.page_size_min) u8, |
fromPtr() |
pub const Error = ElfDynLibError; |
GnuHashSection64 |
const HashTable = union(enum) { dt_hash: [*]posix.Elf_Symndx, dt_gnu_hash: *elf.gnu_hash.Header, }; |
fromPtr() |
fn openPath(path: []const u8) !std.fs.Dir { if (path.len == 0) return error.NotDir; var parts = std.mem.tokenizeScalar(u8, path, '/'); var parent = if (path[0] == '/') try std.fs.cwd().openDir("/", .{}) else std.fs.cwd(); while (parts.next()) |part| { const child = try parent.openDir(part, .{}); parent.close(); parent = child; } return parent; } |
lookupAddress() |
fn resolveFromSearchPath(search_path: []const u8, file_name: []const u8, delim: u8) ?posix.fd_t { var paths = std.mem.tokenizeScalar(u8, search_path, delim); while (paths.next()) |p| { var dir = openPath(p) catch continue; defer dir.close(); const fd = posix.openat(dir.fd, file_name, .{ .ACCMODE = .RDONLY, .CLOEXEC = true, }, 0) catch continue; return fd; } return null; } |
Test:ElfDynLib |
fn resolveFromParent(dir_path: []const u8, file_name: []const u8) ?posix.fd_t { var dir = std.fs.cwd().openDir(dir_path, .{}) catch return null; defer dir.close(); return posix.openat(dir.fd, file_name, .{ .ACCMODE = .RDONLY, .CLOEXEC = true, }, 0) catch null; } |
WindowsDynLib |
// This implements enough to be able to load system libraries in general // Places where it differs from dlopen: // - DT_RPATH of the calling binary is not used as a search path // - DT_RUNPATH of the calling binary is not used as a search path // - /etc/ld.so.cache is not read fn resolveFromName(path_or_name: []const u8) !posix.fd_t { // If filename contains a slash ("/"), then it is interpreted as a (relative or absolute) pathname if (std.mem.indexOfScalarPos(u8, path_or_name, 0, '/')) |_| { return posix.open(path_or_name, .{ .ACCMODE = .RDONLY, .CLOEXEC = true }, 0); } |
Error |
// Only read LD_LIBRARY_PATH if the binary is not setuid/setgid if (std.os.linux.geteuid() == std.os.linux.getuid() and std.os.linux.getegid() == std.os.linux.getgid()) { if (posix.getenvZ("LD_LIBRARY_PATH")) |ld_library_path| { if (resolveFromSearchPath(ld_library_path, path_or_name, ':')) |fd| { return fd; } } } |
open() |
// Lastly the directories /lib and /usr/lib are searched (in this exact order) if (resolveFromParent("/lib", path_or_name)) |fd| return fd; if (resolveFromParent("/usr/lib", path_or_name)) |fd| return fd; return error.FileNotFound; } |
openEx() |
/// Trusts the file. Malicious file will be able to execute arbitrary code. pub fn open(path: []const u8) Error!ElfDynLib { const fd = try resolveFromName(path); defer posix.close(fd); |
openZ() |
const file: std.fs.File = .{ .handle = fd }; const stat = try file.stat(); const size = std.math.cast(usize, stat.size) orelse return error.FileTooBig; |
openExZ() |
const page_size = std.heap.pageSize(); |
openW() |
// This one is to read the ELF info. We do more mmapping later // corresponding to the actual LOAD sections. const file_bytes = try posix.mmap( null, mem.alignForward(usize, size, page_size), posix.PROT.READ, .{ .TYPE = .PRIVATE }, fd, 0, ); defer posix.munmap(file_bytes); |
openExW() |
const eh = @as(*elf.Ehdr, @ptrCast(file_bytes.ptr)); if (!mem.eql(u8, eh.e_ident[0..4], elf.MAGIC)) return error.NotElfFile; if (eh.e_type != elf.ET.DYN) return error.NotDynamicLibrary; |
