zig/lib/std / debug/ElfFile.zig

A helper type for loading an ELF file and collecting its DWARF debug information, unwind information, and symbol table.

//! A helper type for loading an ELF file and collecting its DWARF debug information, unwind
//! information, and symbol table.

UnwindSection

This is null iff any of the required DWARF sections were missing. ElfFile.load does *not* call Dwarf.open, Dwarf.scanAllFunctions, etc; that is the caller's responsibility.


is_64: bool,
endian: Endian,

SymtabSection

If non-null, describes the .eh_frame section, which can be used with Dwarf.Unwind.


/// This is `null` iff any of the required DWARF sections were missing. `ElfFile.load` does *not*
/// call `Dwarf.open`, `Dwarf.scanAllFunctions`, etc; that is the caller's responsibility.
dwarf: ?Dwarf,

DebugInfoSearchPaths

If non-null, describes the .debug_frame section, which can be used with Dwarf.Unwind.


/// If non-`null`, describes the `.eh_frame` section, which can be used with `Dwarf.Unwind`.
eh_frame: ?UnwindSection,
/// If non-`null`, describes the `.debug_frame` section, which can be used with `Dwarf.Unwind`.
debug_frame: ?UnwindSection,

none:

If non-null, this is the contents of the .strtab section.


/// If non-`null`, this is the contents of the `.strtab` section.
strtab: ?[]const u8,
/// If non-`null`, describes the `.symtab` section.
symtab: ?SymtabSection,

native()

If non-null, describes the .symtab section.


/// Binary search table lazily populated by `searchSymtab`.
symbol_search_table: ?[]usize,

deinit()

Binary search table lazily populated by searchSymtab.


/// The memory-mapped ELF file, which is referenced by `dwarf`. This field is here only so that
/// this memory can be unmapped by `ElfFile.deinit`.
mapped_file: []align(std.heap.page_size_min) const u8,
/// Sometimes, debug info is stored separately to the main ELF file. In that case, `mapped_file`
/// is the mapped ELF binary, and `mapped_debug_file` is the mapped debug info file. Both must
/// be unmapped by `ElfFile.deinit`.
mapped_debug_file: ?[]align(std.heap.page_size_min) const u8,

LoadError

The memory-mapped ELF file, which is referenced by dwarf. This field is here only so that this memory can be unmapped by ElfFile.deinit.


arena: std.heap.ArenaAllocator.State,

load()

Sometimes, debug info is stored separately to the main ELF file. In that case, mapped_file is the mapped ELF binary, and mapped_debug_file is the mapped debug info file. Both must be unmapped by ElfFile.deinit.


pub const UnwindSection = struct {
    vaddr: u64,
    bytes: []const u8,
};
pub const SymtabSection = struct {
    entry_size: u64,
    bytes: []const u8,
};

searchSymtab()

The location of a debuginfod client directory, which acts as a search path for build IDs. If given, we can load from this directory opportunistically, but make no effort to populate it. To avoid allocation when building the search paths, this is given as two components which will be concatenated.


pub const DebugInfoSearchPaths = struct {
    /// The location of a debuginfod client directory, which acts as a search path for build IDs. If
    /// given, we can load from this directory opportunistically, but make no effort to populate it.
    /// To avoid allocation when building the search paths, this is given as two components which
    /// will be concatenated.
    debuginfod_client: ?[2][]const u8,
    /// All "global debug directories" on the system. These are used as search paths for both debug
    /// links and build IDs. On typical systems this is just "/usr/lib/debug".
    global_debug: []const []const u8,
    /// The path to the dirname of the ELF file, which acts as a search path for debug links.
    exe_dir: ?[]const u8,

    pub const none: DebugInfoSearchPaths = .{
        .debuginfod_client = null,
        .global_debug = &.{},
        .exe_dir = null,
    };

    pub fn native(exe_path: []const u8) DebugInfoSearchPaths {
        return .{
            .debuginfod_client = p: {
                if (std.posix.getenv("DEBUGINFOD_CACHE_PATH")) |p| {
                    break :p .{ p, "" };
                }
                if (std.posix.getenv("XDG_CACHE_HOME")) |cache_path| {
                    break :p .{ cache_path, "/debuginfod_client" };
                }
                if (std.posix.getenv("HOME")) |home_path| {
                    break :p .{ home_path, "/.cache/debuginfod_client" };
                }
                break :p null;
            },
            .global_debug = &.{
                "/usr/lib/debug",
            },
            .exe_dir = std.fs.path.dirname(exe_path) orelse ".",
        };
    }
};

