zig/lib/std / crypto/keccak_p.zig

The Keccak-f permutation.

const std = @import("std");
const builtin = @import("builtin");
const assert = std.debug.assert;
const math = std.math;
const mem = std.mem;
const native_endian = builtin.cpu.arch.endian();
const mode = @import("builtin").mode;

KeccakF()

Number of bytes in the state.


/// The Keccak-f permutation.
pub fn KeccakF(comptime f: u11) type {
    comptime assert(f >= 200 and f <= 1600 and f % 200 == 0); // invalid bit size
    const T = std.meta.Int(.unsigned, f / 25);
    const Block = [25]T;

block_bytes

Maximum number of rounds for the given f parameter.


    const PI = [_]u5{
        10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1,
    };

max_rounds

Initialize the state from a slice of bytes.


    return struct {
        const Self = @This();

init()

A representation of the state as bytes. The byte order is architecture-dependent.


        /// Number of bytes in the state.
        pub const block_bytes = f / 8;

asBytes()

Byte-swap the entire state if the architecture doesn't match the required endianness.


        /// Maximum number of rounds for the given f parameter.
        pub const max_rounds = 12 + 2 * math.log2(f / 25);

endianSwap()

Set bytes starting at the beginning of the state.


        // Round constants
        const RC = rc: {
            const RC64 = [_]u64{
                0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
                0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
                0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
                0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
                0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
                0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008,
            };
            var rc: [max_rounds]T = undefined;
            for (&rc, RC64[0..max_rounds]) |*t, c| t.* = @as(T, @truncate(c));
            break :rc rc;
        };

setBytes()

XOR a byte into the state at a given offset.


        st: Block = [_]T{0} ** 25,

addByte()

XOR bytes into the beginning of the state.


        /// Initialize the state from a slice of bytes.
        pub fn init(bytes: [block_bytes]u8) Self {
            var self: Self = undefined;
            inline for (&self.st, 0..) |*r, i| {
                r.* = mem.readInt(T, bytes[@sizeOf(T) * i ..][0..@sizeOf(T)], .little);
            }
            return self;
        }

addBytes()

Extract the first bytes of the state.


        /// A representation of the state as bytes. The byte order is architecture-dependent.
        pub fn asBytes(self: *Self) *[block_bytes]u8 {
            return mem.asBytes(&self.st);
        }

extractBytes()

XOR the first bytes of the state into a slice of bytes.


        /// Byte-swap the entire state if the architecture doesn't match the required endianness.
        pub fn endianSwap(self: *Self) void {
            for (&self.st) |*w| {
                w.* = mem.littleToNative(T, w.*);
            }
        }

xorBytes()

Set the words storing the bytes of a given range to zero.


        /// Set bytes starting at the beginning of the state.
        pub fn setBytes(self: *Self, bytes: []const u8) void {
            var i: usize = 0;
            while (i + @sizeOf(T) <= bytes.len) : (i += @sizeOf(T)) {
                self.st[i / @sizeOf(T)] = mem.readInt(T, bytes[i..][0..@sizeOf(T)], .little);
            }
            if (i < bytes.len) {
                var padded = [_]u8{0} ** @sizeOf(T);
                @memcpy(padded[0 .. bytes.len - i], bytes[i..]);
                self.st[i / @sizeOf(T)] = mem.readInt(T, padded[0..], .little);
            }
        }

clear()

Clear the entire state, disabling compiler optimizations.


        /// XOR a byte into the state at a given offset.
        pub fn addByte(self: *Self, byte: u8, offset: usize) void {
            const z = @sizeOf(T) * @as(math.Log2Int(T), @truncate(offset % @sizeOf(T)));
            self.st[offset / @sizeOf(T)] ^= @as(T, byte) << z;
        }

secureZero()

Apply a (possibly) reduced-round permutation to the state.