close() |
const elf_addr = @intFromPtr(file_bytes.ptr); |
lookup() |
// Iterate over the program header entries to find out the // dynamic vector as well as the total size of the virtual memory. var maybe_dynv: ?[*]usize = null; var virt_addr_end: usize = 0; { var i: usize = 0; var ph_addr: usize = elf_addr + eh.e_phoff; while (i < eh.e_phnum) : ({ i += 1; ph_addr += eh.e_phentsize; }) { const ph = @as(*elf.Phdr, @ptrFromInt(ph_addr)); switch (ph.p_type) { elf.PT_LOAD => virt_addr_end = @max(virt_addr_end, ph.p_vaddr + ph.p_memsz), elf.PT_DYNAMIC => maybe_dynv = @as([*]usize, @ptrFromInt(elf_addr + ph.p_offset)), else => {}, } } } const dynv = maybe_dynv orelse return error.MissingDynamicLinkingInformation; |
DlDynLib |
// Reserve the entire range (with no permissions) so that we can do MAP.FIXED below. const all_loaded_mem = try posix.mmap( null, virt_addr_end, posix.PROT.NONE, .{ .TYPE = .PRIVATE, .ANONYMOUS = true }, -1, 0, ); errdefer posix.munmap(all_loaded_mem); |
Error |
const base = @intFromPtr(all_loaded_mem.ptr); |
open() |
// Now iterate again and actually load all the program sections. { var i: usize = 0; var ph_addr: usize = elf_addr + eh.e_phoff; while (i < eh.e_phnum) : ({ i += 1; ph_addr += eh.e_phentsize; }) { const ph = @as(*elf.Phdr, @ptrFromInt(ph_addr)); switch (ph.p_type) { elf.PT_LOAD => { // The VirtAddr may not be page-aligned; in such case there will be // extra nonsense mapped before/after the VirtAddr,MemSiz const aligned_addr = (base + ph.p_vaddr) & ~(@as(usize, page_size) - 1); const extra_bytes = (base + ph.p_vaddr) - aligned_addr; const extended_memsz = mem.alignForward(usize, ph.p_memsz + extra_bytes, page_size); const ptr = @as([*]align(std.heap.page_size_min) u8, @ptrFromInt(aligned_addr)); const prot = elfToMmapProt(ph.p_flags); if ((ph.p_flags & elf.PF_W) == 0) { // If it does not need write access, it can be mapped from the fd. _ = try posix.mmap( ptr, extended_memsz, prot, .{ .TYPE = .PRIVATE, .FIXED = true }, fd, ph.p_offset - extra_bytes, ); } else { const sect_mem = try posix.mmap( ptr, extended_memsz, prot, .{ .TYPE = .PRIVATE, .FIXED = true, .ANONYMOUS = true }, -1, 0, ); @memcpy(sect_mem[0..ph.p_filesz], file_bytes[0..ph.p_filesz]); } }, else => {}, } } } |
openZ() |
var maybe_strings: ?[*:0]u8 = null; var maybe_syms: ?[*]elf.Sym = null; var maybe_hashtab: ?[*]posix.Elf_Symndx = null; var maybe_gnu_hash: ?*elf.gnu_hash.Header = null; var maybe_versym: ?[*]elf.Versym = null; var maybe_verdef: ?*elf.Verdef = null; |
close() |
{ var i: usize = 0; while (dynv[i] != 0) : (i += 2) { const p = base + dynv[i + 1]; switch (dynv[i]) { elf.DT_STRTAB => maybe_strings = @ptrFromInt(p), elf.DT_SYMTAB => maybe_syms = @ptrFromInt(p), elf.DT_HASH => maybe_hashtab = @ptrFromInt(p), elf.DT_GNU_HASH => maybe_gnu_hash = @ptrFromInt(p), elf.DT_VERSYM => maybe_versym = @ptrFromInt(p), elf.DT_VERDEF => maybe_verdef = @ptrFromInt(p), else => {}, } } } |
lookup() |
const hash_table: HashTable = if (maybe_gnu_hash) |gnu_hash| .{ .dt_gnu_hash = gnu_hash } else if (maybe_hashtab) |hashtab| .{ .dt_hash = hashtab } else return error.ElfHashTableNotFound; |
getError() |
return .{ .memory = all_loaded_mem, .strings = maybe_strings orelse return error.ElfStringSectionNotFound, .syms = maybe_syms orelse return error.ElfSymSectionNotFound, .hash_table = hash_table, .versym = maybe_versym, .verdef = maybe_verdef, }; } |