pub fn deinit(ef: *ElfFile, gpa: Allocator) void {
    if (ef.dwarf) |*dwarf| dwarf.deinit(gpa);
    if (ef.symbol_search_table) |t| gpa.free(t);
    var arena = ef.arena.promote(gpa);
    arena.deinit();

    std.posix.munmap(ef.mapped_file);
    if (ef.mapped_debug_file) |m| std.posix.munmap(m);

    ef.* = undefined;
}

pub const LoadError = error{
    OutOfMemory,
    Overflow,
    TruncatedElfFile,
    InvalidCompressedSection,
    InvalidElfMagic,
    InvalidElfVersion,
    InvalidElfClass,
    InvalidElfEndian,
    // The remaining errors all occur when attemping to stat or mmap a file.
    SystemResources,
    MemoryMappingNotSupported,
    AccessDenied,
    LockedMemoryLimitExceeded,
    ProcessFdQuotaExceeded,
    SystemFdQuotaExceeded,
    Unexpected,
};

pub fn load(
    gpa: Allocator,
    elf_file: std.fs.File,
    opt_build_id: ?[]const u8,
    di_search_paths: *const DebugInfoSearchPaths,
) LoadError!ElfFile {
    var arena_instance: std.heap.ArenaAllocator = .init(gpa);
    errdefer arena_instance.deinit();
    const arena = arena_instance.allocator();

    var result = loadInner(arena, elf_file, null) catch |err| switch (err) {
        error.CrcMismatch => unreachable, // we passed crc as null
        else => |e| return e,
    };
    errdefer std.posix.munmap(result.mapped_mem);

    // `loadInner` did most of the work, but we might need to load an external debug info file

    const di_mapped_mem: ?[]align(std.heap.page_size_min) const u8 = load_di: {
        if (result.sections.get(.debug_info) != null and
            result.sections.get(.debug_abbrev) != null and
            result.sections.get(.debug_str) != null and
            result.sections.get(.debug_line) != null)
        {
            // The info is already loaded from this file alone!
            break :load_di null;
        }

        // We're missing some debug info---let's try and load it from a separate file.

        build_id: {
            const build_id = opt_build_id orelse break :build_id;
            if (build_id.len < 3) break :build_id;

            for (di_search_paths.global_debug) |global_debug| {
                if (try loadSeparateDebugFile(arena, &result, null, "{s}/.build-id/{x}/{x}.debug", .{
                    global_debug,
                    build_id[0..1],
                    build_id[1..],
                })) |mapped| break :load_di mapped;
            }

            if (di_search_paths.debuginfod_client) |components| {
                if (try loadSeparateDebugFile(arena, &result, null, "{s}{s}/{x}/debuginfo", .{
                    components[0],
                    components[1],
                    build_id,
                })) |mapped| break :load_di mapped;
            }
        }

        debug_link: {
            const section = result.sections.get(.gnu_debuglink) orelse break :debug_link;
            const debug_filename = std.mem.sliceTo(section.bytes, 0);
            const crc_offset = std.mem.alignForward(usize, debug_filename.len + 1, 4);
            if (section.bytes.len < crc_offset + 4) break :debug_link;
            const debug_crc = std.mem.readInt(u32, section.bytes[crc_offset..][0..4], result.endian);

            const exe_dir = di_search_paths.exe_dir orelse break :debug_link;

            if (try loadSeparateDebugFile(arena, &result, debug_crc, "{s}/{s}", .{
                exe_dir,
                debug_filename,
            })) |mapped| break :load_di mapped;
            if (try loadSeparateDebugFile(arena, &result, debug_crc, "{s}/.debug/{s}", .{
                exe_dir,
                debug_filename,
            })) |mapped| break :load_di mapped;
            for (di_search_paths.global_debug) |global_debug| {
                // This looks like a bug; it isn't. They really do embed the absolute path to the
                // exe's dirname, *under* the global debug path.
                if (try loadSeparateDebugFile(arena, &result, debug_crc, "{s}/{s}/{s}", .{
                    global_debug,
                    exe_dir,
                    debug_filename,
                })) |mapped| break :load_di mapped;
            }
        }

        break :load_di null;
    };
    errdefer comptime unreachable;

