|
//! This module contains utilities and data structures for working with enums. |
fromInt()Increment this value when adding APIs that add single backwards branches. |
const std = @import("std"); const assert = std.debug.assert; const testing = std.testing; const EnumField = std.builtin.Type.EnumField; |
EnumFieldStruct()Returns a struct with a field matching each unique named enum element. If the enum is extern and has multiple names for the same value, only the first name is used. Each field is of type Data and has the provided default, which may be undefined. |
/// Increment this value when adding APIs that add single backwards branches. const eval_branch_quota_cushion = 10; |
valuesFromFields()Looks up the supplied fields in the given enum type. Uses only the field names, field values are ignored. The result array is in the same order as the input. |
pub fn fromInt(comptime E: type, integer: anytype) ?E { const enum_info = @typeInfo(E).@"enum"; if (!enum_info.is_exhaustive) { if (std.math.cast(enum_info.tag_type, integer)) |tag| { return @enumFromInt(tag); } return null; } // We don't directly iterate over the fields of E, as that // would require an inline loop. Instead, we create an array of // values that is comptime-know, but can be iterated at runtime // without requiring an inline loop. // This generates better machine code. for (values(E)) |value| { if (@intFromEnum(value) == integer) return @enumFromInt(integer); } return null; |
add()Returns the set of all named values in the given enum, in declaration order. |
} |
tagName()A safe alternative to @tagName() for non-exhaustive enums that doesn't
panic when |
/// Returns a struct with a field matching each unique named enum element. /// If the enum is extern and has multiple names for the same value, only /// the first name is used. Each field is of type Data and has the provided /// default, which may be undefined. pub fn EnumFieldStruct(comptime E: type, comptime Data: type, comptime field_default: ?Data) type { @setEvalBranchQuota(@typeInfo(E).@"enum".fields.len + eval_branch_quota_cushion); var struct_fields: [@typeInfo(E).@"enum".fields.len]std.builtin.Type.StructField = undefined; for (&struct_fields, @typeInfo(E).@"enum".fields) |*struct_field, enum_field| { struct_field.* = .{ .name = enum_field.name, .type = Data, .default_value_ptr = if (field_default) |d| @as(?*const anyopaque, @ptrCast(&d)) else null, .is_comptime = false, .alignment = if (@sizeOf(Data) > 0) @alignOf(Data) else 0, }; } return @Type(.{ .@"struct" = .{ .layout = .auto, .fields = &struct_fields, .decls = &.{}, .is_tuple = false, } }); |
add()Determines the length of a direct-mapped enum array, indexed by @intCast(usize, @intFromEnum(enum_value)). If the enum is non-exhaustive, the resulting length will only be enough to hold all explicit fields. If the enum contains any fields with values that cannot be represented by usize, a compile error is issued. The max_unused_slots parameter limits the total number of items which have no matching enum key (holes in the enum numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots must be at least 3, to allow unused slots 0, 3, and 4. |
} |
directEnumArrayLen()Initializes an array of Data which can be indexed by @intCast(usize, @intFromEnum(enum_value)). If the enum is non-exhaustive, the resulting array will only be large enough to hold all explicit fields. If the enum contains any fields with values that cannot be represented by usize, a compile error is issued. The max_unused_slots parameter limits the total number of items which have no matching enum key (holes in the enum numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots must be at least 3, to allow unused slots 0, 3, and 4. The init_values parameter must be a struct with field names that match the enum values. If the enum has multiple fields with the same value, the name of the first one must be used. |
/// Looks up the supplied fields in the given enum type. /// Uses only the field names, field values are ignored. /// The result array is in the same order as the input. pub inline fn valuesFromFields(comptime E: type, comptime fields: []const EnumField) []const E { comptime { var result: [fields.len]E = undefined; for (&result, fields) |*r, f| { r.* = @enumFromInt(f.value); } const final = result; return &final; } |
add()Initializes an array of Data which can be indexed by @intCast(usize, @intFromEnum(enum_value)). The enum must be exhaustive. If the enum contains any fields with values that cannot be represented by usize, a compile error is issued. The max_unused_slots parameter limits the total number of items which have no matching enum key (holes in the enum numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots must be at least 3, to allow unused slots 0, 3, and 4. The init_values parameter must be a struct with field names that match the enum values. If the enum has multiple fields with the same value, the name of the first one must be used. |
} |
Test: directEnumArrayDeprecated: Use @field(E, @tagName(tag)) or @field(E, string) |
/// Returns the set of all named values in the given enum, in /// declaration order. pub fn values(comptime E: type) []const E { return comptime valuesFromFields(E, @typeInfo(E).@"enum".fields); |
add()A set of enum elements, backed by a bitfield. If the enum is exhaustive but not dense, a mapping will be constructed from enum values to dense indices. This type does no dynamic allocation and can be copied by value. |
} |
Test: directEnumArrayDefaultThe indexing rules for converting between keys and indices. |
/// A safe alternative to @tagName() for non-exhaustive enums that doesn't /// panic when `e` has no tagged value. /// Returns the tag name for `e` or null if no tag exists. pub fn tagName(comptime E: type, e: E) ?[:0]const u8 { return inline for (@typeInfo(E).@"enum".fields) |f| { if (@intFromEnum(e) == f.value) break f.name; } else null; |
add()The element type for this set. |
} |
nameCast()The maximum number of items in this set. |
test tagName { const E = enum(u8) { a, b, _ }; try testing.expect(tagName(E, .a) != null); try testing.expectEqualStrings("a", tagName(E, .a).?); try testing.expect(tagName(E, @as(E, @enumFromInt(42))) == null); |
add()Initializes the set using a struct of bools |
} |
Test: fromIntReturns a set containing no keys. |
/// Determines the length of a direct-mapped enum array, indexed by /// @intCast(usize, @intFromEnum(enum_value)). /// If the enum is non-exhaustive, the resulting length will only be enough /// to hold all explicit fields. /// If the enum contains any fields with values that cannot be represented /// by usize, a compile error is issued. The max_unused_slots parameter limits /// the total number of items which have no matching enum key (holes in the enum /// numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots /// must be at least 3, to allow unused slots 0, 3, and 4. pub fn directEnumArrayLen(comptime E: type, comptime max_unused_slots: comptime_int) comptime_int { var max_value: comptime_int = -1; const max_usize: comptime_int = ~@as(usize, 0); const fields = @typeInfo(E).@"enum".fields; for (fields) |f| { if (f.value < 0) { @compileError("Cannot create a direct enum array for " ++ @typeName(E) ++ ", field ." ++ f.name ++ " has a negative value."); } if (f.value > max_value) { if (f.value > max_usize) { @compileError("Cannot create a direct enum array for " ++ @typeName(E) ++ ", field ." ++ f.name ++ " is larger than the max value of usize."); } max_value = f.value; } } |
