zig/lib/std / DoublyLinkedList.zig

A doubly-linked list has a pair of pointers to both the head and tail of the list. List elements have pointers to both the previous and next elements in the sequence. The list can be traversed both forward and backward. Some operations that take linear O(n) time with a singly-linked list can be done without traversal in constant O(1) time with a doubly-linked list: * Removing an element. * Inserting a new element before an existing element. * Pushing or popping an element from the end of the list.

//! A doubly-linked list has a pair of pointers to both the head and
//! tail of the list. List elements have pointers to both the previous
//! and next elements in the sequence. The list can be traversed both
//! forward and backward. Some operations that take linear O(n) time
//! with a singly-linked list can be done without traversal in constant
//! O(1) time with a doubly-linked list:
//!
//! * Removing an element.
//! * Inserting a new element before an existing element.
//! * Pushing or popping an element from the end of the list.

Node

This struct contains only the prev and next pointers and not any data payload. The intended usage is to embed it intrusively into another data structure and access the data with @fieldParentPtr.


const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const DoublyLinkedList = @This();

insertAfter()

Concatenate list2 onto the end of list1, removing all entries from the former. Arguments: list1: the list to concatenate onto list2: the list to be concatenated


first: ?*Node = null,
last: ?*Node = null,

insertBefore()

Insert a new node at the end of the list. Arguments: new_node: Pointer to the new node to insert.


/// This struct contains only the prev and next pointers and not any data
/// payload. The intended usage is to embed it intrusively into another data
/// structure and access the data with `@fieldParentPtr`.
pub const Node = struct {
    prev: ?*Node = null,
    next: ?*Node = null,
};

concatByMoving()

Insert a new node at the beginning of the list. Arguments: new_node: Pointer to the new node to insert.


pub fn insertAfter(list: *DoublyLinkedList, existing_node: *Node, new_node: *Node) void {
    new_node.prev = existing_node;
    if (existing_node.next) |next_node| {
        // Intermediate node.
        new_node.next = next_node;
        next_node.prev = new_node;
    } else {
        // Last element of the list.
        new_node.next = null;
        list.last = new_node;
    }
    existing_node.next = new_node;
}

append()

Remove a node from the list. Arguments: node: Pointer to the node to be removed.


pub fn insertBefore(list: *DoublyLinkedList, existing_node: *Node, new_node: *Node) void {
    new_node.next = existing_node;
    if (existing_node.prev) |prev_node| {
        // Intermediate node.
        new_node.prev = prev_node;
        prev_node.next = new_node;
    } else {
        // First element of the list.
        new_node.prev = null;
        list.first = new_node;
    }
    existing_node.prev = new_node;
}

prepend()

Remove and return the last node in the list. Returns: A pointer to the last node in the list.


/// Concatenate list2 onto the end of list1, removing all entries from the former.
///
/// Arguments:
///     list1: the list to concatenate onto
///     list2: the list to be concatenated
pub fn concatByMoving(list1: *DoublyLinkedList, list2: *DoublyLinkedList) void {
    const l2_first = list2.first orelse return;
    if (list1.last) |l1_last| {
        l1_last.next = list2.first;
        l2_first.prev = list1.last;
    } else {
        // list1 was empty
        list1.first = list2.first;
    }
    list1.last = list2.last;
    list2.first = null;
    list2.last = null;
}

remove()

Remove and return the first node in the list. Returns: A pointer to the first node in the list.


/// Insert a new node at the end of the list.
///
/// Arguments:
///     new_node: Pointer to the new node to insert.
pub fn append(list: *DoublyLinkedList, new_node: *Node) void {
    if (list.last) |last| {
        // Insert after last.
        list.insertAfter(last, new_node);
    } else {
        // Empty list.
        list.prepend(new_node);
    }
}

pop()

Iterate over all nodes, returning the count. This operation is O(N). Consider tracking the length separately rather than computing it.