    return .{
        .is_64 = result.is_64,
        .endian = result.endian,
        .dwarf = dwarf: {
            if (result.sections.get(.debug_info) == null or
                result.sections.get(.debug_abbrev) == null or
                result.sections.get(.debug_str) == null or
                result.sections.get(.debug_line) == null)
            {
                break :dwarf null; // debug info not present
            }
            var sections: Dwarf.SectionArray = @splat(null);
            inline for (@typeInfo(Dwarf.Section.Id).@"enum".fields) |f| {
                if (result.sections.get(@field(Section.Id, f.name))) |s| {
                    sections[f.value] = .{ .data = s.bytes, .owned = false };
                }
            }
            break :dwarf .{ .sections = sections };
        },
        .eh_frame = if (result.sections.get(.eh_frame)) |s| .{
            .vaddr = s.header.sh_addr,
            .bytes = s.bytes,
        } else null,
        .debug_frame = if (result.sections.get(.debug_frame)) |s| .{
            .vaddr = s.header.sh_addr,
            .bytes = s.bytes,
        } else null,
        .strtab = if (result.sections.get(.strtab)) |s| s.bytes else null,
        .symtab = if (result.sections.get(.symtab)) |s| .{
            .entry_size = s.header.sh_entsize,
            .bytes = s.bytes,
        } else null,
        .symbol_search_table = null,
        .mapped_file = result.mapped_mem,
        .mapped_debug_file = di_mapped_mem,
        .arena = arena_instance.state,
    };
}

pub fn searchSymtab(ef: *ElfFile, gpa: Allocator, vaddr: u64) error{
    NoSymtab,
    NoStrtab,
    BadSymtab,
    OutOfMemory,
}!std.debug.Symbol {
    const symtab = ef.symtab orelse return error.NoSymtab;
    const strtab = ef.strtab orelse return error.NoStrtab;

    if (symtab.bytes.len % symtab.entry_size != 0) return error.BadSymtab;

    const swap_endian = ef.endian != @import("builtin").cpu.arch.endian();

    switch (ef.is_64) {
        inline true, false => |is_64| {
            const Sym = if (is_64) elf.Elf64_Sym else elf.Elf32_Sym;
            if (symtab.entry_size != @sizeOf(Sym)) return error.BadSymtab;
            const symbols: []align(1) const Sym = @ptrCast(symtab.bytes);
            if (ef.symbol_search_table == null) {
                ef.symbol_search_table = try buildSymbolSearchTable(gpa, ef.endian, Sym, symbols);
            }
            const search_table = ef.symbol_search_table.?;
            const SearchContext = struct {
                swap_endian: bool,
                target: u64,
                symbols: []align(1) const Sym,
                fn predicate(ctx: @This(), sym_index: usize) bool {
                    // We need to return `true` for the first N items, then `false` for the rest --
                    // the index we'll get out is the first `false` one. So, we'll return `true` iff
                    // the target address is after the *end* of this symbol. This synchronizes with
                    // the logic in `buildSymbolSearchTable` which sorts by *end* address.
                    var sym = ctx.symbols[sym_index];
                    if (ctx.swap_endian) std.mem.byteSwapAllFields(Sym, &sym);
                    const sym_end = sym.st_value + sym.st_size;
                    return ctx.target >= sym_end;
                }
            };
            const sym_index_index = std.sort.partitionPoint(usize, search_table, @as(SearchContext, .{
                .swap_endian = swap_endian,
                .target = vaddr,
                .symbols = symbols,
            }), SearchContext.predicate);
            if (sym_index_index == search_table.len) return .unknown;
            var sym = symbols[search_table[sym_index_index]];
            if (swap_endian) std.mem.byteSwapAllFields(Sym, &sym);
            if (vaddr < sym.st_value or vaddr >= sym.st_value + sym.st_size) return .unknown;
            return .{
                .name = std.mem.sliceTo(strtab[sym.st_name..], 0),
                .compile_unit_name = null,
                .source_location = null,
            };
        },
    }
}

fn buildSymbolSearchTable(gpa: Allocator, endian: Endian, comptime Sym: type, symbols: []align(1) const Sym) error{
    OutOfMemory,
    BadSymtab,
}![]usize {
    var result: std.ArrayList(usize) = .empty;
    defer result.deinit(gpa);

    const swap_endian = endian != @import("builtin").cpu.arch.endian();

    for (symbols, 0..) |sym_orig, sym_index| {
        var sym = sym_orig;
        if (swap_endian) std.mem.byteSwapAllFields(Sym, &sym);
        if (sym.st_name == 0) continue;
        if (sym.st_shndx == elf.SHN_UNDEF) continue;
        try result.append(gpa, sym_index);
    }

