zig/lib/std / treap.zig

A customized pseudo random number generator for the treap. This just helps reducing the memory size of the treap itself as std.Random.DefaultPrng requires larger state (while producing better entropy for randomness to be fair).

const std = @import("std.zig");
const assert = std.debug.assert;
const testing = std.testing;
const Order = std.math.Order;

Treap()

A Node represents an item or point in the treap with a uniquely associated key.


pub fn Treap(comptime Key: type, comptime compareFn: anytype) type {
    return struct {
        const Self = @This();

Node

Returns the smallest Node by key in the treap if there is one. Use getEntryForExisting() to replace/remove this Node from the treap.


        // Allow for compareFn to be fn (anytype, anytype) anytype
        // which allows the convenient use of std.math.order.
        fn compare(a: Key, b: Key) Order {
            return compareFn(a, b);
        }

next()

Returns the largest Node by key in the treap if there is one. Use getEntryForExisting() to replace/remove this Node from the treap.


        root: ?*Node = null,
        prng: Prng = .{},

prev()

Lookup the Entry for the given key in the treap. The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key.


        /// A customized pseudo random number generator for the treap.
        /// This just helps reducing the memory size of the treap itself
        /// as std.Random.DefaultPrng requires larger state (while producing better entropy for randomness to be fair).
        const Prng = struct {
            xorshift: usize = 0,

getMin()

Get an entry for a Node that currently exists in the treap. It is undefined behavior if the Node is not currently inserted in the treap. The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key.


            fn random(self: *Prng, seed: usize) usize {
                // Lazily seed the prng state
                if (self.xorshift == 0) {
                    self.xorshift = seed;
                }

getMax()

An Entry represents a slot in the treap associated with a given key.


                // Since we're using usize, decide the shifts by the integer's bit width.
                const shifts = switch (@bitSizeOf(usize)) {
                    64 => .{ 13, 7, 17 },
                    32 => .{ 13, 17, 5 },
                    16 => .{ 7, 9, 8 },
                    else => @compileError("platform not supported"),
                };

getEntryFor()

The associated key for this entry.


                self.xorshift ^= self.xorshift >> shifts[0];
                self.xorshift ^= self.xorshift << shifts[1];
                self.xorshift ^= self.xorshift >> shifts[2];

getEntryForExisting()

A reference to the treap this entry is apart of.


                assert(self.xorshift != 0);
                return self.xorshift;
            }
        };

Entry

The current node at this entry.


        /// A Node represents an item or point in the treap with a uniquely associated key.
        pub const Node = struct {
            key: Key,
            priority: usize,
            parent: ?*Node,
            children: [2]?*Node,

set()

The current state of the entry.


            pub fn next(node: *Node) ?*Node {
                return nextOnDirection(node, 1);
            }
            pub fn prev(node: *Node) ?*Node {
                return nextOnDirection(node, 0);
            }
        };

InorderIterator

A find() was called for this entry and the position in the treap is known.


        fn extremeInSubtreeOnDirection(node: *Node, direction: u1) *Node {
            var cur = node;
            while (cur.children[direction]) |next| cur = next;
            return cur;
        }

next()

The entry's node was removed from the treap and a lookup must occur again for modification.


        fn nextOnDirection(node: *Node, direction: u1) ?*Node {
            if (node.children[direction]) |child| {
                return extremeInSubtreeOnDirection(child, direction ^ 1);
            }
            var cur = node;
            // Traversing upward until we find `parent` to `cur` is NOT on
            // `direction`, or equivalently, `cur` to `parent` IS on
            // `direction` thus `parent` is the next.
            while (true) {
                if (cur.parent) |parent| {
                    // If `parent -> node` is NOT on `direction`, then
                    // `node -> parent` IS on `direction`
                    if (parent.children[direction] != cur) return parent;
                    cur = parent;
                } else {
                    return null;
                }
            }
        }

inorderIterator()

Update's the Node at this Entry in the treap with the new node (null for deleting). new_node can have undefind content because the value will be initialized internally.


