zig/lib/std / crypto/aes_siv.zig

AES-SIV: Deterministic authenticated encryption - the same message always produces the same ciphertext. What it does: Encrypts data and protects it from tampering. Unlike most encryption modes, AES-SIV is deterministic: encrypting the same message with the same key always produces the same ciphertext (unless you provide an optional nonce). When to use AES-SIV: - When you need deterministic encryption (e.g., for deduplication in encrypted storage) - When you can't store or generate nonces - For key wrapping (protecting cryptographic keys) - When you need to search encrypted data without decrypting it When NOT to use AES-SIV: - When identical plaintexts must produce different ciphertexts (use AES-GCM or AES-GCM-SIV) - For network protocols where replay attacks are a concern Unique features: - Optional nonce: You can add a nonce to make encryption non-deterministic, but this is optional - Multiple associated data: Supports a vector of associated data strings instead of just one. The algorithm cryptographically ensures each component is properly separated, preventing canonicalization attacks where different splits of data could be accepted as valid. Security properties: - Deterministic: Same input always gives same output (this can leak information about patterns) - Nonce misuse resistant: Doesn't catastrophically fail if you reuse a nonce - Key commitment: Ciphertext can only be decrypted with the exact key that encrypted it AES-SIV has better security properties than AES-GCM-SIV, but is must slower. How it works: Combines two keys - one for authentication (S2V) and one for encryption (CTR mode). The total key size is double the AES key size (256 bits for AES-128-SIV, 512 bits for AES-256-SIV). Defined in RFC 5297.

const std = @import("std");
const assert = std.debug.assert;
const crypto = std.crypto;
const debug = std.debug;
const mem = std.mem;
const math = std.math;
const modes = crypto.core.modes;
const Cmac = @import("cmac.zig").Cmac;
const AuthenticationError = crypto.errors.AuthenticationError;

Aes128Siv

S2V (String to Vector) - RFC 5297 Section 2.4 Derives a synthetic IV from the key and input strings using CMAC. This function implements a cryptographic pseudo-random function that maps a variable-length vector of strings to a fixed 128-bit output.


pub const Aes128Siv = AesSiv(crypto.core.aes.Aes128);

Aes256Siv

Double operation as defined in RFC 5297. Performs multiplication by x (i.e., left shift by 1) in GF(2^128). This is the same operation used in CMAC subkey generation. If the MSB is set, XORs with the polynomial 0x87 after shifting.

pub const Aes256Siv = AesSiv(crypto.core.aes.Aes256);

tag_length

Encrypt plaintext using AES-SIV c: Output buffer for ciphertext (same size as plaintext) tag: Output buffer for authentication tag (synthetic IV) m: Plaintext to encrypt ad: Optional associated data nonce: Optional nonce (if provided, will be added as last AD component) key: Combined key (2x AES key size)


/// AES-SIV: Deterministic authenticated encryption - the same message always produces the same ciphertext.
///
/// What it does: Encrypts data and protects it from tampering. Unlike most encryption modes,
/// AES-SIV is deterministic: encrypting the same message with the same key always produces
/// the same ciphertext (unless you provide an optional nonce).
///
/// When to use AES-SIV:
/// - When you need deterministic encryption (e.g., for deduplication in encrypted storage)
/// - When you can't store or generate nonces
/// - For key wrapping (protecting cryptographic keys)
/// - When you need to search encrypted data without decrypting it
///
/// When NOT to use AES-SIV:
/// - When identical plaintexts must produce different ciphertexts (use AES-GCM or AES-GCM-SIV)
/// - For network protocols where replay attacks are a concern
///
/// Unique features:
/// - Optional nonce: You can add a nonce to make encryption non-deterministic, but this is optional
/// - Multiple associated data: Supports a vector of associated data strings instead of just one.
///   The algorithm cryptographically ensures each component is properly separated, preventing
///   canonicalization attacks where different splits of data could be accepted as valid.
///
/// Security properties:
/// - Deterministic: Same input always gives same output (this can leak information about patterns)
/// - Nonce misuse resistant: Doesn't catastrophically fail if you reuse a nonce
/// - Key commitment: Ciphertext can only be decrypted with the exact key that encrypted it
///
/// AES-SIV has better security properties than AES-GCM-SIV, but is must slower.
///
/// How it works: Combines two keys - one for authentication (S2V) and one for encryption (CTR mode).
/// The total key size is double the AES key size (256 bits for AES-128-SIV, 512 bits for AES-256-SIV).
///
/// Defined in RFC 5297.
fn AesSiv(comptime Aes: anytype) type {
    debug.assert(Aes.block.block_length == 16);