        /// XOR bytes into the beginning of the state.
        pub fn addBytes(self: *Self, bytes: []const u8) void {
            var i: usize = 0;
            while (i + @sizeOf(T) <= bytes.len) : (i += @sizeOf(T)) {
                self.st[i / @sizeOf(T)] ^= mem.readInt(T, bytes[i..][0..@sizeOf(T)], .little);
            }
            if (i < bytes.len) {
                var padded = [_]u8{0} ** @sizeOf(T);
                @memcpy(padded[0 .. bytes.len - i], bytes[i..]);
                self.st[i / @sizeOf(T)] ^= mem.readInt(T, padded[0..], .little);
            }
        }

permuteR()

Apply a full-round permutation to the state.


        /// Extract the first bytes of the state.
        pub fn extractBytes(self: *Self, out: []u8) void {
            var i: usize = 0;
            while (i + @sizeOf(T) <= out.len) : (i += @sizeOf(T)) {
                mem.writeInt(T, out[i..][0..@sizeOf(T)], self.st[i / @sizeOf(T)], .little);
            }
            if (i < out.len) {
                var padded = [_]u8{0} ** @sizeOf(T);
                mem.writeInt(T, padded[0..], self.st[i / @sizeOf(T)], .little);
                @memcpy(out[i..], padded[0 .. out.len - i]);
            }
        }

permute()

A generic Keccak-P state.


        /// XOR the first bytes of the state into a slice of bytes.
        pub fn xorBytes(self: *Self, out: []u8, in: []const u8) void {
            assert(out.len == in.len);

State()

The block length, or rate, in bytes.


            var i: usize = 0;
            while (i + @sizeOf(T) <= in.len) : (i += @sizeOf(T)) {
                const x = mem.readInt(T, in[i..][0..@sizeOf(T)], native_endian) ^ mem.nativeToLittle(T, self.st[i / @sizeOf(T)]);
                mem.writeInt(T, out[i..][0..@sizeOf(T)], x, native_endian);
            }
            if (i < in.len) {
                var padded = [_]u8{0} ** @sizeOf(T);
                @memcpy(padded[0 .. in.len - i], in[i..]);
                const x = mem.readInt(T, &padded, native_endian) ^ mem.nativeToLittle(T, self.st[i / @sizeOf(T)]);
                mem.writeInt(T, &padded, x, native_endian);
                @memcpy(out[i..], padded[0 .. in.len - i]);
            }
        }

rate

Keccak does not have any options.


        /// Set the words storing the bytes of a given range to zero.
        pub fn clear(self: *Self, from: usize, to: usize) void {
            @memset(self.st[from / @sizeOf(T) .. (to + @sizeOf(T) - 1) / @sizeOf(T)], 0);
        }

Options

The input delimiter.


        /// Clear the entire state, disabling compiler optimizations.
        pub fn secureZero(self: *Self) void {
            std.crypto.secureZero(T, &self.st);
        }

absorb()

Absorb a slice of bytes into the sponge.


        inline fn round(self: *Self, rc: T) void {
            const st = &self.st;

init()

Initialize the state from a slice of bytes.


            // theta
            var t = [_]T{0} ** 5;
            inline for (0..5) |i| {
                inline for (0..5) |j| {
                    t[i] ^= st[j * 5 + i];
                }
            }
            inline for (0..5) |i| {
                inline for (0..5) |j| {
                    st[j * 5 + i] ^= t[(i + 4) % 5] ^ math.rotl(T, t[(i + 1) % 5], 1);
                }
            }

permute()

Permute the state


            // rho+pi
            var last = st[1];
            comptime var rotc = 0;
            inline for (0..24) |i| {
                const x = PI[i];
                const tmp = st[x];
                rotc = (rotc + i + 1) % @bitSizeOf(T);
                st[x] = math.rotl(T, last, rotc);
                last = tmp;
            }
            inline for (0..5) |i| {
                inline for (0..5) |j| {
                    t[j] = st[i * 5 + j];
                }
                inline for (0..5) |j| {
                    st[i * 5 + j] = t[j] ^ (~t[(j + 1) % 5] & t[(j + 2) % 5]);
                }
            }

fillBlock()

Align the input to the rate boundary and permute.


            // iota
            st[0] ^= rc;
        }

pad()

Mark the end of the input.


