zig/lib/std / math.zig

Euler's number (e)

const builtin = @import("builtin");
const std = @import("std.zig");
const assert = std.debug.assert;
const mem = std.mem;
const testing = std.testing;

e

Archimedes' constant (π)


/// Euler's number (e)
pub const e = 2.71828182845904523536028747135266249775724709369995;

pi

Phi or Golden ratio constant (Φ) = (1 + sqrt(5))/2


/// Archimedes' constant (π)
pub const pi = 3.14159265358979323846264338327950288419716939937510;

phi

Circle constant (τ)


/// Phi or Golden ratio constant (Φ) = (1 + sqrt(5))/2
pub const phi = 1.6180339887498948482045868343656381177203091798057628621;

tau

log2(e)


/// Circle constant (τ)
pub const tau = 2 * pi;

log2e

log10(e)


/// log2(e)
pub const log2e = 1.442695040888963407359924681001892137;

log10e

ln(2)


/// log10(e)
pub const log10e = 0.434294481903251827651128918916605082;

ln2

ln(10)


/// ln(2)
pub const ln2 = 0.693147180559945309417232121458176568;

ln10

2/sqrt(π)


/// ln(10)
pub const ln10 = 2.302585092994045684017991454684364208;

two_sqrtpi

sqrt(2)


/// 2/sqrt(π)
pub const two_sqrtpi = 1.128379167095512573896158903121545172;

sqrt2

1/sqrt(2)


/// sqrt(2)
pub const sqrt2 = 1.414213562373095048801688724209698079;

sqrt1_2

Performs an approximate comparison of two floating point values x and y. Returns true if the absolute difference between them is less or equal than the specified tolerance. The tolerance parameter is the absolute tolerance used when determining if the two numbers are close enough; a good value for this parameter is a small multiple of floatEps(T). Note that this function is recommended for comparing small numbers around zero; using approxEqRel is suggested otherwise. NaN values are never considered equal to any value.


/// 1/sqrt(2)
pub const sqrt1_2 = 0.707106781186547524400844362104849039;

floatExponentBits

math/float.zig

Performs an approximate comparison of two floating point values x and y. Returns true if the absolute difference between them is less or equal than max(|x|, |y|) * tolerance, where tolerance is a positive number greater than zero. The tolerance parameter is the relative tolerance used when determining if the two numbers are close enough; a good value for this parameter is usually sqrt(floatEps(T)), meaning that the two numbers are considered equal if at least half of the digits are equal. Note that for comparisons of small numbers around zero this function won't give meaningful results, use approxEqAbs instead. NaN values are never considered equal to any value.


pub const floatExponentBits = @import("math/float.zig").floatExponentBits;

floatMantissaBits

math/float.zig

Sine trigonometric function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @sin

pub const floatMantissaBits = @import("math/float.zig").floatMantissaBits;

floatFractionalBits

math/float.zig

Cosine trigonometric function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @cos

pub const floatFractionalBits = @import("math/float.zig").floatFractionalBits;

floatExponentMin

math/float.zig

Tangent trigonometric function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @tan

pub const floatExponentMin = @import("math/float.zig").floatExponentMin;

floatExponentMax

math/float.zig

Converts an angle in radians to degrees. T must be a float type.

pub const floatExponentMax = @import("math/float.zig").floatExponentMax;

floatTrueMin

math/float.zig

Converts an angle in degrees to radians. T must be a float type.

pub const floatTrueMin = @import("math/float.zig").floatTrueMin;

floatMin

math/float.zig

Base-e exponential function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @exp

pub const floatMin = @import("math/float.zig").floatMin;

floatMax

math/float.zig

Base-2 exponential function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @exp2

pub const floatMax = @import("math/float.zig").floatMax;

floatEps

math/float.zig

Given two types, returns the smallest one which is capable of holding the full range of the minimum value.

pub const floatEps = @import("math/float.zig").floatEps;

inf

math/float.zig

Limit val to the inclusive range [lower, upper].

pub const inf = @import("math/float.zig").inf;

f16_true_min

Returns the product of a and b. Returns an error on overflow.


pub const f16_true_min = @compileError("Deprecated: use `floatTrueMin(f16)` instead");

f32_true_min

Returns the sum of a and b. Returns an error on overflow.