EnumSet()Returns a set containing all possible keys. |
const unused_slots = max_value + 1 - fields.len; if (unused_slots > max_unused_slots) { const unused_str = std.fmt.comptimePrint("{d}", .{unused_slots}); const allowed_str = std.fmt.comptimePrint("{d}", .{max_unused_slots}); @compileError("Cannot create a direct enum array for " ++ @typeName(E) ++ ". It would have " ++ unused_str ++ " unused slots, but only " ++ allowed_str ++ " are allowed."); } |
IndexerReturns a set containing multiple keys. |
return max_value + 1; |
add()Returns a set containing a single key. |
} |
lenReturns the number of keys in the set. |
/// Initializes an array of Data which can be indexed by /// @intCast(usize, @intFromEnum(enum_value)). /// If the enum is non-exhaustive, the resulting array will only be large enough /// to hold all explicit fields. /// If the enum contains any fields with values that cannot be represented /// by usize, a compile error is issued. The max_unused_slots parameter limits /// the total number of items which have no matching enum key (holes in the enum /// numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots /// must be at least 3, to allow unused slots 0, 3, and 4. /// The init_values parameter must be a struct with field names that match the enum values. /// If the enum has multiple fields with the same value, the name of the first one must /// be used. pub fn directEnumArray( comptime E: type, comptime Data: type, comptime max_unused_slots: comptime_int, init_values: EnumFieldStruct(E, Data, null), ) [directEnumArrayLen(E, max_unused_slots)]Data { return directEnumArrayDefault(E, Data, null, max_unused_slots, init_values); |
add()Checks if a key is in the set. |
} |
initEmpty()Puts a key in the set. |
test directEnumArray { const E = enum(i4) { a = 4, b = 6, c = 2 }; var runtime_false: bool = false; _ = &runtime_false; const array = directEnumArray(E, bool, 4, .{ .a = true, .b = runtime_false, .c = true, }); |
initFull()Removes a key from the set. |
try testing.expectEqual([7]bool, @TypeOf(array)); try testing.expectEqual(true, array[4]); try testing.expectEqual(false, array[6]); try testing.expectEqual(true, array[2]); |
add()Changes the presence of a key in the set to match the passed bool. |
} |
initOne()Toggles the presence of a key in the set. If the key is in the set, removes it. Otherwise adds it. |
/// Initializes an array of Data which can be indexed by /// @intCast(usize, @intFromEnum(enum_value)). The enum must be exhaustive. /// If the enum contains any fields with values that cannot be represented /// by usize, a compile error is issued. The max_unused_slots parameter limits /// the total number of items which have no matching enum key (holes in the enum /// numbering). So for example, if an enum has values 1, 2, 5, and 6, max_unused_slots /// must be at least 3, to allow unused slots 0, 3, and 4. /// The init_values parameter must be a struct with field names that match the enum values. /// If the enum has multiple fields with the same value, the name of the first one must /// be used. pub fn directEnumArrayDefault( comptime E: type, comptime Data: type, comptime default: ?Data, comptime max_unused_slots: comptime_int, init_values: EnumFieldStruct(E, Data, default), ) [directEnumArrayLen(E, max_unused_slots)]Data { const len = comptime directEnumArrayLen(E, max_unused_slots); var result: [len]Data = if (default) |d| [_]Data{d} ** len else undefined; inline for (@typeInfo(@TypeOf(init_values)).@"struct".fields) |f| { const enum_value = @field(E, f.name); const index = @as(usize, @intCast(@intFromEnum(enum_value))); result[index] = @field(init_values, f.name); } return result; |
add()Toggles the presence of all keys in the passed set. |
} |
contains()Toggles all possible keys in the set. |
test directEnumArrayDefault { const E = enum(i4) { a = 4, b = 6, c = 2 }; var runtime_false: bool = false; _ = &runtime_false; const array = directEnumArrayDefault(E, bool, false, 4, .{ .a = true, .b = runtime_false, }); |
insert()Adds all keys in the passed set to this set. |
try testing.expectEqual([7]bool, @TypeOf(array)); try testing.expectEqual(true, array[4]); try testing.expectEqual(false, array[6]); try testing.expectEqual(false, array[2]); |
add()Removes all keys which are not in the passed set. |
} |
setPresent()Returns true iff both sets have the same keys. |
test "directEnumArrayDefault slice" { const E = enum(i4) { a = 4, b = 6, c = 2 }; var runtime_b = "b"; _ = &runtime_b; const array = directEnumArrayDefault(E, []const u8, "default", 4, .{ .a = "a", .b = runtime_b, }); |
toggle()Returns true iff all the keys in this set are in the other set. The other set may have keys not found in this set. |
try testing.expectEqual([7][]const u8, @TypeOf(array)); try testing.expectEqualSlices(u8, "a", array[4]); try testing.expectEqualSlices(u8, "b", array[6]); try testing.expectEqualSlices(u8, "default", array[2]); |
add()Returns true iff this set contains all the keys in the other set. This set may have keys not found in the other set. |
} |
toggleAll()Returns a set with all the keys not in this set. |
/// Deprecated: Use @field(E, @tagName(tag)) or @field(E, string) pub fn nameCast(comptime E: type, comptime value: anytype) E { return comptime blk: { const V = @TypeOf(value); if (V == E) break :blk value; const name: ?[]const u8 = switch (@typeInfo(V)) { .enum_literal, .@"enum" => @tagName(value), .pointer => value, else => null, }; if (name) |n| { if (@hasField(E, n)) { break :blk @field(E, n); } @compileError("Enum " ++ @typeName(E) ++ " has no field named " ++ n); } @compileError("Cannot cast from " ++ @typeName(@TypeOf(value)) ++ " to " ++ @typeName(E)); }; |
add()Returns a set with keys that are in either this set or the other set. |
} |
setIntersection()Returns a set with keys that are in both this set and the other set. |
test nameCast { const A = enum(u1) { a = 0, b = 1 }; const B = enum(u1) { a = 1, b = 0 }; try testing.expectEqual(A.a, nameCast(A, .a)); try testing.expectEqual(A.a, nameCast(A, A.a)); try testing.expectEqual(A.a, nameCast(A, B.a)); try testing.expectEqual(A.a, nameCast(A, "a")); try testing.expectEqual(A.a, nameCast(A, @as(*const [1]u8, "a"))); try testing.expectEqual(A.a, nameCast(A, @as([:0]const u8, "a"))); try testing.expectEqual(A.a, nameCast(A, @as([]const u8, "a"))); |
eql()Returns a set with keys that are in either this set or the other set, but not both. |
try testing.expectEqual(B.a, nameCast(B, .a)); try testing.expectEqual(B.a, nameCast(B, A.a)); try testing.expectEqual(B.a, nameCast(B, B.a)); try testing.expectEqual(B.a, nameCast(B, "a")); |
subsetOf()Returns a set with keys that are in this set except for keys in the other set. |
try testing.expectEqual(B.b, nameCast(B, .b)); try testing.expectEqual(B.b, nameCast(B, A.b)); try testing.expectEqual(B.b, nameCast(B, B.b)); try testing.expectEqual(B.b, nameCast(B, "b")); |
add()Returns an iterator over this set, which iterates in index order. Modifications to the set during iteration may or may not be observed by the iterator, but will not invalidate it. |
