zig/lib/std / math/cbrt.zig

Returns the cube root of x. Special Cases: - cbrt(+-0) = +-0 - cbrt(+-inf) = +-inf - cbrt(nan) = nan

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/cbrtf.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/cbrt.c

cbrt()


const std = @import("../std.zig");
const math = std.math;
const expect = std.testing.expect;

Test: cbrt


/// Returns the cube root of x.
///
/// Special Cases:
///  - cbrt(+-0)   = +-0
///  - cbrt(+-inf) = +-inf
///  - cbrt(nan)   = nan
pub fn cbrt(x: anytype) @TypeOf(x) {
    const T = @TypeOf(x);
    return switch (T) {
        f32 => cbrt32(x),
        f64 => cbrt64(x),
        else => @compileError("cbrt not implemented for " ++ @typeName(T)),
    };
}

Test: cbrt32


fn cbrt32(x: f32) f32 {
    const B1: u32 = 709958130; // (127 - 127.0 / 3 - 0.03306235651) * 2^23
    const B2: u32 = 642849266; // (127 - 127.0 / 3 - 24 / 3 - 0.03306235651) * 2^23

Test: cbrt64


    var u = @as(u32, @bitCast(x));
    var hx = u & 0x7FFFFFFF;

Test:

cbrt.special


    // cbrt(nan, inf) = itself
    if (hx >= 0x7F800000) {
        return x + x;
    }

Test:

cbrt64.special


    // cbrt to ~5bits
    if (hx < 0x00800000) {
        // cbrt(+-0) = itself
        if (hx == 0) {
            return x;
        }
        u = @as(u32, @bitCast(x * 0x1.0p24));
        hx = u & 0x7FFFFFFF;
        hx = hx / 3 + B2;
    } else {
        hx = hx / 3 + B1;
    }

    u &= 0x80000000;
    u |= hx;

    // first step newton to 16 bits
    var t: f64 = @as(f32, @bitCast(u));
    var r: f64 = t * t * t;
    t = t * (@as(f64, x) + x + r) / (x + r + r);

    // second step newton to 47 bits
    r = t * t * t;
    t = t * (@as(f64, x) + x + r) / (x + r + r);

    return @as(f32, @floatCast(t));
}

fn cbrt64(x: f64) f64 {
    const B1: u32 = 715094163; // (1023 - 1023 / 3 - 0.03306235651 * 2^20
    const B2: u32 = 696219795; // (1023 - 1023 / 3 - 54 / 3 - 0.03306235651 * 2^20

    // |1 / cbrt(x) - p(x)| < 2^(23.5)
    const P0: f64 = 1.87595182427177009643;
    const P1: f64 = -1.88497979543377169875;
    const P2: f64 = 1.621429720105354466140;
    const P3: f64 = -0.758397934778766047437;
    const P4: f64 = 0.145996192886612446982;

    var u = @as(u64, @bitCast(x));
    var hx = @as(u32, @intCast(u >> 32)) & 0x7FFFFFFF;

    // cbrt(nan, inf) = itself
    if (hx >= 0x7FF00000) {
        return x + x;
    }

    // cbrt to ~5bits
    if (hx < 0x00100000) {
        u = @as(u64, @bitCast(x * 0x1.0p54));
        hx = @as(u32, @intCast(u >> 32)) & 0x7FFFFFFF;

        // cbrt(+-0) = itself
        if (hx == 0) {
            return x;
        }
        hx = hx / 3 + B2;
    } else {
        hx = hx / 3 + B1;
    }

    u &= 1 << 63;
    u |= @as(u64, hx) << 32;
    var t = @as(f64, @bitCast(u));

    // cbrt to 23 bits
    // cbrt(x) = t * cbrt(x / t^3) ~= t * P(t^3 / x)
    const r = (t * t) * (t / x);
    t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));

    // Round t away from 0 to 23 bits
    u = @as(u64, @bitCast(t));
    u = (u + 0x80000000) & 0xFFFFFFFFC0000000;
    t = @as(f64, @bitCast(u));

    // one step newton to 53 bits
    const s = t * t;
    var q = x / s;
    const w = t + t;
    q = (q - t) / (w + q);

    return t + t * q;
}

test cbrt {
    try expect(cbrt(@as(f32, 0.0)) == cbrt32(0.0));
    try expect(cbrt(@as(f64, 0.0)) == cbrt64(0.0));
}

test cbrt32 {
    const epsilon = 0.000001;

    try expect(math.isPositiveZero(cbrt32(0.0)));
    try expect(math.approxEqAbs(f32, cbrt32(0.2), 0.584804, epsilon));
    try expect(math.approxEqAbs(f32, cbrt32(0.8923), 0.962728, epsilon));
    try expect(math.approxEqAbs(f32, cbrt32(1.5), 1.144714, epsilon));
    try expect(math.approxEqAbs(f32, cbrt32(37.45), 3.345676, epsilon));
    try expect(math.approxEqAbs(f32, cbrt32(123123.234375), 49.748501, epsilon));
}

test cbrt64 {
    const epsilon = 0.000001;

    try expect(math.isPositiveZero(cbrt64(0.0)));
    try expect(math.approxEqAbs(f64, cbrt64(0.2), 0.584804, epsilon));
    try expect(math.approxEqAbs(f64, cbrt64(0.8923), 0.962728, epsilon));
    try expect(math.approxEqAbs(f64, cbrt64(1.5), 1.144714, epsilon));
    try expect(math.approxEqAbs(f64, cbrt64(37.45), 3.345676, epsilon));
    try expect(math.approxEqAbs(f64, cbrt64(123123.234375), 49.748501, epsilon));
}

test "cbrt.special" {
    try expect(math.isPositiveZero(cbrt32(0.0)));
    try expect(@as(u32, @bitCast(cbrt32(-0.0))) == @as(u32, 0x80000000));
    try expect(math.isPositiveInf(cbrt32(math.inf(f32))));
    try expect(math.isNegativeInf(cbrt32(-math.inf(f32))));
    try expect(math.isNan(cbrt32(math.nan(f32))));
}

test "cbrt64.special" {
    try expect(math.isPositiveZero(cbrt64(0.0)));
    try expect(math.isNegativeZero(cbrt64(-0.0)));
    try expect(math.isPositiveInf(cbrt64(math.inf(f64))));
    try expect(math.isNegativeInf(cbrt64(-math.inf(f64))));
    try expect(math.isNan(cbrt64(math.nan(f64))));
}