key_length

Decrypt ciphertext using AES-SIV m: Output buffer for decrypted plaintext c: Ciphertext to decrypt tag: Authentication tag (synthetic IV) ad: Optional associated data (must match encryption) nonce: Optional nonce (must match encryption) key: Combined key (2x AES key size)


    return struct {
        pub const tag_length = 16;
        pub const key_length = Aes.key_bits / 8 * 2; // SIV uses 2x key size

encrypt()

Encrypts plaintext with multiple associated data components. This is the most general form of AES-SIV encryption that accepts an arbitrary vector of associated data strings as specified in RFC 5297.


        const CmacImpl = Cmac(Aes);

decrypt()

Decrypts ciphertext with multiple associated data components. This is the most general form of AES-SIV decryption that accepts an arbitrary vector of associated data strings as specified in RFC 5297.


        /// S2V (String to Vector) - RFC 5297 Section 2.4
        /// Derives a synthetic IV from the key and input strings using CMAC.
        /// This function implements a cryptographic pseudo-random function that maps
        /// a variable-length vector of strings to a fixed 128-bit output.
        fn s2v(iv: *[16]u8, key: [Aes.key_bits / 8]u8, strings: []const []const u8) void {
            assert(strings.len > 0);
            assert(strings.len <= 127); // S2V limitation

encryptWithAdVector()


            var d: [16]u8 = undefined;

decryptWithAdVector()


            // Special case: single empty string
            if (strings.len == 1 and strings[0].len == 0) {
                CmacImpl.create(&d, &[_]u8{}, &key);
                iv.* = d;
                return;
            }

Test:

AES-SIV double operation


            // Initialize with CMAC of zero block
            const zero_block: [16]u8 = @splat(0);
            CmacImpl.create(&d, &zero_block, &key);

Test:

AES-SIV double operation with MSB set


            // Process all strings except the last one
            var i: usize = 0;
            while (i < strings.len - 1) : (i += 1) {
                d = dbl(d);
                var tmp: [16]u8 = undefined;
                CmacImpl.create(&tmp, strings[i], &key);
                for (&d, tmp) |*b, t| {
                    b.* ^= t;
                }
            }

Test:

Aes128Siv - RFC 5297 Test Vector A.1


            // Process the final string
            const sn = strings[strings.len - 1];
            if (sn.len >= 16) {
                // XOR d with the first 16 bytes of Sn
                var xored_msg_buf: [4096]u8 = undefined;
                const xored_len = @min(sn.len, xored_msg_buf.len);
                @memcpy(xored_msg_buf[0..xored_len], sn[0..xored_len]);

Test:

Aes128Siv - empty plaintext


                for (d, 0..) |b, j| {
                    xored_msg_buf[j] ^= b;
                }

Test:

Aes128Siv - with nonce


                CmacImpl.create(iv, xored_msg_buf[0..xored_len], &key);
            } else {
                // Pad and XOR
                d = dbl(d);
                var padded: [16]u8 = @splat(0);
                @memcpy(padded[0..sn.len], sn);
                padded[sn.len] = 0x80;
                for (&d, padded) |*b, p| {
                    b.* ^= p;
                }
                CmacImpl.create(iv, &d, &key);
            }
        }

Test:

Aes256Siv - basic functionality


        /// Double operation as defined in RFC 5297.
        /// Performs multiplication by x (i.e., left shift by 1) in GF(2^128).
        /// This is the same operation used in CMAC subkey generation.
        /// If the MSB is set, XORs with the polynomial 0x87 after shifting.
        fn dbl(d: [16]u8) [16]u8 {
            // Read as big-endian 128-bit integer
            const val = mem.readInt(u128, &d, .big);

Test:

Aes128Siv - demonstrating optional parameters


            // Left shift by 1, and XOR with 0x87 if MSB was set
            const doubled = (val << 1) ^ (0x87 & -%(@as(u128, val >> 127)));

Test:

Aes128Siv - authentication failure


            // Write back as big-endian
            var result: [16]u8 = undefined;
            mem.writeInt(u128, &result, doubled, .big);
            return result;
        }