        /// Returns the smallest Node by key in the treap if there is one.
        /// Use `getEntryForExisting()` to replace/remove this Node from the treap.
        pub fn getMin(self: Self) ?*Node {
            if (self.root) |root| return extremeInSubtreeOnDirection(root, 0);
            return null;
        }

init()

Usage example: var iter = treap.inorderIterator(); while (iter.next()) |node| { ... }


        /// Returns the largest Node by key in the treap if there is one.
        /// Use `getEntryForExisting()` to replace/remove this Node from the treap.
        pub fn getMax(self: Self) ?*Node {
            if (self.root) |root| return extremeInSubtreeOnDirection(root, 1);
            return null;
        }

reset()


        /// Lookup the Entry for the given key in the treap.
        /// The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key.
        pub fn getEntryFor(self: *Self, key: Key) Entry {
            var parent: ?*Node = undefined;
            const node = self.find(key, &parent);

next()


            return Entry{
                .key = key,
                .treap = self,
                .node = node,
                .context = .{ .inserted_under = parent },
            };
        }

Test:

insert, find, replace, remove


        /// Get an entry for a Node that currently exists in the treap.
        /// It is undefined behavior if the Node is not currently inserted in the treap.
        /// The Entry act's as a slot in the treap to insert/replace/remove the node associated with the key.
        pub fn getEntryForExisting(self: *Self, node: *Node) Entry {
            assert(node.priority != 0);

Test:

inorderIterator


            return Entry{
                .key = node.key,
                .treap = self,
                .node = node,
                .context = .{ .inserted_under = node.parent },
            };
        }

Test:

getMin, getMax, simple


        /// An Entry represents a slot in the treap associated with a given key.
        pub const Entry = struct {
            /// The associated key for this entry.
            key: Key,
            /// A reference to the treap this entry is apart of.
            treap: *Self,
            /// The current node at this entry.
            node: ?*Node,
            /// The current state of the entry.
            context: union(enum) {
                /// A find() was called for this entry and the position in the treap is known.
                inserted_under: ?*Node,
                /// The entry's node was removed from the treap and a lookup must occur again for modification.
                removed,
            },

Test:

getMin, getMax, random


            /// Update's the Node at this Entry in the treap with the new node (null for deleting). `new_node`
            /// can have `undefind` content because the value will be initialized internally.
            pub fn set(self: *Entry, new_node: ?*Node) void {
                // Update the entry's node reference after updating the treap below.
                defer self.node = new_node;

Test:

node.{prev(),next()} with sequential insertion and deletion


                if (self.node) |old| {
                    if (new_node) |new| {
                        self.treap.replace(old, new);
                        return;
                    }

Test:

node.{prev(),next()} with random data


                    self.treap.remove(old);
                    self.context = .removed;
                    return;
                }

                if (new_node) |new| {
                    // A previous treap.remove() could have rebalanced the nodes
                    // so when inserting after a removal, we have to re-lookup the parent again.
                    // This lookup shouldn't find a node because we're yet to insert it..
                    var parent: ?*Node = undefined;
                    switch (self.context) {
                        .inserted_under => |p| parent = p,
                        .removed => assert(self.treap.find(self.key, &parent) == null),
                    }

                    self.treap.insert(self.key, parent, new);
                    self.context = .{ .inserted_under = parent };
                }
            }
        };

        fn find(self: Self, key: Key, parent_ref: *?*Node) ?*Node {
            var node = self.root;
            parent_ref.* = null;

            // basic binary search while tracking the parent.
            while (node) |current| {
                const order = compare(key, current.key);
                if (order == .eq) break;

                parent_ref.* = current;
                node = current.children[@intFromBool(order == .gt)];
            }

            return node;
        }

        fn insert(self: *Self, key: Key, parent: ?*Node, node: *Node) void {
            // generate a random priority & prepare the node to be inserted into the tree
            node.key = key;
            node.priority = self.prng.random(@intFromPtr(node));
            node.parent = parent;
            node.children = [_]?*Node{ null, null };