} |
complement()A map keyed by an enum, backed by a bitfield and a dense array. If the enum is exhaustive but not dense, a mapping will be constructed from enum values to dense indices. This type does no dynamic allocation and can be copied by value. |
test fromInt { const E1 = enum { A, }; const E2 = enum { A, B, }; const E3 = enum(i8) { A, _ }; |
unionWith()The index mapping for this map |
var zero: u8 = 0; var one: u16 = 1; _ = &zero; _ = &one; try testing.expect(fromInt(E1, zero).? == E1.A); try testing.expect(fromInt(E2, one).? == E2.B); try testing.expect(fromInt(E3, zero).? == E3.A); try testing.expect(fromInt(E3, 127).? == @as(E3, @enumFromInt(127))); try testing.expect(fromInt(E3, -128).? == @as(E3, @enumFromInt(-128))); try testing.expectEqual(null, fromInt(E1, one)); try testing.expectEqual(null, fromInt(E3, 128)); try testing.expectEqual(null, fromInt(E3, -129)); |
add()The key type used to index this map |
} |
xorWith()The value type stored in this map |
/// A set of enum elements, backed by a bitfield. If the enum /// is exhaustive but not dense, a mapping will be constructed from enum values /// to dense indices. This type does no dynamic allocation and /// can be copied by value. pub fn EnumSet(comptime E: type) type { return struct { const Self = @This(); |
differenceWith()The number of possible keys in the map |
/// The indexing rules for converting between keys and indices. |
IndexerBits determining whether items are in the map |
pub const Indexer = EnumIndexer(E); /// The element type for this set. |
KeyValues of items in the map. If the associated bit is zero, the value is undefined. |
pub const Key = Indexer.Key; |
next()Initializes the map using a sparse struct of optionals |
const BitSet = std.StaticBitSet(Indexer.count); |
EnumMap()Initializes a full mapping with all keys set to value. Consider using EnumArray instead if the map will remain full. |
/// The maximum number of items in this set. |
lenInitializes a full mapping with supplied values. Consider using EnumArray instead if the map will remain full. |
pub const len = Indexer.count; |
KeyInitializes a full mapping with a provided default. Consider using EnumArray instead if the map will remain full. |
bits: BitSet = BitSet.initEmpty(), |
ValueThe number of items in the map. |
/// Initializes the set using a struct of bools pub fn init(init_values: EnumFieldStruct(E, bool, false)) Self { @setEvalBranchQuota(2 * @typeInfo(E).@"enum".fields.len); var result: Self = .{}; if (@typeInfo(E).@"enum".is_exhaustive) { inline for (0..Self.len) |i| { const key = comptime Indexer.keyForIndex(i); const tag = @tagName(key); if (@field(init_values, tag)) { result.bits.set(i); } } } else { inline for (std.meta.fields(E)) |field| { const key = @field(E, field.name); if (@field(init_values, field.name)) { const i = comptime Indexer.indexOf(key); result.bits.set(i); } } } return result; } |
lenChecks if the map contains an item. |
/// Returns a set containing no keys. |
initEmpty()Gets the value associated with a key. If the key is not in the map, returns null. |
pub fn initEmpty() Self { return .{ .bits = BitSet.initEmpty() }; } |
initFull()Gets the value associated with a key, which must exist in the map. |
/// Returns a set containing all possible keys. pub fn initFull() Self { return .{ .bits = BitSet.initFull() }; } |
initFullWith()Gets the address of the value associated with a key. If the key is not in the map, returns null. |
/// Returns a set containing multiple keys. pub fn initMany(keys: []const Key) Self { var set = initEmpty(); for (keys) |key| set.insert(key); return set; } |
initFullWithDefault()Gets the address of the const value associated with a key. If the key is not in the map, returns null. |
/// Returns a set containing a single key. pub fn initOne(key: Key) Self { return initMany(&[_]Key{key}); } |
count()Gets the address of the value associated with a key. The key must be present in the map. |
/// Returns the number of keys in the set. |
count()Gets the address of the const value associated with a key. The key must be present in the map. |
pub fn count(self: Self) usize { return self.bits.count(); } |
get()Adds the key to the map with the supplied value. If the key is already in the map, overwrites the value. |
/// Checks if a key is in the set. pub fn contains(self: Self, key: Key) bool { return self.bits.isSet(Indexer.indexOf(key)); } |
getAssertContains()Adds the key to the map with an undefined value. If the key is already in the map, the value becomes undefined. A pointer to the value is returned, which should be used to initialize the value. |
/// Puts a key in the set. pub fn insert(self: *Self, key: Key) void { self.bits.set(Indexer.indexOf(key)); } |
getPtr()Sets the value associated with the key in the map, and returns the old value. If the key was not in the map, returns null. |
/// Removes a key from the set. |
remove()Removes a key from the map. If the key was not in the map, does nothing. |
pub fn remove(self: *Self, key: Key) void { self.bits.unset(Indexer.indexOf(key)); } |
getPtrAssertContains()Removes a key from the map, and returns the old value. If the key was not in the map, returns null. |
/// Changes the presence of a key in the set to match the passed bool. pub fn setPresent(self: *Self, key: Key, present: bool) void { self.bits.setValue(Indexer.indexOf(key), present); } |
getPtrConstAssertContains()Returns an iterator over the map, which visits items in index order. Modifications to the underlying map may or may not be observed by the iterator, but will not invalidate it. |
/// Toggles the presence of a key in the set. If the key is in /// the set, removes it. Otherwise adds it. pub fn toggle(self: *Self, key: Key) void { self.bits.toggle(Indexer.indexOf(key)); } |
put()An entry in the map. |
/// Toggles the presence of all keys in the passed set. pub fn toggleSet(self: *Self, other: Self) void { self.bits.toggleSet(other.bits); } |
putUninitialized()The key associated with this entry. Modifying this key will not change the map. |
/// Toggles all possible keys in the set. pub fn toggleAll(self: *Self) void { self.bits.toggleAll(); } |
fetchPut()A pointer to the value in the map associated with this key. Modifications through this pointer will modify the underlying data. |
/// Adds all keys in the passed set to this set. pub fn setUnion(self: *Self, other: Self) void { self.bits.setUnion(other.bits); } |
remove()A multiset of enum elements up to a count of usize. Backed by an EnumArray. This type does no dynamic allocation and can be copied by value. |
/// Removes all keys which are not in the passed set. pub fn setIntersection(self: *Self, other: Self) void { self.bits.setIntersection(other.bits); } |
fetchRemove()A multiset of enum elements up to CountSize. Backed by an EnumArray. This type does no dynamic allocation and can be copied by value. |
/// Returns true iff both sets have the same keys. |
eql()Initializes the multiset using a struct of counts. |
pub fn eql(self: Self, other: Self) bool { return self.bits.eql(other.bits); } |
EntryInitializes the multiset with a count of zero. |
/// Returns true iff all the keys in this set are /// in the other set. The other set may have keys /// not found in this set. |