Test:dynamic_library |
/// Trusts the file. Malicious file will be able to execute arbitrary code. pub fn openZ(path_c: [*:0]const u8) Error!ElfDynLib { return open(mem.sliceTo(path_c, 0)); } /// Trusts the file pub fn close(self: *ElfDynLib) void { posix.munmap(self.memory); self.* = undefined; } pub fn lookup(self: *const ElfDynLib, comptime T: type, name: [:0]const u8) ?T { if (self.lookupAddress("", name)) |symbol| { return @as(T, @ptrFromInt(symbol)); } else { return null; } } pub const GnuHashSection32 = struct { symoffset: u32, bloom_shift: u32, bloom: []u32, buckets: []u32, chain: [*]elf.gnu_hash.ChainEntry, pub fn fromPtr(header: *elf.gnu_hash.Header) @This() { const header_offset = @intFromPtr(header); const bloom_offset = header_offset + @sizeOf(elf.gnu_hash.Header); const buckets_offset = bloom_offset + header.bloom_size * @sizeOf(u32); const chain_offset = buckets_offset + header.nbuckets * @sizeOf(u32); const bloom_ptr: [*]u32 = @ptrFromInt(bloom_offset); const buckets_ptr: [*]u32 = @ptrFromInt(buckets_offset); const chain_ptr: [*]elf.gnu_hash.ChainEntry = @ptrFromInt(chain_offset); return .{ .symoffset = header.symoffset, .bloom_shift = header.bloom_shift, .bloom = bloom_ptr[0..header.bloom_size], .buckets = buckets_ptr[0..header.nbuckets], .chain = chain_ptr, }; } }; pub const GnuHashSection64 = struct { symoffset: u32, bloom_shift: u32, bloom: []u64, buckets: []u32, chain: [*]elf.gnu_hash.ChainEntry, pub fn fromPtr(header: *elf.gnu_hash.Header) @This() { const header_offset = @intFromPtr(header); const bloom_offset = header_offset + @sizeOf(elf.gnu_hash.Header); const buckets_offset = bloom_offset + header.bloom_size * @sizeOf(u64); const chain_offset = buckets_offset + header.nbuckets * @sizeOf(u32); const bloom_ptr: [*]u64 = @ptrFromInt(bloom_offset); const buckets_ptr: [*]u32 = @ptrFromInt(buckets_offset); const chain_ptr: [*]elf.gnu_hash.ChainEntry = @ptrFromInt(chain_offset); return .{ .symoffset = header.symoffset, .bloom_shift = header.bloom_shift, .bloom = bloom_ptr[0..header.bloom_size], .buckets = buckets_ptr[0..header.nbuckets], .chain = chain_ptr, }; } }; /// ElfDynLib specific /// Returns the address of the symbol pub fn lookupAddress(self: *const ElfDynLib, vername: []const u8, name: []const u8) ?usize { const maybe_versym = if (self.verdef == null) null else self.versym; const OK_TYPES = (1 << elf.STT_NOTYPE | 1 << elf.STT_OBJECT | 1 << elf.STT_FUNC | 1 << elf.STT_COMMON); const OK_BINDS = (1 << elf.STB_GLOBAL | 1 << elf.STB_WEAK | 1 << elf.STB_GNU_UNIQUE); switch (self.hash_table) { .dt_hash => |hashtab| { var i: usize = 0; while (i < hashtab[1]) : (i += 1) { if (0 == (@as(u32, 1) << @as(u5, @intCast(self.syms[i].st_info & 0xf)) & OK_TYPES)) continue; if (0 == (@as(u32, 1) << @as(u5, @intCast(self.syms[i].st_info >> 4)) & OK_BINDS)) continue; if (0 == self.syms[i].st_shndx) continue; if (!mem.eql(u8, name, mem.sliceTo(self.strings + self.syms[i].st_name, 0))) continue; if (maybe_versym) |versym| { if (!checkver(self.verdef.?, versym[i], vername, self.strings)) continue; } return @intFromPtr(self.memory.ptr) + self.syms[i].st_value; } }, .dt_gnu_hash => |gnu_hash_header| { const