pub const f32_true_min = @compileError("Deprecated: use `floatTrueMin(f32)` instead");

f64_true_min

Returns a - b, or an error on overflow.

pub const f64_true_min = @compileError("Deprecated: use `floatTrueMin(f64)` instead");

f80_true_min

Shifts a left by shift_amt. Returns an error on overflow. shift_amt is unsigned.

pub const f80_true_min = @compileError("Deprecated: use `floatTrueMin(f80)` instead");

f128_true_min

Shifts left. Overflowed bits are truncated. A negative shift amount results in a right shift.

pub const f128_true_min = @compileError("Deprecated: use `floatTrueMin(f128)` instead");

f16_min

Shifts right. Overflowed bits are truncated. A negative shift amount results in a left shift.

pub const f16_min = @compileError("Deprecated: use `floatMin(f16)` instead");

f32_min

Rotates right. Only unsigned values can be rotated. Negative shift values result in shift modulo the bit count.

pub const f32_min = @compileError("Deprecated: use `floatMin(f32)` instead");

f64_min

Rotates left. Only unsigned values can be rotated. Negative shift values result in shift modulo the bit count.

pub const f64_min = @compileError("Deprecated: use `floatMin(f64)` instead");

f80_min

Returns an unsigned int type that can hold the number of bits in T - 1. Suitable for 0-based bit indices of T.

pub const f80_min = @compileError("Deprecated: use `floatMin(f80)` instead");

f128_min

Returns an unsigned int type that can hold the number of bits in T.

pub const f128_min = @compileError("Deprecated: use `floatMin(f128)` instead");

f16_max

Returns the smallest integer type that can hold both from and to.

pub const f16_max = @compileError("Deprecated: use `floatMax(f16)` instead");

f32_max

Returns the absolute value of x, where x is a value of a signed integer type. Does not convert and returns a value of a signed integer type. Use absCast if you want to convert the result and get an unsigned type.

pub const f32_max = @compileError("Deprecated: use `floatMax(f32)` instead");

f64_max

Divide numerator by denominator, rounding toward zero. Returns an error on overflow or when denominator is zero.

pub const f64_max = @compileError("Deprecated: use `floatMax(f64)` instead");

f80_max

Divide numerator by denominator, rounding toward negative infinity. Returns an error on overflow or when denominator is zero.

pub const f80_max = @compileError("Deprecated: use `floatMax(f80)` instead");

f128_max

Divide numerator by denominator, rounding toward positive infinity. Returns an error on overflow or when denominator is zero.

pub const f128_max = @compileError("Deprecated: use `floatMax(f128)` instead");

f16_epsilon

Divide numerator by denominator. Return an error if quotient is not an integer, denominator is zero, or on overflow.

pub const f16_epsilon = @compileError("Deprecated: use `floatEps(f16)` instead");

f32_epsilon

Returns numerator modulo denominator, or an error if denominator is zero or negative. Negative numerators never result in negative return values.

pub const f32_epsilon = @compileError("Deprecated: use `floatEps(f32)` instead");

f64_epsilon

Returns the remainder when numerator is divided by denominator, or an error if denominator is zero or negative. Negative numerators can give negative results.

pub const f64_epsilon = @compileError("Deprecated: use `floatEps(f64)` instead");

f80_epsilon

Returns the absolute value of a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @fabs

pub const f80_epsilon = @compileError("Deprecated: use `floatEps(f80)` instead");

f128_epsilon

Returns the absolute value of the integer parameter. Converts result type to unsigned if needed and returns a value of an unsigned integer type. Use absInt if you want to keep your integer type signed.

pub const f128_epsilon = @compileError("Deprecated: use `floatEps(f128)` instead");

f16_toint

Returns the negation of the integer parameter. Result is a signed integer.

pub const f16_toint = @compileError("Deprecated: use `1.0 / floatEps(f16)` instead");

f32_toint

Cast an integer to a different integer type. If the value doesn't fit, return null.

pub const f32_toint = @compileError("Deprecated: use `1.0 / floatEps(f32)` instead");

f64_toint

Align cast a pointer but return an error if it's the wrong alignment

pub const f64_toint = @compileError("Deprecated: use `1.0 / floatEps(f64)` instead");

f80_toint

Asserts int > 0.