subsetOf()Initializes the multiset with all keys at the same count. |
pub fn subsetOf(self: Self, other: Self) bool { return self.bits.subsetOf(other.bits); } |
next()Returns the total number of key counts in the multiset. |
/// Returns true iff this set contains all the keys /// in the other set. This set may have keys not /// found in the other set. |
supersetOf()Checks if at least one key in multiset. |
pub fn supersetOf(self: Self, other: Self) bool { return self.bits.supersetOf(other.bits); } |
EnumMultiset()Removes all instance of a key from multiset. Same as setCount(key, 0). |
/// Returns a set with all the keys not in this set. pub fn complement(self: Self) Self { return .{ .bits = self.bits.complement() }; } |
BoundedEnumMultiset()Increases the key count by given amount. Caller asserts operation will not overflow. |
/// Returns a set with keys that are in either this /// set or the other set. pub fn unionWith(self: Self, other: Self) Self { return .{ .bits = self.bits.unionWith(other.bits) }; } |
init()Increases the key count by given amount. |
/// Returns a set with keys that are in both this /// set and the other set. pub fn intersectWith(self: Self, other: Self) Self { return .{ .bits = self.bits.intersectWith(other.bits) }; } |
initEmpty()Decreases the key count by given amount. If amount is greater than the number of keys in multset, then key count will be set to zero. |
/// Returns a set with keys that are in either this /// set or the other set, but not both. pub fn xorWith(self: Self, other: Self) Self { return .{ .bits = self.bits.xorWith(other.bits) }; } |
initWithCount()Returns the count for a key. |
/// Returns a set with keys that are in this set /// except for keys in the other set. pub fn differenceWith(self: Self, other: Self) Self { return .{ .bits = self.bits.differenceWith(other.bits) }; } |
count()Set the count for a key. |
/// Returns an iterator over this set, which iterates in /// index order. Modifications to the set during iteration /// may or may not be observed by the iterator, but will /// not invalidate it. pub fn iterator(self: *const Self) Iterator { return .{ .inner = self.bits.iterator(.{}) }; } |
contains()Increases the all key counts by given multiset. Caller asserts operation will not overflow any key. |
|
IteratorIncreases the all key counts by given multiset. |
pub const Iterator = struct { inner: BitSet.Iterator(.{}), |
addAssertSafe()Decreases the all key counts by given multiset. If the given multiset has more key counts than this, then that key will have a key count of zero. |
pub fn next(self: *Iterator) ?Key { return if (self.inner.next()) |index| Indexer.keyForIndex(index) else null; } }; }; |
add()Returns true iff all key counts are the same as given multiset. |
} |
remove()Returns true iff all key counts less than or equal to the given multiset. |
/// A map keyed by an enum, backed by a bitfield and a dense array. /// If the enum is exhaustive but not dense, a mapping will be constructed from /// enum values to dense indices. This type does no dynamic /// allocation and can be copied by value. pub fn EnumMap(comptime E: type, comptime V: type) type { return struct { const Self = @This(); |
getCount()Returns true iff all key counts greater than or equal to the given multiset. |
/// The index mapping for this map |
IndexerReturns a multiset with the total key count of this multiset and the other multiset. Caller asserts operation will not overflow any key. |
pub const Indexer = EnumIndexer(E); /// The key type used to index this map |
KeyReturns a multiset with the total key count of this multiset and the other multiset. |
pub const Key = Indexer.Key; /// The value type stored in this map |
ValueReturns a multiset with the key count of this multiset minus the corresponding key count in the other multiset. If the other multiset contains more key count than this set, that key will have a count of zero. |
pub const Value = V; /// The number of possible keys in the map |
lenReturns an iterator over this multiset. Keys with zero counts are included. Modifications to the set during iteration may or may not be observed by the iterator, but will not invalidate it. |
pub const len = Indexer.count; |
eql()An array keyed by an enum, backed by a dense array. If the enum is not dense, a mapping will be constructed from enum values to dense indices. This type does no dynamic allocation and can be copied by value. |
const BitSet = std.StaticBitSet(Indexer.count); |
subsetOf()The index mapping for this map |
/// Bits determining whether items are in the map bits: BitSet = BitSet.initEmpty(), /// Values of items in the map. If the associated /// bit is zero, the value is undefined. values: [Indexer.count]Value = undefined, |
supersetOf()The key type used to index this map |
/// Initializes the map using a sparse struct of optionals pub fn init(init_values: EnumFieldStruct(E, ?Value, @as(?Value, null))) Self { @setEvalBranchQuota(2 * @typeInfo(E).@"enum".fields.len); var result: Self = .{}; if (@typeInfo(E).@"enum".is_exhaustive) { inline for (0..Self.len) |i| { const key = comptime Indexer.keyForIndex(i); const tag = @tagName(key); if (@field(init_values, tag)) |*v| { result.bits.set(i); result.values[i] = v.*; } } } else { inline for (std.meta.fields(E)) |field| { const key = @field(E, field.name); if (@field(init_values, field.name)) |*v| { const i = comptime Indexer.indexOf(key); result.bits.set(i); result.values[i] = v.*; } } } return result; } |
plusAssertSafe()The value type stored in this map |
/// Initializes a full mapping with all keys set to value. /// Consider using EnumArray instead if the map will remain full. pub fn initFull(value: Value) Self { var result: Self = .{ .bits = Self.BitSet.initFull(), .values = undefined, }; @memset(&result.values, value); return result; } |
plus()The number of possible keys in the map |
/// Initializes a full mapping with supplied values. /// Consider using EnumArray instead if the map will remain full. pub fn initFullWith(init_values: EnumFieldStruct(E, Value, null)) Self { return initFullWithDefault(null, init_values); } |
minus()Initializes values in the enum array, with the specified default. |
/// Initializes a full mapping with a provided default. /// Consider using EnumArray instead if the map will remain full. pub fn initFullWithDefault(comptime default: ?Value, init_values: EnumFieldStruct(E, Value, default)) Self { @setEvalBranchQuota(2 * @typeInfo(E).@"enum".fields.len); var result: Self = .{ .bits = Self.BitSet.initFull(), .values = undefined, }; inline for (0..Self.len) |i| { const key = comptime Indexer.keyForIndex(i); const tag = @tagName(key); result.values[i] = @field(init_values, tag); } return result; } |
EntryReturns the value in the array associated with a key. |
/// The number of items in the map. pub fn count(self: Self) usize { return self.bits.count(); } |
IteratorReturns a pointer to the slot in the array associated with a key. |
/// Checks if the map contains an item. pub fn contains(self: Self, key: Key) bool { return self.bits.isSet(Indexer.indexOf(key)); } |
iterator()Returns a const pointer to the slot in the array associated with a key. |