GnuHashSection = switch (@bitSizeOf(usize)) { 32 => GnuHashSection32, 64 => GnuHashSection64, else => |bit_size| @compileError("Unsupported bit size " ++ bit_size), }; const gnu_hash_section: GnuHashSection = .fromPtr(gnu_hash_header); const hash = elf.gnu_hash.calculate(name); const bloom_index = (hash / @bitSizeOf(usize)) % gnu_hash_header.bloom_size; const bloom_val = gnu_hash_section.bloom[bloom_index]; const bit_index_0 = hash % @bitSizeOf(usize); const bit_index_1 = (hash >> @intCast(gnu_hash_header.bloom_shift)) % @bitSizeOf(usize); const one: usize = 1; const bit_mask: usize = (one << @intCast(bit_index_0)) | (one << @intCast(bit_index_1)); if (bloom_val & bit_mask != bit_mask) { // Symbol is not in bloom filter, so it definitely isn't here. return null; } const bucket_index = hash % gnu_hash_header.nbuckets; const chain_index = gnu_hash_section.buckets[bucket_index] - gnu_hash_header.symoffset; const chains = gnu_hash_section.chain; const hash_as_entry: elf.gnu_hash.ChainEntry = @bitCast(hash); var current_index = chain_index; var at_end_of_chain = false; while (!at_end_of_chain) : (current_index += 1) { const current_entry = chains[current_index]; at_end_of_chain = current_entry.end_of_chain; if (current_entry.hash != hash_as_entry.hash) continue; // check that symbol matches const symbol_index = current_index + gnu_hash_header.symoffset; const symbol = self.syms[symbol_index]; if (0 == (@as(u32, 1) << @as(u5, @intCast(symbol.st_info & 0xf)) & OK_TYPES)) continue; if (0 == (@as(u32, 1) << @as(u5, @intCast(symbol.st_info >> 4)) & OK_BINDS)) continue; if (0 == symbol.st_shndx) continue; const symbol_name = mem.sliceTo(self.strings + symbol.st_name, 0); if (!mem.eql(u8, name, symbol_name)) { continue; } if (maybe_versym) |versym| { if (!checkver(self.verdef.?, versym[symbol_index], vername, self.strings)) { continue; } } return @intFromPtr(self.memory.ptr) + symbol.st_value; } }, } return null; } fn elfToMmapProt(elf_prot: u64) u32 { var result: u32 = posix.PROT.NONE; if ((elf_prot & elf.PF_R) != 0) result |= posix.PROT.READ; if ((elf_prot & elf.PF_W) != 0) result |= posix.PROT.WRITE; if ((elf_prot & elf.PF_X) != 0) result |= posix.PROT.EXEC; return result; } }; fn checkver(def_arg: *elf.Verdef, vsym_arg: elf.Versym, vername: []const u8, strings: [*:0]u8) bool { var def = def_arg; const vsym_index = vsym_arg.VERSION; while (true) { if (0 == (def.flags & elf.VER_FLG_BASE) and @intFromEnum(def.ndx) == vsym_index) break; if (def.next == 0) return false; def = @ptrFromInt(@intFromPtr(def) + def.next); } const aux: *elf.Verdaux = @ptrFromInt(@intFromPtr(def) + def.aux); return mem.eql(u8, vername, mem.sliceTo(strings + aux.name, 0)); } test "ElfDynLib" { if (native_os != .linux) { return error.SkipZigTest; } try testing.expectError(error.FileNotFound, ElfDynLib.open("invalid_so.so")); } /// Separated to avoid referencing `WindowsDynLib`, because its field types may not /// be valid on other targets. const WindowsDynLibError = error{ FileNotFound, InvalidPath, } || windows.LoadLibraryError; pub const WindowsDynLib = struct { pub const Error = WindowsDynLibError; dll: windows.HMODULE, pub fn open(path: []const u8) Error!WindowsDynLib { return openEx(path, .none); } /// WindowsDynLib specific /// Opens dynamic library with specified