            // point the parent at the new node
            const link = if (parent) |p| &p.children[@intFromBool(compare(key, p.key) == .gt)] else &self.root;
            assert(link.* == null);
            link.* = node;

            // rotate the node up into the tree to balance it according to its priority
            while (node.parent) |p| {
                if (p.priority <= node.priority) break;

                const is_right = p.children[1] == node;
                assert(p.children[@intFromBool(is_right)] == node);

                const rotate_right = !is_right;
                self.rotate(p, rotate_right);
            }
        }

        fn replace(self: *Self, old: *Node, new: *Node) void {
            // copy over the values from the old node
            new.key = old.key;
            new.priority = old.priority;
            new.parent = old.parent;
            new.children = old.children;

            // point the parent at the new node
            const link = if (old.parent) |p| &p.children[@intFromBool(p.children[1] == old)] else &self.root;
            assert(link.* == old);
            link.* = new;

            // point the children's parent at the new node
            for (old.children) |child_node| {
                const child = child_node orelse continue;
                assert(child.parent == old);
                child.parent = new;
            }
        }

        fn remove(self: *Self, node: *Node) void {
            // rotate the node down to be a leaf of the tree for removal, respecting priorities.
            while (node.children[0] orelse node.children[1]) |_| {
                self.rotate(node, rotate_right: {
                    const right = node.children[1] orelse break :rotate_right true;
                    const left = node.children[0] orelse break :rotate_right false;
                    break :rotate_right (left.priority < right.priority);
                });
            }

            // node is a now a leaf; remove by nulling out the parent's reference to it.
            const link = if (node.parent) |p| &p.children[@intFromBool(p.children[1] == node)] else &self.root;
            assert(link.* == node);
            link.* = null;

            // clean up after ourselves
            node.priority = 0;
            node.parent = null;
            node.children = [_]?*Node{ null, null };
        }

        fn rotate(self: *Self, node: *Node, right: bool) void {
            // if right, converts the following:
            //      parent -> (node (target YY adjacent) XX)
            //      parent -> (target YY (node adjacent XX))
            //
            // if left (!right), converts the following:
            //      parent -> (node (target YY adjacent) XX)
            //      parent -> (target YY (node adjacent XX))
            const parent = node.parent;
            const target = node.children[@intFromBool(!right)] orelse unreachable;
            const adjacent = target.children[@intFromBool(right)];

            // rotate the children
            target.children[@intFromBool(right)] = node;
            node.children[@intFromBool(!right)] = adjacent;

            // rotate the parents
            node.parent = target;
            target.parent = parent;
            if (adjacent) |adj| adj.parent = node;

            // fix the parent link
            const link = if (parent) |p| &p.children[@intFromBool(p.children[1] == node)] else &self.root;
            assert(link.* == node);
            link.* = target;
        }

        /// Usage example:
        ///   var iter = treap.inorderIterator();
        ///   while (iter.next()) |node| {
        ///     ...
        ///   }
        pub const InorderIterator = struct {
            current: ?*Node,

            pub fn next(it: *InorderIterator) ?*Node {
                const current = it.current;
                it.current = if (current) |cur|
                    cur.next()
                else
                    null;
                return current;
            }
        };

        pub fn inorderIterator(self: *Self) InorderIterator {
            return .{ .current = self.getMin() };
        }
    };
}