        /// Encrypt plaintext using AES-SIV
        /// `c`: Output buffer for ciphertext (same size as plaintext)
        /// `tag`: Output buffer for authentication tag (synthetic IV)
        /// `m`: Plaintext to encrypt
        /// `ad`: Optional associated data
        /// `nonce`: Optional nonce (if provided, will be added as last AD component)
        /// `key`: Combined key (2x AES key size)
        pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: ?[]const u8, nonce: ?[]const u8, key: [key_length]u8) void {
            debug.assert(c.len == m.len);

            // Split key into K1 (for S2V) and K2 (for CTR)
            const k1 = key[0 .. Aes.key_bits / 8];
            const k2 = key[Aes.key_bits / 8 ..];

            // Prepare strings for S2V: AD components followed by plaintext
            var strings_buf: [128][]const u8 = undefined;
            var strings_len: usize = 0;

            if (ad) |a| {
                strings_buf[strings_len] = a;
                strings_len += 1;
            }
            if (nonce) |n| {
                strings_buf[strings_len] = n;
                strings_len += 1;
            }
            strings_buf[strings_len] = m;
            strings_len += 1;

            // Compute synthetic IV using S2V
            s2v(tag, k1.*, strings_buf[0..strings_len]);

            // Clear the 31st and 63rd bits for use as CTR IV
            var ctr_iv = tag.*;
            ctr_iv[8] &= 0x7f;
            ctr_iv[12] &= 0x7f;

            // Encrypt plaintext using CTR mode
            const aes_ctx = Aes.initEnc(k2.*);
            modes.ctr(@TypeOf(aes_ctx), aes_ctx, c, m, ctr_iv, .big);
        }

        /// Decrypt ciphertext using AES-SIV
        /// `m`: Output buffer for decrypted plaintext
        /// `c`: Ciphertext to decrypt
        /// `tag`: Authentication tag (synthetic IV)
        /// `ad`: Optional associated data (must match encryption)
        /// `nonce`: Optional nonce (must match encryption)
        /// `key`: Combined key (2x AES key size)
        pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: ?[]const u8, nonce: ?[]const u8, key: [key_length]u8) AuthenticationError!void {
            assert(c.len == m.len);

            // Split key into K1 (for S2V) and K2 (for CTR)
            const k1 = key[0 .. Aes.key_bits / 8];
            const k2 = key[Aes.key_bits / 8 ..];

            // Clear the 31st and 63rd bits for use as CTR IV
            var ctr_iv = tag;
            ctr_iv[8] &= 0x7f;
            ctr_iv[12] &= 0x7f;

            // Decrypt ciphertext using CTR mode
            const aes_ctx = Aes.initEnc(k2.*);
            modes.ctr(@TypeOf(aes_ctx), aes_ctx, m, c, ctr_iv, .big);

            // Prepare strings for S2V: AD components followed by plaintext
            var strings_buf: [128][]const u8 = undefined;
            var strings_len: usize = 0;

            if (ad) |a| {
                strings_buf[strings_len] = a;
                strings_len += 1;
            }
            if (nonce) |n| {
                strings_buf[strings_len] = n;
                strings_len += 1;
            }
            strings_buf[strings_len] = m;
            strings_len += 1;

            // Verify synthetic IV using S2V
            var computed_tag: [tag_length]u8 = undefined;
            s2v(&computed_tag, k1.*, strings_buf[0..strings_len]);

            // Verify tag
            const verify = crypto.timing_safe.eql([tag_length]u8, computed_tag, tag);
            if (!verify) {
                crypto.secureZero(u8, &computed_tag);
                @memset(m, undefined);
                return error.AuthenticationFailed;
            }
        }

        /// Encrypts plaintext with multiple associated data components.
        /// This is the most general form of AES-SIV encryption that accepts
        /// an arbitrary vector of associated data strings as specified in RFC 5297.
        pub fn encryptWithAdVector(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const []const u8, key: [key_length]u8) void {
            debug.assert(c.len == m.len);

            // Split key into K1 (for S2V) and K2 (for CTR)
            const k1 = key[0 .. Aes.key_bits / 8];
            const k2 = key[Aes.key_bits / 8 ..];

            // Prepare strings for S2V: AD components followed by plaintext
            var strings_buf: [128][]const u8 = undefined;
            var strings_len: usize = 0;

            for (ad) |a| {
                strings_buf[strings_len] = a;
                strings_len += 1;
            }
            strings_buf[strings_len] = m;
            strings_len += 1;

