Test:log1p_64() boundary
|
// correction to avoid underflow in c / u
if (k < 25) {
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
c /= uf;
} else {
c = 0;
}
// u into [sqrt(2)/2, sqrt(2)]
iu = (iu & 0x007FFFFF) + 0x3F3504F3;
f = @as(f32, @bitCast(iu)) - 1;
}
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
const dk = @as(f32, @floatFromInt(k));
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
}
fn log1p_64(x: f64) f64 {
const ln2_hi: f64 = 6.93147180369123816490e-01;
const ln2_lo: f64 = 1.90821492927058770002e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
const ix: u64 = @bitCast(x);
const hx: u32 = @intCast(ix >> 32);
var k: i32 = 1;
var c: f64 = undefined;
var f: f64 = undefined;
// 1 + x < sqrt(2)
if (hx < 0x3FDA827A or hx >> 31 != 0) {
// x <= -1.0
if (hx >= 0xBFF00000) {
// log1p(-1) = -inf
if (x == -1.0) {
return -math.inf(f64);
}
// log1p(x < -1) = nan
else {
return math.nan(f64);
}
}
// |x| < 2^(-53)
if ((hx << 1) < (0x3CA00000 << 1)) {
if ((hx & 0x7FF00000) == 0) {
math.raiseUnderflow();
}
return x;
}
// sqrt(2) / 2- <= 1 + x < sqrt(2)+
if (hx <= 0xBFD2BEC4) {
k = 0;
c = 0;
f = x;
}
} else if (hx >= 0x7FF00000) {
return x;
}
if (k != 0) {
const uf = 1 + x;
const hu = @as(u64, @bitCast(uf));
var iu = @as(u32, @intCast(hu >> 32));
iu += 0x3FF00000 - 0x3FE6A09E;
k = @as(i32, @intCast(iu >> 20)) - 0x3FF;
// correction to avoid underflow in c / u
if (k < 54) {
c = if (k >= 2) 1 - (uf - x) else x - (uf - 1);
c /= uf;
} else {
c = 0;
}
// u into [sqrt(2)/2, sqrt(2)]
iu = (iu & 0x000FFFFF) + 0x3FE6A09E;
const iq = (@as(u64, iu) << 32) | (hu & 0xFFFFFFFF);
f = @as(f64, @bitCast(iq)) - 1;
}
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
const dk = @as(f64, @floatFromInt(k));
return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
}
test "log1p_32() special" {
try expect(math.isPositiveZero(log1p_32(0.0)));
try expect(math.isNegativeZero(log1p_32(-0.0)));
try expectEqual(log1p_32(-1.0), -math.inf(f32));
try expectEqual(log1p_32(1.0), math.ln2);
try expectEqual(log1p_32(math.inf(f32)), math.inf(f32));
try expect(math.isNan(log1p_32(-2.0)));
try expect(math.isNan(log1p_32(-math.inf(f32))));
try expect(math.isNan(log1p_32(math.nan(f32))));
try expect(math.isNan(log1p_32(math.snan(f32))));
}
test "log1p_32() sanity" {
try expect(math.isNan(log1p_32(-0x1.0223a0p+3)));
try expectEqual(log1p_32(0x1.161868p+2), 0x1.ad1bdcp+0);
try expect(math.isNan(log1p_32(-0x1.0c34b4p+3)));
try expect(math.isNan(log1p_32(-0x1.a206f0p+2)));
try expectEqual(log1p_32(0x1.288bbcp+3), 0x1.2a1ab8p+1);
try expectEqual(log1p_32(0x1.52efd0p-1), 0x1.041a4ep-1);
try expectEqual(log1p_32(-0x1.a05cc8p-2), -0x1.0b3596p-1);
try expectEqual(log1p_32(0x1.1f9efap-1), 0x1.c88344p-2);
try expectEqual(log1p_32(0x1.8c5db0p-1), 0x1.258a8ep-1);
try expectEqual(log1p_32(-0x1.5b86eap-1), -0x1.22b542p+0);
}
test "log1p_32() boundary" {
try expectEqual(log1p_32(0x1.fffffep+127), 0x1.62e430p+6); // Max input value
try expectEqual(log1p_32(0x1p-149), 0x1p-149); // Min positive input value
try expectEqual(log1p_32(-0x1p-149), -0x1p-149); // Min negative input value
try expectEqual(log1p_32(0x1p-126), 0x1p-126); // First subnormal
try expectEqual(log1p_32(-0x1p-126), -0x1p-126); // First negative subnormal
try expectEqual(log1p_32(-0x1.fffffep-1), -0x1.0a2b24p+4); // Last value before result is -inf
try expect(math.isNan(log1p_32(-0x1.000002p+0))); // First value where result is nan
}
test "log1p_64() special" {
try expect(math.isPositiveZero(log1p_64(0.0)));
try expect(math.isNegativeZero(log1p_64(-0.0)));
try expectEqual(log1p_64(-1.0), -math.inf(f64));
try expectEqual(log1p_64(1.0), math.ln2);
try expectEqual(log1p_64(math.inf(f64)), math.inf(f64));
try expect(math.isNan(log1p_64(-2.0)));
try expect(math.isNan(log1p_64(-math.inf(f64))));
try expect(math.isNan(log1p_64(math.nan(f64))));
try expect(math.isNan(log1p_64(math.snan(f64))));
}
test "log1p_64() sanity" {
try expect(math.isNan(log1p_64(-0x1.02239f3c6a8f1p+3)));
try expectEqual(log1p_64(0x1.161868e18bc67p+2), 0x1.ad1bdd1e9e686p+0); // Disagrees with GCC in last bit
try expect(math.isNan(log1p_64(-0x1.0c34b3e01e6e7p+3)));
try expect(math.isNan(log1p_64(-0x1.a206f0a19dcc4p+2)));
try expectEqual(log1p_64(0x1.288bbb0d6a1e6p+3), 0x1.2a1ab8365b56fp+1);
try expectEqual(log1p_64(0x1.52efd0cd80497p-1), 0x1.041a4ec2a680ap-1);
try expectEqual(log1p_64(-0x1.a05cc754481d1p-2), -0x1.0b3595423aec1p-1);
try expectEqual(log1p_64(0x1.1f9ef934745cbp-1), 0x1.c8834348a846ep-2);
try expectEqual(log1p_64(0x1.8c5db097f7442p-1), 0x1.258a8e8a35bbfp-1);
try expectEqual(log1p_64(-0x1.5b86ea8118a0ep-1), -0x1.22b5426327502p+0);
}
test "log1p_64() boundary" {
try expectEqual(log1p_64(0x1.fffffffffffffp+1023), 0x1.62e42fefa39efp+9); // Max input value
try expectEqual(log1p_64(0x1p-1074), 0x1p-1074); // Min positive input value
try expectEqual(log1p_64(-0x1p-1074), -0x1p-1074); // Min negative input value
try expectEqual(log1p_64(0x1p-1022), 0x1p-1022); // First subnormal
try expectEqual(log1p_64(-0x1p-1022), -0x1p-1022); // First negative subnormal
try expectEqual(log1p_64(-0x1.fffffffffffffp-1), -0x1.25e4f7b2737fap+5); // Last value before result is -inf
try expect(math.isNan(log1p_64(-0x1.0000000000001p+0))); // First value where result is nan
}
|