    const SortContext = struct {
        swap_endian: bool,
        symbols: []align(1) const Sym,
        fn lessThan(ctx: @This(), lhs_sym_index: usize, rhs_sym_index: usize) bool {
            // We sort by *end* address, not start address. This matches up with logic in `searchSymtab`.
            var lhs_sym = ctx.symbols[lhs_sym_index];
            var rhs_sym = ctx.symbols[rhs_sym_index];
            if (ctx.swap_endian) {
                std.mem.byteSwapAllFields(Sym, &lhs_sym);
                std.mem.byteSwapAllFields(Sym, &rhs_sym);
            }
            const lhs_val = lhs_sym.st_value + lhs_sym.st_size;
            const rhs_val = rhs_sym.st_value + rhs_sym.st_size;
            return lhs_val < rhs_val;
        }
    };
    std.mem.sort(usize, result.items, @as(SortContext, .{
        .swap_endian = swap_endian,
        .symbols = symbols,
    }), SortContext.lessThan);

    return result.toOwnedSlice(gpa);
}

/// Only used locally, during `load`.
const Section = struct {
    header: elf.Elf64_Shdr,
    bytes: []const u8,
    const Id = enum {
        // DWARF sections: see `Dwarf.Section.Id`.
        debug_info,
        debug_abbrev,
        debug_str,
        debug_str_offsets,
        debug_line,
        debug_line_str,
        debug_ranges,
        debug_loclists,
        debug_rnglists,
        debug_addr,
        debug_names,
        // Then anything else we're interested in.
        gnu_debuglink,
        eh_frame,
        debug_frame,
        symtab,
        strtab,
    };
    const Array = std.enums.EnumArray(Section.Id, ?Section);
};

fn loadSeparateDebugFile(arena: Allocator, main_loaded: *LoadInnerResult, opt_crc: ?u32, comptime fmt: []const u8, args: anytype) Allocator.Error!?[]align(std.heap.page_size_min) const u8 {
    const path = try std.fmt.allocPrint(arena, fmt, args);
    const elf_file = std.fs.cwd().openFile(path, .{}) catch return null;
    defer elf_file.close();

    const result = loadInner(arena, elf_file, opt_crc) catch |err| switch (err) {
        error.OutOfMemory => |e| return e,
        error.CrcMismatch => return null,
        else => return null,
    };
    errdefer comptime unreachable;

    const have_debug_sections = inline for (@as([]const []const u8, &.{
        "debug_info",
        "debug_abbrev",
        "debug_str",
        "debug_line",
    })) |name| {
        const s = @field(Section.Id, name);
        if (main_loaded.sections.get(s) == null and result.sections.get(s) != null) {
            break false;
        }
    } else true;

    if (result.is_64 != main_loaded.is_64 or
        result.endian != main_loaded.endian or
        !have_debug_sections)
    {
        std.posix.munmap(result.mapped_mem);
        return null;
    }

    inline for (@typeInfo(Dwarf.Section.Id).@"enum".fields) |f| {
        const id = @field(Section.Id, f.name);
        if (main_loaded.sections.get(id) == null) {
            main_loaded.sections.set(id, result.sections.get(id));
        }
    }

    return result.mapped_mem;
}

const LoadInnerResult = struct {
    is_64: bool,
    endian: Endian,
    sections: Section.Array,
    mapped_mem: []align(std.heap.page_size_min) const u8,
};
fn loadInner(
    arena: Allocator,
    elf_file: std.fs.File,
    opt_crc: ?u32,
) (LoadError || error{CrcMismatch})!LoadInnerResult {
    const mapped_mem: []align(std.heap.page_size_min) const u8 = mapped: {
        const file_len = std.math.cast(
            usize,
            elf_file.getEndPos() catch |err| switch (err) {
                error.PermissionDenied => unreachable, // not asking for PROT_EXEC
                else => |e| return e,
            },
        ) orelse return error.Overflow;

        break :mapped std.posix.mmap(
            null,
            file_len,
            std.posix.PROT.READ,
            .{ .TYPE = .SHARED },
            elf_file.handle,
            0,
        ) catch |err| switch (err) {
            error.MappingAlreadyExists => unreachable, // not using FIXED_NOREPLACE
            error.PermissionDenied => unreachable, // not asking for PROT_EXEC
            else => |e| return e,
        };
    };

    if (opt_crc) |crc| {
        if (std.hash.crc.Crc32.hash(mapped_mem) != crc) {
            return error.CrcMismatch;
        }
    }
    errdefer std.posix.munmap(mapped_mem);

    var fr: std.Io.Reader = .fixed(mapped_mem);

    const header = elf.Header.read(&fr) catch |err| switch (err) {
        error.ReadFailed => unreachable,
        error.EndOfStream => return error.TruncatedElfFile,