/// Gets the value associated with a key. /// If the key is not in the map, returns null. pub fn get(self: Self, key: Key) ?Value { const index = Indexer.indexOf(key); return if (self.bits.isSet(index)) self.values[index] else null; } |
Test: EnumMultisetSets the value in the slot associated with a key. |
/// Gets the value associated with a key, which must /// exist in the map. pub fn getAssertContains(self: Self, key: Key) Value { const index = Indexer.indexOf(key); assert(self.bits.isSet(index)); return self.values[index]; } |
EnumArray()Iterates over the items in the array, in index order. |
/// Gets the address of the value associated with a key. /// If the key is not in the map, returns null. pub fn getPtr(self: *Self, key: Key) ?*Value { const index = Indexer.indexOf(key); return if (self.bits.isSet(index)) &self.values[index] else null; } |
IndexerAn entry in the array. |
/// Gets the address of the const value associated with a key. /// If the key is not in the map, returns null. pub fn getPtrConst(self: *const Self, key: Key) ?*const Value { const index = Indexer.indexOf(key); return if (self.bits.isSet(index)) &self.values[index] else null; } |
KeyThe key associated with this entry. Modifying this key will not change the array. |
/// Gets the address of the value associated with a key. /// The key must be present in the map. pub fn getPtrAssertContains(self: *Self, key: Key) *Value { const index = Indexer.indexOf(key); assert(self.bits.isSet(index)); return &self.values[index]; } |
ValueA pointer to the value in the array associated with this key. Modifications through this pointer will modify the underlying data. |
/// Gets the address of the const value associated with a key. /// The key must be present in the map. pub fn getPtrConstAssertContains(self: *const Self, key: Key) *const Value { const index = Indexer.indexOf(key); assert(self.bits.isSet(index)); return &self.values[index]; } |
len |
/// Adds the key to the map with the supplied value. /// If the key is already in the map, overwrites the value. pub fn put(self: *Self, key: Key, value: Value) void { const index = Indexer.indexOf(key); self.bits.set(index); self.values[index] = value; } |
init() |
/// Adds the key to the map with an undefined value. /// If the key is already in the map, the value becomes undefined. /// A pointer to the value is returned, which should be /// used to initialize the value. pub fn putUninitialized(self: *Self, key: Key) *Value { const index = Indexer.indexOf(key); self.bits.set(index); self.values[index] = undefined; return &self.values[index]; } |
initDefault() |
/// Sets the value associated with the key in the map, /// and returns the old value. If the key was not in /// the map, returns null. pub fn fetchPut(self: *Self, key: Key, value: Value) ?Value { const index = Indexer.indexOf(key); const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null; self.bits.set(index); self.values[index] = value; return result; } |
initUndefined() |
/// Removes a key from the map. If the key was not in the map, /// does nothing. pub fn remove(self: *Self, key: Key) void { const index = Indexer.indexOf(key); self.bits.unset(index); self.values[index] = undefined; } |
initFill() |
/// Removes a key from the map, and returns the old value. /// If the key was not in the map, returns null. pub fn fetchRemove(self: *Self, key: Key) ?Value { const index = Indexer.indexOf(key); const result: ?Value = if (self.bits.isSet(index)) self.values[index] else null; self.bits.unset(index); self.values[index] = undefined; return result; } |
get() |
/// Returns an iterator over the map, which visits items in index order. /// Modifications to the underlying map may or may not be observed by /// the iterator, but will not invalidate it. |
iterator() |
pub fn iterator(self: *Self) Iterator { return .{ .inner = self.bits.iterator(.{}), .values = &self.values, }; } |
getPtrConst() |
/// An entry in the map. |
Entry |
pub const Entry = struct { /// The key associated with this entry. /// Modifying this key will not change the map. key: Key, |
iterator() |
/// A pointer to the value in the map associated /// with this key. Modifications through this /// pointer will modify the underlying data. value: *Value, }; |
Entry |
|
Iterator |
pub const Iterator = struct { inner: BitSet.Iterator(.{}), values: *[Indexer.count]Value, |
next() |
pub fn next(self: *Iterator) ?Entry { return if (self.inner.next()) |index| Entry{ .key = Indexer.keyForIndex(index), .value = &self.values[index], } else null; } }; }; } |
Test:pure EnumSet fns |
test EnumMap { const Ball = enum { red, green, blue }; |
Test:EnumSet empty |
const some = EnumMap(Ball, u8).init(.{ .green = 0xff, .blue = 0x80, }); try testing.expectEqual(2, some.count()); try testing.expectEqual(null, some.get(.red)); try testing.expectEqual(0xff, some.get(.green)); try testing.expectEqual(0x80, some.get(.blue)); } |
Test:EnumSet const iterator |
/// A multiset of enum elements up to a count of usize. Backed /// by an EnumArray. This type does no dynamic allocation and can /// be copied by value. pub fn EnumMultiset(comptime E: type) type { return BoundedEnumMultiset(E, usize); } |
Test:EnumSet non-exhaustive |
/// A multiset of enum elements up to CountSize. Backed by an /// EnumArray. This type does no dynamic allocation and can be /// copied by value. pub fn BoundedEnumMultiset(comptime E: type, comptime CountSize: type) type { return struct { const Self = @This(); |
EnumIndexer() |
counts: EnumArray(E, CountSize), |
Key: |
/// Initializes the multiset using a struct of counts. pub fn init(init_counts: EnumFieldStruct(E, CountSize, 0)) Self { @setEvalBranchQuota(2 * @typeInfo(E).@"enum".fields.len); var self = initWithCount(0); inline for (@typeInfo(E).@"enum".fields) |field| { const c = @field(init_counts, field.name); const key = @as(E, @enumFromInt(field.value)); self.counts.set(key, c); } return self; } |
count: |
/// Initializes the multiset with a count of zero. pub fn initEmpty() Self { return initWithCount(0); } |
indexOf() |
/// Initializes the multiset with all keys at the /// same count. pub fn initWithCount(comptime c: CountSize) Self { return .{ .counts = EnumArray(E, CountSize).initDefault(c, .{}), }; } |
keyForIndex() |
/// Returns the total number of key counts in the multiset. pub fn count(self: Self) usize { var sum: usize = 0; for (self.counts.values) |c| { sum += c; } return sum; } |
Key |
/// Checks if at least one key in multiset. pub fn contains(self: Self, key: E) bool { return self.counts.get(key) > 0; } |
count: |
/// Removes all instance of a key from multiset. Same as /// setCount(key, 0). pub fn removeAll(self: *Self, key: E) void { return self.counts.set(key, 0); } |
indexOf() |
/// Increases the key count by given amount. Caller asserts /// operation will not overflow. pub fn addAssertSafe(self: *Self, key: E, c: CountSize) void { self.counts.getPtr(key).* += c; } |
keyForIndex() |
/// Increases the key count by given amount. pub fn add(self: *Self, key: E, c: CountSize) error{Overflow}!void { self.counts.set(key, try std.math.add(CountSize, self.counts.get(key), c)); } |
Key |
/// Decreases the key count by given amount. If amount is /// greater than the number of keys in multset, then key count /// will be set to zero. pub fn remove(self: *Self, key: E, c: CountSize) void { self.counts.getPtr(key).* -= @min(self.getCount(key), c); } |