            // Compute synthetic IV using S2V
            s2v(tag, k1.*, strings_buf[0..strings_len]);

            // Clear the 31st and 63rd bits for use as CTR IV
            var ctr_iv = tag.*;
            ctr_iv[8] &= 0x7f;
            ctr_iv[12] &= 0x7f;

            // Encrypt plaintext using CTR mode
            const aes_ctx = Aes.initEnc(k2.*);
            modes.ctr(@TypeOf(aes_ctx), aes_ctx, c, m, ctr_iv, .big);
        }

        /// Decrypts ciphertext with multiple associated data components.
        /// This is the most general form of AES-SIV decryption that accepts
        /// an arbitrary vector of associated data strings as specified in RFC 5297.
        pub fn decryptWithAdVector(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const []const u8, key: [key_length]u8) AuthenticationError!void {
            assert(c.len == m.len);

            // Split key into K1 (for S2V) and K2 (for CTR)
            const k1 = key[0 .. Aes.key_bits / 8];
            const k2 = key[Aes.key_bits / 8 ..];

            // Clear the 31st and 63rd bits for use as CTR IV
            var ctr_iv = tag;
            ctr_iv[8] &= 0x7f;
            ctr_iv[12] &= 0x7f;

            // Decrypt ciphertext using CTR mode
            const aes_ctx = Aes.initEnc(k2.*);
            modes.ctr(@TypeOf(aes_ctx), aes_ctx, m, c, ctr_iv, .big);

            // Prepare strings for S2V: AD components followed by plaintext
            var strings_buf: [128][]const u8 = undefined;
            var strings_len: usize = 0;

            for (ad) |a| {
                strings_buf[strings_len] = a;
                strings_len += 1;
            }
            strings_buf[strings_len] = m;
            strings_len += 1;

            // Verify synthetic IV using S2V
            var computed_tag: [tag_length]u8 = undefined;
            s2v(&computed_tag, k1.*, strings_buf[0..strings_len]);

            // Verify tag
            const verify = crypto.timing_safe.eql([tag_length]u8, computed_tag, tag);
            if (!verify) {
                crypto.secureZero(u8, &computed_tag);
                @memset(m, undefined);
                return error.AuthenticationFailed;
            }
        }
    };
}

const htest = @import("test.zig");
const testing = std.testing;

test "AES-SIV double operation" {
    const AesSivTest = AesSiv(crypto.core.aes.Aes128);

    // Test vector from RFC 5297
    const input = [_]u8{ 0x0e, 0x04, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e };
    const expected = [_]u8{ 0x1c, 0x08, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c };

    const result = AesSivTest.dbl(input);
    try testing.expectEqualSlices(u8, &expected, &result);
}

test "AES-SIV double operation with MSB set" {
    const AesSivTest = AesSiv(crypto.core.aes.Aes128);

    const input = [_]u8{ 0xe0, 0x40, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0, 0xc0, 0xd0, 0xe0 };
    const expected = [_]u8{ 0xc0, 0x80, 0x20, 0x40, 0x60, 0x80, 0xa0, 0xc0, 0xe1, 0x01, 0x21, 0x41, 0x61, 0x81, 0xa1, 0x47 };

    const result = AesSivTest.dbl(input);
    try testing.expectEqualSlices(u8, &expected, &result);
}

test "Aes128Siv - RFC 5297 Test Vector A.1" {
    // Test vector from RFC 5297 Appendix A.1
    const key = [_]u8{
        0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8, 0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0,
        0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
    };
    const ad = [_]u8{
        0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
        0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
    };
    const plaintext = [_]u8{
        0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee,
    };

    var ciphertext: [plaintext.len]u8 = undefined;
    var tag: [16]u8 = undefined;

    // Test using vector API for RFC compliance
    const ad_components = [_][]const u8{&ad};
    Aes128Siv.encryptWithAdVector(&ciphertext, &tag, &plaintext, &ad_components, key);

    // Expected values from RFC 5297
    try htest.assertEqual("85632d07c6e8f37f950acd320a2ecc93", &tag);
    try htest.assertEqual("40c02b9690c4dc04daef7f6afe5c", &ciphertext);