pub const f80_toint = @compileError("Deprecated: use `1.0 / floatEps(f80)` instead");

f128_toint

Aligns the given integer type bit width to a width divisible by 8.

pub const f128_toint = @compileError("Deprecated: use `1.0 / floatEps(f128)` instead");

inf_u16

Rounds the given floating point number to an integer, away from zero. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @round

pub const inf_u16 = @compileError("Deprecated: use `@bitCast(u16, inf(f16))` instead");

inf_f16

Rounds the given floating point number to an integer, towards zero. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @trunc

pub const inf_f16 = @compileError("Deprecated: use `inf(f16)` instead");

inf_u32

Returns the largest integral value not greater than the given floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @floor

pub const inf_u32 = @compileError("Deprecated: use `@bitCast(u32, inf(f32))` instead");

inf_f32

Returns the nearest power of two less than or equal to value, or zero if value is less than or equal to zero.

pub const inf_f32 = @compileError("Deprecated: use `inf(f32)` instead");

inf_u64

Returns the smallest integral value not less than the given floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @ceil

pub const inf_u64 = @compileError("Deprecated: use `@bitCast(u64, inf(f64))` instead");

inf_f64

Returns the next power of two (if the value is not already a power of two). Only unsigned integers can be used. Zero is not an allowed input. Result is a type with 1 more bit than the input type.

pub const inf_f64 = @compileError("Deprecated: use `inf(f64)` instead");

inf_f80

Returns the next power of two (if the value is not already a power of two). Only unsigned integers can be used. Zero is not an allowed input. If the value doesn't fit, returns an error.

pub const inf_f80 = @compileError("Deprecated: use `inf(f80)` instead");

inf_u128

Returns the next power of two (if the value is not already a power of two). Only unsigned integers can be used. Zero is not an allowed input. Asserts that the value fits.

pub const inf_u128 = @compileError("Deprecated: use `@bitCast(u128, inf(f128))` instead");

inf_f128

Return the log base 2 of integer value x, rounding down to the nearest integer.

pub const inf_f128 = @compileError("Deprecated: use `inf(f128)` instead");

epsilon

Return the log base 2 of integer value x, rounding up to the nearest integer.

pub const epsilon = @compileError("Deprecated: use `floatEps` instead");

nan_u16

Cast a value to a different type. If the value doesn't fit in, or can't be perfectly represented by, the new type, it will be converted to the closest possible representation.


pub const nan_u16 = @as(u16, 0x7C01);

nan_f16

Performs linear interpolation between *a* and *b* based on *t*. *t* must be in range 0.0 to 1.0. Supports floats and vectors of floats. This does not guarantee returning *b* if *t* is 1 due to floating-point errors. This is monotonic.

pub const nan_f16 = @as(f16, @bitCast(nan_u16));

qnan_u16

Returns the maximum value of integer type T.


pub const qnan_u16 = @as(u16, 0x7E00);

qnan_f16

Returns the minimum value of integer type T.

pub const qnan_f16 = @as(f16, @bitCast(qnan_u16));

nan_u32

Multiply a and b. Return type is wide enough to guarantee no overflow.


pub const nan_u32 = @as(u32, 0x7F800001);

nan_f32

See also CompareOperator.

pub const nan_f32 = @as(f32, @bitCast(nan_u32));

qnan_u32

Greater than (>)


pub const qnan_u32 = @as(u32, 0x7FC00000);

qnan_f32

Less than (<)

pub const qnan_f32 = @as(f32, @bitCast(qnan_u32));

nan_u64

Equal (==)


pub const nan_u64 = @as(u64, 0x7FF << 52) | 1;

nan_f64

Given two numbers, this function returns the order they are with respect to each other.

pub const nan_f64 = @as(f64, @bitCast(nan_u64));

qnan_u64

See also Order.