library loading flags. pub fn openEx(path: []const u8, flags: windows.LoadLibraryFlags) Error!WindowsDynLib { const path_w = windows.sliceToPrefixedFileW(null, path) catch return error.InvalidPath; return openExW(path_w.span().ptr, flags); } pub fn openZ(path_c: [*:0]const u8) Error!WindowsDynLib { return openExZ(path_c, .none); } /// WindowsDynLib specific /// Opens dynamic library with specified library loading flags. pub fn openExZ(path_c: [*:0]const u8, flags: windows.LoadLibraryFlags) Error!WindowsDynLib { const path_w = windows.cStrToPrefixedFileW(null, path_c) catch return error.InvalidPath; return openExW(path_w.span().ptr, flags); } /// WindowsDynLib specific pub fn openW(path_w: [*:0]const u16) Error!WindowsDynLib { return openExW(path_w, .none); } /// WindowsDynLib specific /// Opens dynamic library with specified library loading flags. pub fn openExW(path_w: [*:0]const u16, flags: windows.LoadLibraryFlags) Error!WindowsDynLib { var offset: usize = 0; if (path_w[0] == '\\' and path_w[1] == '?' and path_w[2] == '?' and path_w[3] == '\\') { // + 4 to skip over the \??\ offset = 4; } return .{ .dll = try windows.LoadLibraryExW(path_w + offset, flags), }; } pub fn close(self: *WindowsDynLib) void { windows.FreeLibrary(self.dll); self.* = undefined; } pub fn lookup(self: *WindowsDynLib, comptime T: type, name: [:0]const u8) ?T { if (windows.kernel32.GetProcAddress(self.dll, name.ptr)) |addr| { return @as(T, @ptrCast(@alignCast(addr))); } else { return null; } } }; /// Separated to avoid referencing `DlDynLib`, because its field types may not /// be valid on other targets. const DlDynLibError = error{ FileNotFound, NameTooLong }; pub const DlDynLib = struct { pub const Error = DlDynLibError; handle: *anyopaque, pub fn open(path: []const u8) Error!DlDynLib { const path_c = try posix.toPosixPath(path); return openZ(&path_c); } pub fn openZ(path_c: [*:0]const u8) Error!DlDynLib { return .{ .handle = std.c.dlopen(path_c, .{ .LAZY = true }) orelse { return error.FileNotFound; }, }; } pub fn close(self: *DlDynLib) void { switch (posix.errno(std.c.dlclose(self.handle))) { .SUCCESS => return, else => unreachable, } self.* = undefined; } pub fn lookup(self: *DlDynLib, comptime T: type, name: [:0]const u8) ?T { // dlsym (and other dl-functions) secretly take shadow parameter - return address on stack // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66826 if (@call(.never_tail, std.c.dlsym, .{ self.handle, name.ptr })) |symbol| { return @as(T, @ptrCast(@alignCast(symbol))); } else { return null; } } /// DlDynLib specific /// Returns human readable string describing most recent error than occurred from `lookup` /// or `null` if no error has occurred since initialization or when `getError` was last called. pub fn getError() ?[:0]const u8 { return mem.span(std.c.dlerror()); } }; test "dynamic_library" { const libname = switch (native_os) { .linux, .freebsd, .openbsd, .solaris, .illumos => "invalid_so.so", .windows => "invalid_dll.dll", .macos, .tvos, .watchos, .ios, .visionos => "invalid_dylib.dylib", else => return error.SkipZigTest, }; try testing.expectError(error.FileNotFound, DynLib.open(libname)); try testing.expectError(error.FileNotFound, DynLib.openZ(libname.ptr)); } |
Generated by zstd-live on 2025-08-12 12:37:57 UTC. |