// For iterating a slice in a random order
// https://lemire.me/blog/2017/09/18/visiting-all-values-in-an-array-exactly-once-in-random-order/
fn SliceIterRandomOrder(comptime T: type) type {
    return struct {
        rng: std.Random,
        slice: []T,
        index: usize = undefined,
        offset: usize = undefined,
        co_prime: usize,

        const Self = @This();

        pub fn init(slice: []T, rng: std.Random) Self {
            return Self{
                .rng = rng,
                .slice = slice,
                .co_prime = blk: {
                    if (slice.len == 0) break :blk 0;
                    var prime = slice.len / 2;
                    while (prime < slice.len) : (prime += 1) {
                        var gcd = [_]usize{ prime, slice.len };
                        while (gcd[1] != 0) {
                            const temp = gcd;
                            gcd = [_]usize{ temp[1], temp[0] % temp[1] };
                        }
                        if (gcd[0] == 1) break;
                    }
                    break :blk prime;
                },
            };
        }

        pub fn reset(self: *Self) void {
            self.index = 0;
            self.offset = self.rng.int(usize);
        }

        pub fn next(self: *Self) ?*T {
            if (self.index >= self.slice.len) return null;
            defer self.index += 1;
            return &self.slice[((self.index *% self.co_prime) +% self.offset) % self.slice.len];
        }
    };
}

const TestTreap = Treap(u64, std.math.order);
const TestNode = TestTreap.Node;

test "insert, find, replace, remove" {
    var treap = TestTreap{};
    var nodes: [10]TestNode = undefined;

    var prng = std.Random.DefaultPrng.init(0xdeadbeef);
    var iter = SliceIterRandomOrder(TestNode).init(&nodes, prng.random());

    // insert check
    iter.reset();
    while (iter.next()) |node| {
        const key = prng.random().int(u64);

        // make sure the current entry is empty.
        var entry = treap.getEntryFor(key);
        try testing.expectEqual(entry.key, key);
        try testing.expectEqual(entry.node, null);

        // insert the entry and make sure the fields are correct.
        entry.set(node);
        try testing.expectEqual(node.key, key);
        try testing.expectEqual(entry.key, key);
        try testing.expectEqual(entry.node, node);
    }

    // find check
    iter.reset();
    while (iter.next()) |node| {
        const key = node.key;

        // find the entry by-key and by-node after having been inserted.
        const entry = treap.getEntryFor(node.key);
        try testing.expectEqual(entry.key, key);
        try testing.expectEqual(entry.node, node);
        try testing.expectEqual(entry.node, treap.getEntryForExisting(node).node);
    }

    // in-order iterator check
    {
        var it = treap.inorderIterator();
        var last_key: u64 = 0;
        while (it.next()) |node| {
            try std.testing.expect(node.key >= last_key);
            last_key = node.key;
        }
    }

    // replace check
    iter.reset();
    while (iter.next()) |node| {
        const key = node.key;

        // find the entry by node since we already know it exists
        var entry = treap.getEntryForExisting(node);
        try testing.expectEqual(entry.key, key);
        try testing.expectEqual(entry.node, node);

        var stub_node: TestNode = undefined;

        // replace the node with a stub_node and ensure future finds point to the stub_node.
        entry.set(&stub_node);
        try testing.expectEqual(entry.node, &stub_node);
        try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
        try testing.expectEqual(entry.node, treap.getEntryForExisting(&stub_node).node);

        // replace the stub_node back to the node and ensure future finds point to the old node.
        entry.set(node);
        try testing.expectEqual(entry.node, node);
        try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
        try testing.expectEqual(entry.node, treap.getEntryForExisting(node).node);
    }

    // remove check
    iter.reset();
    while (iter.next()) |node| {
        const key = node.key;

        // find the entry by node since we already know it exists
        var entry = treap.getEntryForExisting(node);
        try testing.expectEqual(entry.key, key);
        try testing.expectEqual(entry.node, node);

        // remove the node at the entry and ensure future finds point to it being removed.
        entry.set(null);
        try testing.expectEqual(entry.node, null);
        try testing.expectEqual(entry.node, treap.getEntryFor(key).node);

        // insert the node back and ensure future finds point to the inserted node
        entry.set(node);
        try testing.expectEqual(entry.node, node);
        try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
        try testing.expectEqual(entry.node, treap.getEntryForExisting(node).node);