pub const qnan_u64 = @as(u64, 0x7ff8000000000000);

qnan_f64

Less than (<)

pub const qnan_f64 = @as(f64, @bitCast(qnan_u64));

nan_f80

Less than or equal (<=)


pub const nan_f80 = make_f80(F80{ .fraction = 0xA000000000000000, .exp = 0x7fff });

qnan_f80

Equal (==)

pub const qnan_f80 = make_f80(F80{ .fraction = 0xC000000000000000, .exp = 0x7fff });

nan_u128

Greater than or equal (>=)


pub const nan_u128 = @as(u128, 0x7fff0000000000000000000000000001);

nan_f128

Greater than (>)

pub const nan_f128 = @as(f128, @bitCast(nan_u128));

qnan_u128

Not equal (!=)


pub const qnan_u128 = @as(u128, 0x7fff8000000000000000000000000000);

qnan_f128

Reverse the direction of the comparison. Use when swapping the left and right hand operands.

pub const qnan_f128 = @as(f128, @bitCast(qnan_u128));

nan

math/nan.zig

This function does the same thing as comparison operators, however the operator is a runtime-known enum value. Works on any operands that support comparison operators.


pub const nan = @import("math/nan.zig").nan;

snan

math/nan.zig

Returns a mask of all ones if value is true, and a mask of all zeroes if value is false. Compiles to one instruction for register sized integers.

pub const snan = @import("math/nan.zig").snan;

approxEqAbs()

Return the mod of num with the smallest integer type


/// Performs an approximate comparison of two floating point values `x` and `y`.
/// Returns true if the absolute difference between them is less or equal than
/// the specified tolerance.
///
/// The `tolerance` parameter is the absolute tolerance used when determining if
/// the two numbers are close enough; a good value for this parameter is a small
/// multiple of `floatEps(T)`.
///
/// Note that this function is recommended for comparing small numbers
/// around zero; using `approxEqRel` is suggested otherwise.
///
/// NaN values are never considered equal to any value.
pub fn approxEqAbs(comptime T: type, x: T, y: T, tolerance: T) bool {
    assert(@typeInfo(T) == .Float);
    assert(tolerance >= 0);

approxEqRel()

Returns -1, 0, or 1. Supports integer and float types and vectors of integer and float types. Unsigned integer types will always return 0 or 1. Branchless.


    // Fast path for equal values (and signed zeros and infinites).
    if (x == y)
        return true;

Test:

approxEqAbs and approxEqRel


    if (isNan(x) or isNan(y))
        return false;

doNotOptimizeAway()


    return @fabs(x - y) <= tolerance;

mul()

}

raiseUnderflow()


/// Performs an approximate comparison of two floating point values `x` and `y`.
/// Returns true if the absolute difference between them is less or equal than
/// `max(|x|, |y|) * tolerance`, where `tolerance` is a positive number greater
/// than zero.
///
/// The `tolerance` parameter is the relative tolerance used when determining if
/// the two numbers are close enough; a good value for this parameter is usually
/// `sqrt(floatEps(T))`, meaning that the two numbers are considered equal if at
/// least half of the digits are equal.
///
/// Note that for comparisons of small numbers around zero this function won't
/// give meaningful results, use `approxEqAbs` instead.
///
/// NaN values are never considered equal to any value.
pub fn approxEqRel(comptime T: type, x: T, y: T, tolerance: T) bool {
    assert(@typeInfo(T) == .Float);
    assert(tolerance > 0);

raiseOverflow()


    // Fast path for equal values (and signed zeros and infinites).
    if (x == y)
        return true;

raiseInexact()


    if (isNan(x) or isNan(y))
        return false;

raiseDivByZero()


    return @fabs(x - y) <= @max(@fabs(x), @fabs(y)) * tolerance;

mul()