        error.InvalidElfMagic,
        error.InvalidElfVersion,
        error.InvalidElfClass,
        error.InvalidElfEndian,
        => |e| return e,
    };
    const endian = header.endian;

    const shstrtab_shdr_off = try std.math.add(
        u64,
        header.shoff,
        try std.math.mul(u64, header.shstrndx, header.shentsize),
    );
    fr.seek = std.math.cast(usize, shstrtab_shdr_off) orelse return error.Overflow;
    const shstrtab: []const u8 = if (header.is_64) shstrtab: {
        const shdr = fr.takeStruct(elf.Elf64_Shdr, endian) catch return error.TruncatedElfFile;
        if (shdr.sh_offset + shdr.sh_size > mapped_mem.len) return error.TruncatedElfFile;
        break :shstrtab mapped_mem[@intCast(shdr.sh_offset)..][0..@intCast(shdr.sh_size)];
    } else shstrtab: {
        const shdr = fr.takeStruct(elf.Elf32_Shdr, endian) catch return error.TruncatedElfFile;
        if (shdr.sh_offset + shdr.sh_size > mapped_mem.len) return error.TruncatedElfFile;
        break :shstrtab mapped_mem[@intCast(shdr.sh_offset)..][0..@intCast(shdr.sh_size)];
    };

    var sections: Section.Array = .initFill(null);

    var it = header.iterateSectionHeadersBuffer(mapped_mem);
    while (it.next() catch return error.TruncatedElfFile) |shdr| {
        if (shdr.sh_type == elf.SHT_NULL or shdr.sh_type == elf.SHT_NOBITS) continue;
        if (shdr.sh_name > shstrtab.len) return error.TruncatedElfFile;
        const name = std.mem.sliceTo(shstrtab[@intCast(shdr.sh_name)..], 0);

        const section_id: Section.Id = inline for (@typeInfo(Section.Id).@"enum".fields) |s| {
            if (std.mem.eql(u8, "." ++ s.name, name)) {
                break @enumFromInt(s.value);
            }
        } else continue;

        if (sections.get(section_id) != null) continue;

        if (shdr.sh_offset + shdr.sh_size > mapped_mem.len) return error.TruncatedElfFile;
        const raw_section_bytes = mapped_mem[@intCast(shdr.sh_offset)..][0..@intCast(shdr.sh_size)];
        const section_bytes: []const u8 = bytes: {
            if ((shdr.sh_flags & elf.SHF_COMPRESSED) == 0) break :bytes raw_section_bytes;

            var section_reader: std.Io.Reader = .fixed(raw_section_bytes);
            const ch_type: elf.COMPRESS, const ch_size: u64 = if (header.is_64) ch: {
                const chdr = section_reader.takeStruct(elf.Elf64_Chdr, endian) catch return error.InvalidCompressedSection;
                break :ch .{ chdr.ch_type, chdr.ch_size };
            } else ch: {
                const chdr = section_reader.takeStruct(elf.Elf32_Chdr, endian) catch return error.InvalidCompressedSection;
                break :ch .{ chdr.ch_type, chdr.ch_size };
            };
            if (ch_type != .ZLIB) {
                // The compression algorithm is unsupported, but don't make that a hard error; the
                // file might still be valid, and we might still be okay without this section.
                continue;
            }

            const buf = try arena.alloc(u8, std.math.cast(usize, ch_size) orelse return error.Overflow);
            var fw: std.Io.Writer = .fixed(buf);
            var decompress: std.compress.flate.Decompress = .init(&section_reader, .zlib, &.{});
            const n = decompress.reader.streamRemaining(&fw) catch |err| switch (err) {
                // If a write failed, then `buf` filled up, so `ch_size` was incorrect
                error.WriteFailed => return error.InvalidCompressedSection,
                // If a read failed, flate expected the section to have more data
                error.ReadFailed => return error.InvalidCompressedSection,
            };
            // It's also an error if the data is shorter than expected.
            if (n != buf.len) return error.InvalidCompressedSection;
            break :bytes buf;
        };
        sections.set(section_id, .{ .header = shdr, .bytes = section_bytes });
    }

    return .{
        .is_64 = header.is_64,
        .endian = endian,
        .sections = sections,
        .mapped_mem = mapped_mem,
    };
}

const std = @import("std");
const Endian = std.builtin.Endian;
const Dwarf = std.debug.Dwarf;
const ElfFile = @This();
const Allocator = std.mem.Allocator;
const elf = std.elf;