Test: sinh64
|
/// Returns the hyperbolic sine of z.
pub fn sinh(z: anytype) Complex(@TypeOf(z.re, z.im)) {
const T = @TypeOf(z.re, z.im);
return switch (T) {
f32 => sinh32(z),
f64 => sinh64(z),
else => @compileError("tan not implemented for " ++ @typeName(z)),
};
}
fn sinh32(z: Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
const hx = @as(u32, @bitCast(x));
const ix = hx & 0x7fffffff;
const hy = @as(u32, @bitCast(y));
const iy = hy & 0x7fffffff;
if (ix < 0x7f800000 and iy < 0x7f800000) {
if (iy == 0) {
return Complex(f32).init(math.sinh(x), y);
}
// small x: normal case
if (ix < 0x41100000) {
return Complex(f32).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
}
// |x|>= 9, so cosh(x) ~= exp(|x|)
if (ix < 0x42b17218) {
// x < 88.7: exp(|x|) won't overflow
const h = @exp(@abs(x)) * 0.5;
return Complex(f32).init(math.copysign(h, x) * @cos(y), h * @sin(y));
}
// x < 192.7: scale to avoid overflow
else if (ix < 0x4340b1e7) {
const v = Complex(f32).init(@abs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f32).init(r.re * math.copysign(@as(f32, 1.0), x), r.im);
}
// x >= 192.7: result always overflows
else {
const h = 0x1p127 * x;
return Complex(f32).init(h * @cos(y), h * h * @sin(y));
}
}
if (ix == 0 and iy >= 0x7f800000) {
return Complex(f32).init(math.copysign(@as(f32, 0.0), x * (y - y)), y - y);
}
if (iy == 0 and ix >= 0x7f800000) {
if (hx & 0x7fffff == 0) {
return Complex(f32).init(x, y);
}
return Complex(f32).init(x, math.copysign(@as(f32, 0.0), y));
}
if (ix < 0x7f800000 and iy >= 0x7f800000) {
return Complex(f32).init(y - y, x * (y - y));
}
if (ix >= 0x7f800000 and (hx & 0x7fffff) == 0) {
if (iy >= 0x7f800000) {
return Complex(f32).init(x * x, x * (y - y));
}
return Complex(f32).init(x * @cos(y), math.inf(f32) * @sin(y));
}
return Complex(f32).init((x * x) * (y - y), (x + x) * (y - y));
}
fn sinh64(z: Complex(f64)) Complex(f64) {
const x = z.re;
const y = z.im;
const fx: u64 = @bitCast(x);
const hx: u32 = @intCast(fx >> 32);
const lx: u32 = @truncate(fx);
const ix = hx & 0x7fffffff;
const fy: u64 = @bitCast(y);
const hy: u32 = @intCast(fy >> 32);
const ly: u32 = @truncate(fy);
const iy = hy & 0x7fffffff;
if (ix < 0x7ff00000 and iy < 0x7ff00000) {
if (iy | ly == 0) {
return Complex(f64).init(math.sinh(x), y);
}
// small x: normal case
if (ix < 0x40360000) {
return Complex(f64).init(math.sinh(x) * @cos(y), math.cosh(x) * @sin(y));
}
// |x|>= 22, so cosh(x) ~= exp(|x|)
if (ix < 0x40862e42) {
// x < 710: exp(|x|) won't overflow
const h = @exp(@abs(x)) * 0.5;
return Complex(f64).init(math.copysign(h, x) * @cos(y), h * @sin(y));
}
// x < 1455: scale to avoid overflow
else if (ix < 0x4096bbaa) {
const v = Complex(f64).init(@abs(x), y);
const r = ldexp_cexp(v, -1);
return Complex(f64).init(r.re * math.copysign(@as(f64, 1.0), x), r.im);
}
// x >= 1455: result always overflows
else {
const h = 0x1p1023 * x;
return Complex(f64).init(h * @cos(y), h * h * @sin(y));
}
}
if (ix | lx == 0 and iy >= 0x7ff00000) {
return Complex(f64).init(math.copysign(@as(f64, 0.0), x * (y - y)), y - y);
}
if (iy | ly == 0 and ix >= 0x7ff00000) {
if ((hx & 0xfffff) | lx == 0) {
return Complex(f64).init(x, y);
}
return Complex(f64).init(x, math.copysign(@as(f64, 0.0), y));
}
if (ix < 0x7ff00000 and iy >= 0x7ff00000) {
return Complex(f64).init(y - y, x * (y - y));
}
if (ix >= 0x7ff00000 and (hx & 0xfffff) | lx == 0) {
if (iy >= 0x7ff00000) {
return Complex(f64).init(x * x, x * (y - y));
}
return Complex(f64).init(x * @cos(y), math.inf(f64) * @sin(y));
}
return Complex(f64).init((x * x) * (y - y), (x + x) * (y - y));
}
test sinh32 {
const epsilon = math.floatEps(f32);
const a = Complex(f32).init(5, 3);
const c = sinh(a);
try testing.expectApproxEqAbs(-73.460617, c.re, epsilon);
try testing.expectApproxEqAbs(10.472508, c.im, epsilon);
}
test sinh64 {
const epsilon = math.floatEps(f64);
const a = Complex(f64).init(5, 3);
const c = sinh(a);
try testing.expectApproxEqAbs(-73.46062169567367, c.re, epsilon);
try testing.expectApproxEqAbs(10.472508533940392, c.im, epsilon);
}
|