count: |
/// Returns the count for a key. pub fn getCount(self: Self, key: E) CountSize { return self.counts.get(key); } |
indexOf() |
/// Set the count for a key. pub fn setCount(self: *Self, key: E, c: CountSize) void { self.counts.set(key, c); } |
keyForIndex() |
/// Increases the all key counts by given multiset. Caller /// asserts operation will not overflow any key. pub fn addSetAssertSafe(self: *Self, other: Self) void { inline for (@typeInfo(E).@"enum".fields) |field| { const key = @as(E, @enumFromInt(field.value)); self.addAssertSafe(key, other.getCount(key)); } } |
Key |
/// Increases the all key counts by given multiset. pub fn addSet(self: *Self, other: Self) error{Overflow}!void { inline for (@typeInfo(E).@"enum".fields) |field| { const key = @as(E, @enumFromInt(field.value)); try self.add(key, other.getCount(key)); } } |
count: |
/// Decreases the all key counts by given multiset. If /// the given multiset has more key counts than this, /// then that key will have a key count of zero. pub fn removeSet(self: *Self, other: Self) void { inline for (@typeInfo(E).@"enum".fields) |field| { const key = @as(E, @enumFromInt(field.value)); self.remove(key, other.getCount(key)); } } |
indexOf() |
/// Returns true iff all key counts are the same as /// given multiset. pub fn eql(self: Self, other: Self) bool { inline for (@typeInfo(E).@"enum".fields) |field| { const key = @as(E, @enumFromInt(field.value)); if (self.getCount(key) != other.getCount(key)) { return false; } } return true; } |
keyForIndex() |
/// Returns true iff all key counts less than or /// equal to the given multiset. pub fn subsetOf(self: Self, other: Self) bool { inline for (@typeInfo(E).@"enum".fields) |field| { const key = @as(E, @enumFromInt(field.value)); if (self.getCount(key) > other.getCount(key)) { return false; } } return true; } |
Test:EnumIndexer non-exhaustive |
/// Returns true iff all key counts greater than or /// equal to the given multiset. pub fn supersetOf(self: Self, other: Self) bool { inline for (@typeInfo(E).@"enum".fields) |field| { const key = @as(E, @enumFromInt(field.value)); if (self.getCount(key) < other.getCount(key)) { return false; } } return true; } |
Test:EnumIndexer dense zeroed |
/// Returns a multiset with the total key count of this /// multiset and the other multiset. Caller asserts /// operation will not overflow any key. pub fn plusAssertSafe(self: Self, other: Self) Self { var result = self; result.addSetAssertSafe(other); return result; } |
Test:EnumIndexer dense positive |
/// Returns a multiset with the total key count of this /// multiset and the other multiset. pub fn plus(self: Self, other: Self) error{Overflow}!Self { var result = self; try result.addSet(other); return result; } |
Test:EnumIndexer dense negative |
/// Returns a multiset with the key count of this /// multiset minus the corresponding key count in the /// other multiset. If the other multiset contains /// more key count than this set, that key will have /// a count of zero. pub fn minus(self: Self, other: Self) Self { var result = self; result.removeSet(other); return result; } |
Test:EnumIndexer sparse |
pub const Entry = EnumArray(E, CountSize).Entry; pub const Iterator = EnumArray(E, CountSize).Iterator; |
Test:EnumIndexer empty |
/// Returns an iterator over this multiset. Keys with zero /// counts are included. Modifications to the set during /// iteration may or may not be observed by the iterator, /// but will not invalidate it. pub fn iterator(self: *Self) Iterator { return self.counts.iterator(); } }; } |
Test:EnumIndexer large dense unsorted |
test EnumMultiset { const Ball = enum { red, green, blue }; |
Test: values |
const empty = EnumMultiset(Ball).initEmpty(); const r0_g1_b2 = EnumMultiset(Ball).init(.{ .red = 0, .green = 1, .blue = 2, }); const ten_of_each = EnumMultiset(Ball).initWithCount(10); try testing.expectEqual(empty.count(), 0); try testing.expectEqual(r0_g1_b2.count(), 3); try testing.expectEqual(ten_of_each.count(), 30); try testing.expect(!empty.contains(.red)); try testing.expect(!empty.contains(.green)); try testing.expect(!empty.contains(.blue)); try testing.expect(!r0_g1_b2.contains(.red)); try testing.expect(r0_g1_b2.contains(.green)); try testing.expect(r0_g1_b2.contains(.blue)); try testing.expect(ten_of_each.contains(.red)); try testing.expect(ten_of_each.contains(.green)); try testing.expect(ten_of_each.contains(.blue)); { var copy = ten_of_each; copy.removeAll(.red); try testing.expect(!copy.contains(.red)); // removeAll second time does nothing copy.removeAll(.red); try testing.expect(!copy.contains(.red)); } { var copy = ten_of_each; copy.addAssertSafe(.red, 6); try testing.expectEqual(copy.getCount(.red), 16); } { var copy = ten_of_each; try copy.add(.red, 6); try testing.expectEqual(copy.getCount(.red), 16); try testing.expectError(error.Overflow, copy.add(.red, std.math.maxInt(usize))); } { var copy = ten_of_each; copy.remove(.red, 4); try testing.expectEqual(copy.getCount(.red), 6); // subtracting more it contains does not underflow copy.remove(.green, 14); try testing.expectEqual(copy.getCount(.green), 0); } try testing.expectEqual(empty.getCount(.green), 0); try testing.expectEqual(r0_g1_b2.getCount(.green), 1); try testing.expectEqual(ten_of_each.getCount(.green), 10); { var copy = empty; copy.setCount(.red, 6); try testing.expectEqual(copy.getCount(.red), 6); } { var copy = r0_g1_b2; copy.addSetAssertSafe(ten_of_each); try testing.expectEqual(copy.getCount(.red), 10); try testing.expectEqual(copy.getCount(.green), 11); try testing.expectEqual(copy.getCount(.blue), 12); } { var copy = r0_g1_b2; try copy.addSet(ten_of_each); try testing.expectEqual(copy.getCount(.red), 10); try testing.expectEqual(copy.getCount(.green), 11); try testing.expectEqual(copy.getCount(.blue), 12); const full = EnumMultiset(Ball).initWithCount(std.math.maxInt(usize)); try testing.expectError(error.Overflow, copy.addSet(full)); } { var copy = ten_of_each; copy.removeSet(r0_g1_b2); try testing.expectEqual(copy.getCount(.red), 10); try testing.expectEqual(copy.getCount(.green), 9); try testing.expectEqual(copy.getCount(.blue), 8); copy.removeSet(ten_of_each); try testing.expectEqual(copy.getCount(.red), 0); try testing.expectEqual(copy.getCount(.green), 0); try testing.expectEqual(copy.getCount(.blue), 0); } try testing.expect(empty.eql(empty)); try testing.expect(r0_g1_b2.eql(r0_g1_b2)); try testing.expect(ten_of_each.eql(ten_of_each)); try testing.expect(!empty.eql(r0_g1_b2)); try testing.expect(!r0_g1_b2.eql(ten_of_each)); try testing.expect(!ten_of_each.eql(empty)); try testing.expect(empty.subsetOf(empty)); try testing.expect(r0_g1_b2.subsetOf(r0_g1_b2)); try testing.expect(empty.subsetOf(r0_g1_b2)); try testing.expect(r0_g1_b2.subsetOf(ten_of_each)); try testing.expect(!ten_of_each.subsetOf(r0_g1_b2)); try testing.expect(!r0_g1_b2.subsetOf(empty)); try testing.expect(empty.supersetOf(empty)); try testing.expect(r0_g1_b2.supersetOf(r0_g1_b2)); try testing.expect(r0_g1_b2.supersetOf(empty)); try testing.expect(ten_of_each.supersetOf(r0_g1_b2)); try testing.expect(!r0_g1_b2.supersetOf(ten_of_each)); try testing.expect(!empty.supersetOf(r0_g1_b2)); { // with multisets it could be the case where two // multisets are neither subset nor superset of each // other. const r10 = EnumMultiset(Ball).init(.