        // remove the node again and make sure it was cleared after the insert
        entry.set(null);
        try testing.expectEqual(entry.node, null);
        try testing.expectEqual(entry.node, treap.getEntryFor(key).node);
    }
}

test "inorderIterator" {
    var treap = TestTreap{};
    var nodes: [10]TestNode = undefined;

    // Build the tree.
    var i: usize = 0;
    while (i < 10) : (i += 1) {
        const key = @as(u64, i);
        var entry = treap.getEntryFor(key);
        entry.set(&nodes[i]);
    }

    // Test the iterator.
    var iter = treap.inorderIterator();
    i = 0;
    while (iter.next()) |node| {
        const key = @as(u64, i);
        try testing.expectEqual(key, node.key);
        i += 1;
    }
}

test "getMin, getMax, simple" {
    var treap = TestTreap{};
    var nodes: [3]TestNode = undefined;

    try testing.expectEqual(null, treap.getMin());
    try testing.expectEqual(null, treap.getMax());
    { // nodes[1]
        var entry = treap.getEntryFor(1);
        entry.set(&nodes[1]);
        try testing.expectEqual(&nodes[1], treap.getMin());
        try testing.expectEqual(&nodes[1], treap.getMax());
    }
    { // nodes[0]
        var entry = treap.getEntryFor(0);
        entry.set(&nodes[0]);
        try testing.expectEqual(&nodes[0], treap.getMin());
        try testing.expectEqual(&nodes[1], treap.getMax());
    }
    { // nodes[2]
        var entry = treap.getEntryFor(2);
        entry.set(&nodes[2]);
        try testing.expectEqual(&nodes[0], treap.getMin());
        try testing.expectEqual(&nodes[2], treap.getMax());
    }
}

test "getMin, getMax, random" {
    var nodes: [100]TestNode = undefined;
    var prng = std.Random.DefaultPrng.init(0xdeadbeef);
    var iter = SliceIterRandomOrder(TestNode).init(&nodes, prng.random());

    var treap = TestTreap{};
    var min: u64 = std.math.maxInt(u64);
    var max: u64 = 0;

    try testing.expectEqual(null, treap.getMin());
    try testing.expectEqual(null, treap.getMax());

    // Insert and check min/max after each insertion.
    iter.reset();
    while (iter.next()) |node| {
        const key = prng.random().int(u64);

        // Insert into `treap`.
        var entry = treap.getEntryFor(key);
        entry.set(node);

        if (key < min) min = key;
        if (key > max) max = key;

        const min_node = treap.getMin().?;
        try std.testing.expectEqual(null, min_node.prev());
        try std.testing.expectEqual(min, min_node.key);

        const max_node = treap.getMax().?;
        try std.testing.expectEqual(null, max_node.next());
        try std.testing.expectEqual(max, max_node.key);
    }
}