/// Insert a new node at the beginning of the list.
///
/// Arguments:
///     new_node: Pointer to the new node to insert.
pub fn prepend(list: *DoublyLinkedList, new_node: *Node) void {
    if (list.first) |first| {
        // Insert before first.
        list.insertBefore(first, new_node);
    } else {
        // Empty list.
        list.first = new_node;
        list.last = new_node;
        new_node.prev = null;
        new_node.next = null;
    }
}

popFirst()


/// Remove a node from the list.
///
/// Arguments:
///     node: Pointer to the node to be removed.
pub fn remove(list: *DoublyLinkedList, node: *Node) void {
    if (node.prev) |prev_node| {
        // Intermediate node.
        prev_node.next = node.next;
    } else {
        // First element of the list.
        list.first = node.next;
    }

len()


    if (node.next) |next_node| {
        // Intermediate node.
        next_node.prev = node.prev;
    } else {
        // Last element of the list.
        list.last = node.prev;
    }
}

Test:

basics


/// Remove and return the last node in the list.
///
/// Returns:
///     A pointer to the last node in the list.
pub fn pop(list: *DoublyLinkedList) ?*Node {
    const last = list.last orelse return null;
    list.remove(last);
    return last;
}

Test:

concatenation


/// Remove and return the first node in the list.
///
/// Returns:
///     A pointer to the first node in the list.
pub fn popFirst(list: *DoublyLinkedList) ?*Node {
    const first = list.first orelse return null;
    list.remove(first);
    return first;
}

/// Iterate over all nodes, returning the count.
///
/// This operation is O(N). Consider tracking the length separately rather than
/// computing it.
pub fn len(list: DoublyLinkedList) usize {
    var count: usize = 0;
    var it: ?*const Node = list.first;
    while (it) |n| : (it = n.next) count += 1;
    return count;
}

test "basics" {
    const L = struct {
        data: u32,
        node: DoublyLinkedList.Node = .{},
    };
    var list: DoublyLinkedList = .{};

    var one: L = .{ .data = 1 };
    var two: L = .{ .data = 2 };
    var three: L = .{ .data = 3 };
    var four: L = .{ .data = 4 };
    var five: L = .{ .data = 5 };

    list.append(&two.node); // {2}
    list.append(&five.node); // {2, 5}
    list.prepend(&one.node); // {1, 2, 5}
    list.insertBefore(&five.node, &four.node); // {1, 2, 4, 5}
    list.insertAfter(&two.node, &three.node); // {1, 2, 3, 4, 5}

    // Traverse forwards.
    {
        var it = list.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == index);
            index += 1;
        }
    }

    // Traverse backwards.
    {
        var it = list.last;
        var index: u32 = 1;
        while (it) |node| : (it = node.prev) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == (6 - index));
            index += 1;
        }
    }

    _ = list.popFirst(); // {2, 3, 4, 5}
    _ = list.pop(); // {2, 3, 4}
    list.remove(&three.node); // {2, 4}

    try testing.expect(@as(*L, @fieldParentPtr("node", list.first.?)).data == 2);
    try testing.expect(@as(*L, @fieldParentPtr("node", list.last.?)).data == 4);
    try testing.expect(list.len() == 2);
}

test "concatenation" {
    const L = struct {
        data: u32,
        node: DoublyLinkedList.Node = .{},
    };
    var list1: DoublyLinkedList = .{};
    var list2: DoublyLinkedList = .{};

    var one: L = .{ .data = 1 };
    var two: L = .{ .data = 2 };
    var three: L = .{ .data = 3 };
    var four: L = .{ .data = 4 };
    var five: L = .{ .data = 5 };

    list1.append(&one.node);
    list1.append(&two.node);
    list2.append(&three.node);
    list2.append(&four.node);
    list2.append(&five.node);

    list1.concatByMoving(&list2);

    try testing.expect(list1.last == &five.node);
    try testing.expect(list1.len() == 5);
    try testing.expect(list2.first == null);
    try testing.expect(list2.last == null);
    try testing.expect(list2.len() == 0);

    // Traverse forwards.
    {
        var it = list1.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == index);
            index += 1;
        }
    }

    // Traverse backwards.
    {
        var it = list1.last;
        var index: u32 = 1;
        while (it) |node| : (it = node.prev) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == (6 - index));
            index += 1;
        }
    }

    // Swap them back, this verifies that concatenating to an empty list works.
    list2.concatByMoving(&list1);

    // Traverse forwards.
    {
        var it = list2.first;
        var index: u32 = 1;
        while (it) |node| : (it = node.next) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == index);
            index += 1;
        }
    }

    // Traverse backwards.
    {
        var it = list2.last;
        var index: u32 = 1;
        while (it) |node| : (it = node.prev) {
            const l: *L = @fieldParentPtr("node", node);
            try testing.expect(l.data == (6 - index));
            index += 1;
        }
    }
}