{ .red = 10, }); const b10 = EnumMultiset(Ball).init(.{ .blue = 10, }); try testing.expect(!r10.subsetOf(b10)); try testing.expect(!b10.subsetOf(r10)); try testing.expect(!r10.supersetOf(b10)); try testing.expect(!b10.supersetOf(r10)); } { const result = r0_g1_b2.plusAssertSafe(ten_of_each); try testing.expectEqual(result.getCount(.red), 10); try testing.expectEqual(result.getCount(.green), 11); try testing.expectEqual(result.getCount(.blue), 12); } { const result = try r0_g1_b2.plus(ten_of_each); try testing.expectEqual(result.getCount(.red), 10); try testing.expectEqual(result.getCount(.green), 11); try testing.expectEqual(result.getCount(.blue), 12); const full = EnumMultiset(Ball).initWithCount(std.math.maxInt(usize)); try testing.expectError(error.Overflow, result.plus(full)); } { const result = ten_of_each.minus(r0_g1_b2); try testing.expectEqual(result.getCount(.red), 10); try testing.expectEqual(result.getCount(.green), 9); try testing.expectEqual(result.getCount(.blue), 8); } { const result = ten_of_each.minus(r0_g1_b2).minus(ten_of_each); try testing.expectEqual(result.getCount(.red), 0); try testing.expectEqual(result.getCount(.green), 0); try testing.expectEqual(result.getCount(.blue), 0); } { var copy = empty; var it = copy.iterator(); var entry = it.next().?; try testing.expectEqual(entry.key, .red); try testing.expectEqual(entry.value.*, 0); entry = it.next().?; try testing.expectEqual(entry.key, .green); try testing.expectEqual(entry.value.*, 0); entry = it.next().?; try testing.expectEqual(entry.key, .blue); try testing.expectEqual(entry.value.*, 0); try testing.expectEqual(it.next(), null); } { var copy = r0_g1_b2; var it = copy.iterator(); var entry = it.next().?; try testing.expectEqual(entry.key, .red); try testing.expectEqual(entry.value.*, 0); entry = it.next().?; try testing.expectEqual(entry.key, .green); try testing.expectEqual(entry.value.*, 1); entry = it.next().?; try testing.expectEqual(entry.key, .blue); try testing.expectEqual(entry.value.*, 2); try testing.expectEqual(it.next(), null); } } /// An array keyed by an enum, backed by a dense array. /// If the enum is not dense, a mapping will be constructed from /// enum values to dense indices. This type does no dynamic /// allocation and can be copied by value. pub fn EnumArray(comptime E: type, comptime V: type) type { return struct { const Self = @This(); /// The index mapping for this map pub const Indexer = EnumIndexer(E); /// The key type used to index this map pub const Key = Indexer.Key; /// The value type stored in this map pub const Value = V; /// The number of possible keys in the map pub const len = Indexer.count; values: [Indexer.count]Value, pub fn init(init_values: EnumFieldStruct(E, Value, null)) Self { return initDefault(null, init_values); } /// Initializes values in the enum array, with the specified default. pub fn initDefault(comptime default: ?Value, init_values: EnumFieldStruct(E, Value, default)) Self { @setEvalBranchQuota(2 * @typeInfo(E).@"enum".fields.len); var result: Self = .{ .values = undefined }; inline for (0..Self.len) |i| { const key = comptime Indexer.keyForIndex(i); const tag = @tagName(key); result.values[i] = @field(init_values, tag); } return result; } pub fn initUndefined() Self { return Self{ .values = undefined }; } pub fn initFill(v: Value) Self { var self: Self = undefined; @memset(&self.values, v); return self; } /// Returns the value in the array associated with a key. pub fn get(self: Self, key: Key) Value { return self.values[Indexer.indexOf(key)]; } /// Returns a pointer to the slot in the array associated with a key. pub fn getPtr(self: *Self, key: Key) *Value { return &self.values[Indexer.indexOf(key)]; } /// Returns a const pointer to the slot in the array associated with a key. pub fn getPtrConst(self: *const Self, key: Key) *const Value { return &self.values[Indexer.indexOf(key)]; } /// Sets the value in the slot associated with a key. pub fn set(self: *Self, key: Key, value: Value) void { self.values[Indexer.indexOf(key)] = value; } /// Iterates over the items in the array, in index order. pub fn iterator(self: *Self) Iterator { return .{ .values = &self.values, }; } /// An entry in the array. pub const Entry = struct { /// The key associated with this entry. /// Modifying this key will not change the array. key: Key, /// A pointer to the value in the array associated /// with this key. Modifications through this /// pointer will modify the underlying data. value: *Value, }; pub const Iterator = struct { index: usize = 0, values: *[Indexer.count]Value, pub fn next(self: *Iterator) ?Entry { const index = self.index; if (index < Indexer.count) { self.index += 1; return Entry{ .key = Indexer.keyForIndex(index), .value = &self.values[index], }; } return null; } }; }; } test "pure EnumSet fns" { const Suit = enum { spades, hearts, clubs, diamonds }; const empty = EnumSet(Suit).initEmpty(); const full = EnumSet(Suit).initFull(); const black = EnumSet(Suit).initMany(&[_]Suit{ .spades, .clubs }); const red = EnumSet(Suit).initMany(&[_]Suit{ .hearts, .diamonds }); try testing.expect(empty.eql(empty)); try testing.expect(full.eql(full)); try testing.expect(!empty.eql(full)); try testing.expect(!full.eql(empty)); try testing.expect(!empty.eql(black)); try testing.expect(!full.eql(red)); try testing.expect(!red.eql(empty)); try testing.expect(!black.eql(full)); try testing.expect(empty.subsetOf(empty)); try testing.expect(empty.subsetOf(full)); try testing.expect(full.subsetOf(full)); try testing.expect(!black.subsetOf(red)); try testing.expect(!red.subsetOf(black)); try testing.expect(full.supersetOf(full)); try testing.expect(full.supersetOf(empty)); try testing.expect(empty.supersetOf(empty)); try testing.expect(!black.supersetOf(red)); try testing.expect(!red.supersetOf(black)); try testing.expect(empty.complement().eql(full)); try testing.expect(full.complement().eql(empty)); try testing.expect(black.complement().eql(red)); try testing.expect(red.complement().eql(black)); try testing.expect(empty.unionWith(empty).eql(empty)); try testing.expect(empty.unionWith(full).eql(full)); try testing.expect(full.unionWith(full).eql(full)); try testing.expect(full.unionWith(empty).eql(full)); try testing.expect(black.unionWith(red).eql(full)); try testing.expect(red.unionWith(black).eql(full)); try testing.expect(empty.intersectWith(empty).eql(empty)); try testing.expect(empty.intersectWith(full).eql(empty)); try testing.expect(full.intersectWith(full).eql(full)); try testing.expect(full.intersectWith(empty).eql(empty)); try testing.expect(black.intersectWith(red).eql(empty)); try testing.expect(red.intersectWith(black).eql(empty)); try testing.expect(empty.xorWith(empty).eql(empty)); try testing.expect(empty.xorWith(full).eql(full)); try testing.expect(full.xorWith(full).eql(empty)); try testing.expect(full.xorWith(empty).eql(full)); try testing.expect(black.xorWith(red).eql(full)); try testing.expect(red.xorWith(black).eql(full)); try testing.expect(empty.differenceWith(empty).eql(empty)); try testing.expect(empty.differenceWith(full).eql(empty)); try testing.expect(full.differenceWith(full).eql(empty)); try testing.expect(full.differenceWith(empty).eql(full)); try testing.expect(full.differenceWith(red).eql(black)); try testing.expect(full.differenceWith(black).eql(red)); } test "EnumSet empty" { const E = enum {}; const empty = EnumSet(E).initEmpty(); const full = EnumSet(E).initFull(); try std.testing.expect(empty.eql(full)); try std.testing.expect(empty.complement().eql(full)); try std.testing.expect(empty.complement().eql(full.complement())); try std.testing.expect(empty.eql(full.complement())); } test "EnumSet const iterator" { const Direction = enum { up, down, left, right }; const diag_move = init: { var move = EnumSet(Direction).initEmpty(); move.insert(.right); move.insert(.up); break :init move; }; var result = EnumSet(Direction).initEmpty(); var it = diag_move.iterator(); while (it.next()) |dir| { result.insert(dir); } try testing.expect(result.eql(diag_move)); } test "EnumSet non-exhaustive" { const BitIndices = enum(u4) { a = 0, b = 1, c = 4, _, }; const BitField = EnumSet(BitIndices); var flags = BitField.init(.