    // Test decryption
    var decrypted: [plaintext.len]u8 = undefined;
    try Aes128Siv.decryptWithAdVector(&decrypted, &ciphertext, tag, &ad_components, key);
    try testing.expectEqualSlices(u8, &plaintext, &decrypted);
}

test "Aes128Siv - empty plaintext" {
    const key: [32]u8 = @splat(0x42);
    const plaintext = "";
    const ad = "additional data";

    var ciphertext: [plaintext.len]u8 = undefined;
    var tag: [16]u8 = undefined;

    Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, null, key);

    var decrypted: [plaintext.len]u8 = undefined;
    try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, null, key);
}

test "Aes128Siv - with nonce" {
    const key: [32]u8 = @splat(0x69);
    const nonce: [16]u8 = @splat(0x42);
    const plaintext = "Hello, AES-SIV!";
    const ad = "metadata";

    var ciphertext: [plaintext.len]u8 = undefined;
    var tag: [16]u8 = undefined;

    Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, &nonce, key);

    var decrypted: [plaintext.len]u8 = undefined;
    try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, &nonce, key);
    try testing.expectEqualSlices(u8, plaintext, &decrypted);
}

test "Aes256Siv - basic functionality" {
    const key: [64]u8 = @splat(0x96);
    const plaintext = "Test message for AES-256-SIV";
    const ad1 = "header";
    const ad2 = "more data";

    var ciphertext: [plaintext.len]u8 = undefined;
    var tag: [16]u8 = undefined;

    // Test with multiple AD components using the vector API
    const ad_components = [_][]const u8{ ad1, ad2 };
    Aes256Siv.encryptWithAdVector(&ciphertext, &tag, plaintext, &ad_components, key);

    var decrypted: [plaintext.len]u8 = undefined;
    try Aes256Siv.decryptWithAdVector(&decrypted, &ciphertext, tag, &ad_components, key);
    try testing.expectEqualSlices(u8, plaintext, &decrypted);
}

test "Aes128Siv - demonstrating optional parameters" {
    const key: [32]u8 = @splat(0x77);

    // Test 1: No AD, no nonce (pure deterministic)
    {
        const plaintext = "Deterministic encryption";
        var ciphertext: [plaintext.len]u8 = undefined;
        var tag: [16]u8 = undefined;

        Aes128Siv.encrypt(&ciphertext, &tag, plaintext, null, null, key);

        var decrypted: [plaintext.len]u8 = undefined;
        try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, null, null, key);
        try testing.expectEqualSlices(u8, plaintext, &decrypted);
    }

    // Test 2: With AD, no nonce
    {
        const plaintext = "With associated data";
        const ad = "some context";
        var ciphertext: [plaintext.len]u8 = undefined;
        var tag: [16]u8 = undefined;

        Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, null, key);

        var decrypted: [plaintext.len]u8 = undefined;
        try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, null, key);
        try testing.expectEqualSlices(u8, plaintext, &decrypted);
    }

    // Test 3: No AD, with nonce
    {
        const plaintext = "Nonce-based encryption";
        const nonce: [12]u8 = @splat(0x01);
        var ciphertext: [plaintext.len]u8 = undefined;
        var tag: [16]u8 = undefined;

        Aes128Siv.encrypt(&ciphertext, &tag, plaintext, null, &nonce, key);

        var decrypted: [plaintext.len]u8 = undefined;
        try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, null, &nonce, key);
        try testing.expectEqualSlices(u8, plaintext, &decrypted);
    }

    // Test 4: With both AD and nonce
    {
        const plaintext = "Full featured";
        const ad = "context";
        const nonce: [16]u8 = @splat(0x02);
        var ciphertext: [plaintext.len]u8 = undefined;
        var tag: [16]u8 = undefined;

        Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, &nonce, key);

        var decrypted: [plaintext.len]u8 = undefined;
        try Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, &nonce, key);
        try testing.expectEqualSlices(u8, plaintext, &decrypted);
    }
}

test "Aes128Siv - authentication failure" {
    const key: [32]u8 = @splat(0x13);
    const plaintext = "Secret message";
    const ad = "";

    var ciphertext: [plaintext.len]u8 = undefined;
    var tag: [16]u8 = undefined;

    Aes128Siv.encrypt(&ciphertext, &tag, plaintext, ad, null, key);

    // Corrupt the tag
    tag[0] ^= 0x01;

    var decrypted: [plaintext.len]u8 = undefined;
    try testing.expectError(error.AuthenticationFailed, Aes128Siv.decrypt(&decrypted, &ciphertext, tag, ad, null, key));
}