        /// Apply a (possibly) reduced-round permutation to the state.
        pub fn permuteR(self: *Self, comptime rounds: u5) void {
            var i = RC.len - rounds;
            while (i < RC.len - RC.len % 3) : (i += 3) {
                self.round(RC[i]);
                self.round(RC[i + 1]);
                self.round(RC[i + 2]);
            }
            while (i < RC.len) : (i += 1) {
                self.round(RC[i]);
            }
        }

squeeze()

Squeeze a slice of bytes from the sponge. The function can be called multiple times.


        /// Apply a full-round permutation to the state.
        pub fn permute(self: *Self) void {
            self.permuteR(max_rounds);
        }
    };
}

Test:

Keccak-f800


/// A generic Keccak-P state.
pub fn State(comptime f: u11, comptime capacity: u11, comptime rounds: u5) type {
    comptime assert(f >= 200 and f <= 1600 and f % 200 == 0); // invalid state size
    comptime assert(capacity < f and capacity % 8 == 0); // invalid capacity size

Test:

squeeze


    // In debug mode, track transitions to prevent insecure ones.
    const Op = enum { uninitialized, initialized, updated, absorb, squeeze };
    const TransitionTracker = if (mode == .Debug) struct {
        op: Op = .uninitialized,

        fn to(tracker: *@This(), next_op: Op) void {
            switch (next_op) {
                .updated => {
                    switch (tracker.op) {
                        .uninitialized => @panic("cannot permute before initializing"),
                        else => {},
                    }
                },
                .absorb => {
                    switch (tracker.op) {
                        .squeeze => @panic("cannot absorb right after squeezing"),
                        else => {},
                    }
                },
                .squeeze => {
                    switch (tracker.op) {
                        .uninitialized => @panic("cannot squeeze before initializing"),
                        .initialized => @panic("cannot squeeze right after initializing"),
                        .absorb => @panic("cannot squeeze right after absorbing"),
                        else => {},
                    }
                },
                .uninitialized => @panic("cannot transition to uninitialized"),
                .initialized => {},
            }
            tracker.op = next_op;
        }
    } else struct {
        // No-op in non-debug modes.
        inline fn to(tracker: *@This(), next_op: Op) void {
            _ = tracker; // no-op
            _ = next_op; // no-op
        }
    };

    return struct {
        const Self = @This();

        /// The block length, or rate, in bytes.
        pub const rate = KeccakF(f).block_bytes - capacity / 8;
        /// Keccak does not have any options.
        pub const Options = struct {};

        /// The input delimiter.
        delim: u8,

        offset: usize = 0,
        buf: [rate]u8 = undefined,

        st: KeccakF(f) = .{},

        transition: TransitionTracker = .{},

        /// Absorb a slice of bytes into the sponge.
        pub fn absorb(self: *Self, bytes: []const u8) void {
            self.transition.to(.absorb);
            var i: usize = 0;
            if (self.offset > 0) {
                const left = @min(rate - self.offset, bytes.len);
                @memcpy(self.buf[self.offset..][0..left], bytes[0..left]);
                self.offset += left;
                if (left == bytes.len) return;
                if (self.offset == rate) {
                    self.st.addBytes(self.buf[0..]);
                    self.st.permuteR(rounds);
                    self.offset = 0;
                }
                i = left;
            }
            while (i + rate < bytes.len) : (i += rate) {
                self.st.addBytes(bytes[i..][0..rate]);
                self.st.permuteR(rounds);
            }
            const left = bytes.len - i;
            if (left > 0) {
                @memcpy(self.buf[0..left], bytes[i..][0..left]);
            }
            self.offset = left;
        }

        /// Initialize the state from a slice of bytes.
        pub fn init(bytes: [f / 8]u8, delim: u8) Self {
            var st = Self{ .st = KeccakF(f).init(bytes), .delim = delim };
            st.transition.to(.initialized);
            return st;
        }

        /// Permute the state
        pub fn permute(self: *Self) void {
            if (mode == .Debug) {
                if (self.transition.op == .absorb and self.offset > 0) {
                    @panic("cannot permute with pending input - call fillBlock() or pad() instead");
                }
            }
            self.transition.to(.updated);
            self.st.permuteR(rounds);
            self.offset = 0;
        }