{ .a = true, .b = true }); flags.insert(.c); flags.remove(.a); try testing.expect(!flags.contains(.a)); try testing.expect(flags.contains(.b)); try testing.expect(flags.contains(.c)); } pub fn EnumIndexer(comptime E: type) type { // n log n for `std.mem.sortUnstable` call below. const fields_len = @typeInfo(E).@"enum".fields.len; @setEvalBranchQuota(3 * fields_len * std.math.log2(@max(fields_len, 1)) + eval_branch_quota_cushion); if (!@typeInfo(E).@"enum".is_exhaustive) { const BackingInt = @typeInfo(E).@"enum".tag_type; if (@bitSizeOf(BackingInt) > @bitSizeOf(usize)) @compileError("Cannot create an enum indexer for a given non-exhaustive enum, tag_type is larger than usize."); return struct { pub const Key: type = E; const backing_int_sign = @typeInfo(BackingInt).int.signedness; const min_value = std.math.minInt(BackingInt); const max_value = std.math.maxInt(BackingInt); const RangeType = std.meta.Int(.unsigned, @bitSizeOf(BackingInt)); pub const count: comptime_int = std.math.maxInt(RangeType) + 1; pub fn indexOf(e: E) usize { if (backing_int_sign == .unsigned) return @intFromEnum(e); return if (@intFromEnum(e) < 0) @intCast(@intFromEnum(e) - min_value) else @as(RangeType, -min_value) + @as(RangeType, @intCast(@intFromEnum(e))); } pub fn keyForIndex(i: usize) E { if (backing_int_sign == .unsigned) return @enumFromInt(i); return @enumFromInt(@as(std.meta.Int(.signed, @bitSizeOf(RangeType) + 1), @intCast(i)) + min_value); } }; } if (fields_len == 0) { return struct { pub const Key = E; pub const count: comptime_int = 0; pub fn indexOf(e: E) usize { _ = e; unreachable; } pub fn keyForIndex(i: usize) E { _ = i; unreachable; } }; } var fields: [fields_len]EnumField = @typeInfo(E).@"enum".fields[0..].*; std.mem.sortUnstable(EnumField, &fields, {}, struct { fn lessThan(ctx: void, lhs: EnumField, rhs: EnumField) bool { ctx; return lhs.value < rhs.value; } }.lessThan); const min = fields[0].value; const max = fields[fields_len - 1].value; if (max - min == fields.len - 1) { return struct { pub const Key = E; pub const count: comptime_int = fields_len; pub fn indexOf(e: E) usize { return @as(usize, @intCast(@intFromEnum(e) - min)); } pub fn keyForIndex(i: usize) E { // TODO fix addition semantics. This calculation // gives up some safety to avoid artificially limiting // the range of signed enum values to max_isize. const enum_value = if (min < 0) @as(isize, @bitCast(i)) +% min else i + min; return @as(E, @enumFromInt(@as(@typeInfo(E).@"enum".tag_type, @intCast(enum_value)))); } }; } const keys = valuesFromFields(E, &fields); return struct { pub const Key = E; pub const count: comptime_int = fields_len; pub fn indexOf(e: E) usize { for (keys, 0..) |k, i| { if (k == e) return i; } unreachable; } pub fn keyForIndex(i: usize) E { return keys[i]; } }; } test "EnumIndexer non-exhaustive" { const backing_ints = [_]type{ i1, i2, i3, i4, i8, i16, std.meta.Int(.signed, @bitSizeOf(isize) - 1), isize, u1, u2, u3, u4, u16, std.meta.Int(.unsigned, @bitSizeOf(usize) - 1), usize, }; inline for (backing_ints) |BackingInt| { const E = enum(BackingInt) { number_zero_tag = 0, _, }; const Indexer = EnumIndexer(E); const min_tag: E = @enumFromInt(std.math.minInt(BackingInt)); const max_tag: E = @enumFromInt(std.math.maxInt(BackingInt)); const RangedType = std.meta.Int(.unsigned, @bitSizeOf(BackingInt)); const max_index: comptime_int = std.math.maxInt(RangedType); const number_zero_tag_index: usize = switch (@typeInfo(BackingInt).int.signedness) { .unsigned => 0, .signed => std.math.divCeil(comptime_int, max_index, 2) catch unreachable, }; try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(max_index + 1, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(min_tag)); try testing.expectEqual(number_zero_tag_index, Indexer.indexOf(E.number_zero_tag)); try testing.expectEqual(@as(usize, max_index), Indexer.indexOf(max_tag)); try testing.expectEqual(min_tag, Indexer.keyForIndex(0)); try testing.expectEqual(E.number_zero_tag, Indexer.keyForIndex(number_zero_tag_index)); try testing.expectEqual(max_tag, Indexer.keyForIndex(max_index)); } } test "EnumIndexer dense zeroed" { const E = enum(u2) { b = 1, a = 0, c = 2 }; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(3, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } test "EnumIndexer dense positive" { const E = enum(u4) { c = 6, a = 4, b = 5 }; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(3, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } test "EnumIndexer dense negative" { const E = enum(i4) { a = -6, c = -4, b = -5 }; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(3, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } test "EnumIndexer sparse" { const E = enum(i4) { a = -2, c = 6, b = 4 }; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(3, Indexer.count); try testing.expectEqual(@as(usize, 0), Indexer.indexOf(.a)); try testing.expectEqual(@as(usize, 1), Indexer.indexOf(.b)); try testing.expectEqual(@as(usize, 2), Indexer.indexOf(.c)); try testing.expectEqual(E.a, Indexer.keyForIndex(0)); try testing.expectEqual(E.b, Indexer.keyForIndex(1)); try testing.expectEqual(E.c, Indexer.keyForIndex(2)); } test "EnumIndexer empty" { const E = enum {}; const Indexer = EnumIndexer(E); try testing.expectEqual(E, Indexer.Key); try testing.expectEqual(0, Indexer.count); } test "EnumIndexer large dense unsorted" { @setEvalBranchQuota(500_000); // many `comptimePrint`s // Make an enum with 500 fields with values in *descending* order. const E = @Type(.{ .@"enum" = .{ .tag_type = u32, .fields = comptime fields: { var fields: [500]EnumField = undefined; for (&fields, 0..) |*f, i| f.* = .{ .name = std.fmt.comptimePrint("f{d}", .{i}), .value = 500 - i, }; break :fields &fields; }, .decls = &.{}, .is_exhaustive = true, } }); const Indexer = EnumIndexer(E); try testing.expectEqual(E.f0, Indexer.keyForIndex(499)); try testing.expectEqual(E.f499, Indexer.keyForIndex(0)); try testing.expectEqual(499, Indexer.indexOf(.f0)); try testing.expectEqual(0, Indexer.indexOf(.f499)); } test values { const E = enum { X, Y, Z, const A = 1; }; try testing.expectEqualSlices(E, &.{ .X, .Y, .Z }, values(E)); } |
Generated by zstd-live on 2025-08-12 12:37:55 UTC. |