test "node.{prev(),next()} with sequential insertion and deletion" {
    // Insert order: 50, 0, 1, 2, ..., 49, 51, 52, ..., 99.
    // Delete order: 0, 1, 2, ..., 49, 51, 52, ..., 99.
    // Check 50's neighbors.
    var treap = TestTreap{};
    var nodes: [100]TestNode = undefined;
    {
        var entry = treap.getEntryFor(50);
        entry.set(&nodes[50]);
        try testing.expectEqual(50, nodes[50].key);
        try testing.expectEqual(null, nodes[50].prev());
        try testing.expectEqual(null, nodes[50].next());
    }
    // Insert others.
    var i: usize = 0;
    while (i < 50) : (i += 1) {
        const key = @as(u64, i);
        const node = &nodes[i];
        var entry = treap.getEntryFor(key);
        entry.set(node);
        try testing.expectEqual(key, node.key);
        try testing.expectEqual(node, nodes[50].prev());
        try testing.expectEqual(null, nodes[50].next());
    }
    i = 51;
    while (i < 100) : (i += 1) {
        const key = @as(u64, i);
        const node = &nodes[i];
        var entry = treap.getEntryFor(key);
        entry.set(node);
        try testing.expectEqual(key, node.key);
        try testing.expectEqual(&nodes[49], nodes[50].prev());
        try testing.expectEqual(&nodes[51], nodes[50].next());
    }
    // Remove others.
    i = 0;
    while (i < 49) : (i += 1) {
        const key = @as(u64, i);
        var entry = treap.getEntryFor(key);
        entry.set(null);
        try testing.expectEqual(&nodes[49], nodes[50].prev());
        try testing.expectEqual(&nodes[51], nodes[50].next());
    }
    { // i = 49.
        const key = @as(u64, i);
        var entry = treap.getEntryFor(key);
        entry.set(null);
        try testing.expectEqual(null, nodes[50].prev());
        try testing.expectEqual(&nodes[51], nodes[50].next());
    }
    i = 51;
    while (i < 99) : (i += 1) {
        const key = @as(u64, i);
        var entry = treap.getEntryFor(key);
        entry.set(null);
        try testing.expectEqual(null, nodes[50].prev());
        try testing.expectEqual(&nodes[i + 1], nodes[50].next());
    }
    { // i = 99.
        const key = @as(u64, i);
        var entry = treap.getEntryFor(key);
        entry.set(null);
        try testing.expectEqual(null, nodes[50].prev());
        try testing.expectEqual(null, nodes[50].next());
    }
}

fn findFirstGreaterOrEqual(array: []u64, value: u64) usize {
    var i: usize = 0;
    while (i < array.len and array[i] < value) i += 1;
    return i;
}

fn testOrderedArrayAndTreapConsistency(array: []u64, treap: *TestTreap) !void {
    var i: usize = 0;
    while (i < array.len) : (i += 1) {
        const value = array[i];

        const entry = treap.getEntryFor(value);
        try testing.expect(entry.node != null);
        const node = entry.node.?;
        try testing.expectEqual(value, node.key);

        if (i == 0) {
            try testing.expectEqual(node.prev(), null);
        } else {
            try testing.expectEqual(node.prev(), treap.getEntryFor(array[i - 1]).node);
        }
        if (i + 1 == array.len) {
            try testing.expectEqual(node.next(), null);
        } else {
            try testing.expectEqual(node.next(), treap.getEntryFor(array[i + 1]).node);
        }
    }
}

test "node.{prev(),next()} with random data" {
    var nodes: [100]TestNode = undefined;
    var prng = std.Random.DefaultPrng.init(0xdeadbeef);
    var iter = SliceIterRandomOrder(TestNode).init(&nodes, prng.random());

    var treap = TestTreap{};
    // A slow, stupid but correct reference. Ordered.
    var golden = std.ArrayList(u64).init(std.testing.allocator);
    defer golden.deinit();

    // Insert.
    iter.reset();
    while (iter.next()) |node| {
        const key = prng.random().int(u64);

        // Insert into `golden`.
        const i = findFirstGreaterOrEqual(golden.items, key);
        // Ensure not found. If found: `prng`'s fault.
        try testing.expect(i == golden.items.len or golden.items[i] > key);
        try golden.insert(i, key);

        // Insert into `treap`.
        var entry = treap.getEntryFor(key);
        entry.set(node);

        try testOrderedArrayAndTreapConsistency(golden.items, &treap);
    }

    // Delete.
    iter.reset();
    while (iter.next()) |node| {
        const key = node.key;

        // Delete from `golden`.
        const i = findFirstGreaterOrEqual(golden.items, key);
        try testing.expect(i < golden.items.len);
        _ = golden.orderedRemove(i);

        // Delete from `treap`.
        var entry = treap.getEntryFor(key);
        try testing.expect(entry.node != null);
        entry.set(null);

        try testOrderedArrayAndTreapConsistency(golden.items, &treap);
    }
}