        /// Align the input to the rate boundary and permute.
        pub fn fillBlock(self: *Self) void {
            self.transition.to(.absorb);
            self.st.addBytes(self.buf[0..self.offset]);
            self.st.permuteR(rounds);
            self.offset = 0;
            self.transition.to(.updated);
        }

        /// Mark the end of the input.
        pub fn pad(self: *Self) void {
            self.transition.to(.absorb);
            self.st.addBytes(self.buf[0..self.offset]);
            if (self.offset == rate) {
                self.st.permuteR(rounds);
                self.offset = 0;
            }
            self.st.addByte(self.delim, self.offset);
            self.st.addByte(0x80, rate - 1);
            self.st.permuteR(rounds);
            self.offset = 0;
            self.transition.to(.updated);
        }

        /// Squeeze a slice of bytes from the sponge.
        /// The function can be called multiple times.
        pub fn squeeze(self: *Self, out: []u8) void {
            self.transition.to(.squeeze);
            var i: usize = 0;
            if (self.offset == rate) {
                self.st.permuteR(rounds);
            } else if (self.offset > 0) {
                @branchHint(.unlikely);
                var buf: [rate]u8 = undefined;
                self.st.extractBytes(buf[0..]);
                const left = @min(rate - self.offset, out.len);
                @memcpy(out[0..left], buf[self.offset..][0..left]);
                self.offset += left;
                if (left == out.len) return;
                if (self.offset == rate) {
                    self.offset = 0;
                    self.st.permuteR(rounds);
                }
                i = left;
            }
            while (i + rate < out.len) : (i += rate) {
                self.st.extractBytes(out[i..][0..rate]);
                self.st.permuteR(rounds);
            }
            const left = out.len - i;
            if (left > 0) {
                self.st.extractBytes(out[i..][0..left]);
            }
            self.offset = left;
        }
    };
}

test "Keccak-f800" {
    var st: KeccakF(800) = .{
        .st = .{
            0xE531D45D, 0xF404C6FB, 0x23A0BF99, 0xF1F8452F, 0x51FFD042, 0xE539F578, 0xF00B80A7,
            0xAF973664, 0xBF5AF34C, 0x227A2424, 0x88172715, 0x9F685884, 0xB15CD054, 0x1BF4FC0E,
            0x6166FA91, 0x1A9E599A, 0xA3970A1F, 0xAB659687, 0xAFAB8D68, 0xE74B1015, 0x34001A98,
            0x4119EFF3, 0x930A0E76, 0x87B28070, 0x11EFE996,
        },
    };
    st.permute();
    const expected: [25]u32 = .{
        0x75BF2D0D, 0x9B610E89, 0xC826AF40, 0x64CD84AB, 0xF905BDD6, 0xBC832835, 0x5F8001B9,
        0x15662CCE, 0x8E38C95E, 0x701FE543, 0x1B544380, 0x89ACDEFF, 0x51EDB5DE, 0x0E9702D9,
        0x6C19AA16, 0xA2913EEE, 0x60754E9A, 0x9819063C, 0xF4709254, 0xD09F9084, 0x772DA259,
        0x1DB35DF7, 0x5AA60162, 0x358825D5, 0xB3783BAB,
    };
    try std.testing.expectEqualSlices(u32, &st.st, &expected);
}

test "squeeze" {
    var st = State(800, 256, 22).init([_]u8{0x80} ** 100, 0x01);

    var out0: [15]u8 = undefined;
    var out1: [out0.len]u8 = undefined;
    st.permute();
    var st0 = st;
    st0.squeeze(out0[0..]);
    var st1 = st;
    st1.squeeze(out1[0 .. out1.len / 2]);
    st1.squeeze(out1[out1.len / 2 ..]);
    try std.testing.expectEqualSlices(u8, &out0, &out1);

    var out2: [100]u8 = undefined;
    var out3: [out2.len]u8 = undefined;
    var st2 = st;
    st2.squeeze(out2[0..]);
    var st3 = st;
    st3.squeeze(out3[0 .. out2.len / 2]);
    st3.squeeze(out3[out2.len / 2 ..]);
    try std.testing.expectEqualSlices(u8, &out2, &out3);
}