}

isSignalNan

math/isnan.zig

test "approxEqAbs and approxEqRel" {
    inline for ([_]type{ f16, f32, f64, f128 }) |T| {
        const eps_value = comptime floatEps(T);
        const sqrt_eps_value = comptime sqrt(eps_value);
        const nan_value = comptime nan(T);
        const inf_value = comptime inf(T);
        const min_value = comptime floatMin(T);

frexp

math/frexp.zig

        try testing.expect(approxEqAbs(T, 0.0, 0.0, eps_value));
        try testing.expect(approxEqAbs(T, -0.0, -0.0, eps_value));
        try testing.expect(approxEqAbs(T, 0.0, -0.0, eps_value));
        try testing.expect(approxEqRel(T, 1.0, 1.0, sqrt_eps_value));
        try testing.expect(!approxEqRel(T, 1.0, 0.0, sqrt_eps_value));
        try testing.expect(!approxEqAbs(T, 1.0 + 2 * eps_value, 1.0, eps_value));
        try testing.expect(approxEqAbs(T, 1.0 + 1 * eps_value, 1.0, eps_value));
        try testing.expect(!approxEqRel(T, 1.0, nan_value, sqrt_eps_value));
        try testing.expect(!approxEqRel(T, nan_value, nan_value, sqrt_eps_value));
        try testing.expect(approxEqRel(T, inf_value, inf_value, sqrt_eps_value));
        try testing.expect(approxEqRel(T, min_value, min_value, sqrt_eps_value));
        try testing.expect(approxEqRel(T, -min_value, -min_value, sqrt_eps_value));
        try testing.expect(approxEqAbs(T, min_value, 0.0, eps_value * 2));
        try testing.expect(approxEqAbs(T, -min_value, 0.0, eps_value * 2));
    }

mul()

}

modf

math/modf.zig

pub fn doNotOptimizeAway(val: anytype) void {
    return mem.doNotOptimizeAway(val);

mul()

}

modf64_result

math/modf.zig

pub fn raiseInvalid() void {
    // Raise INVALID fpu exception

mul()

}

isFinite

math/isfinite.zig

pub fn raiseUnderflow() void {
    // Raise UNDERFLOW fpu exception

mul()

}

isPositiveInf

math/isinf.zig

pub fn raiseOverflow() void {
    // Raise OVERFLOW fpu exception

mul()

}

isNormal

math/isnormal.zig

pub fn raiseInexact() void {
    // Raise INEXACT fpu exception

mul()

}

scalbn

math/scalbn.zig

pub fn raiseDivByZero() void {
    // Raise INEXACT fpu exception

mul()

}

pow

math/pow.zig

pub const isNan = @import("math/isnan.zig").isNan;
pub const isSignalNan = @import("math/isnan.zig").isSignalNan;
pub const frexp = @import("math/frexp.zig").frexp;
pub const Frexp = @import("math/frexp.zig").Frexp;
pub const modf = @import("math/modf.zig").modf;
pub const modf32_result = @import("math/modf.zig").modf32_result;
pub const modf64_result = @import("math/modf.zig").modf64_result;
pub const copysign = @import("math/copysign.zig").copysign;
pub const isFinite = @import("math/isfinite.zig").isFinite;
pub const isInf = @import("math/isinf.zig").isInf;
pub const isPositiveInf = @import("math/isinf.zig").isPositiveInf;
pub const isNegativeInf = @import("math/isinf.zig").isNegativeInf;
pub const isNormal = @import("math/isnormal.zig").isNormal;
pub const signbit = @import("math/signbit.zig").signbit;
pub const scalbn = @import("math/scalbn.zig").scalbn;
pub const ldexp = @import("math/ldexp.zig").ldexp;
pub const pow = @import("math/pow.zig").pow;

powi

math/powi.zig
pub const powi = @import("math/powi.zig").powi;

sqrt

math/sqrt.zig
pub const sqrt = @import("math/sqrt.zig").sqrt;

cbrt

math/cbrt.zig
pub const cbrt = @import("math/cbrt.zig").cbrt;

acos

math/acos.zig
pub const acos = @import("math/acos.zig").acos;

asin

math/asin.zig
pub const asin = @import("math/asin.zig").asin;

atan

math/atan.zig
pub const atan = @import("math/atan.zig").atan;

atan2

math/atan2.zig
pub const atan2 = @import("math/atan2.zig").atan2;

hypot

math/hypot.zig
pub const hypot = @import("math/hypot.zig").hypot;

expm1

math/expm1.zig
pub const expm1 = @import("math/expm1.zig").expm1;

ilogb

math/ilogb.zig
pub const ilogb = @import("math/ilogb.zig").ilogb;

log

math/log.zig
pub const log = @import("math/log.zig").log;

log2

math/log2.zig
pub const log2 = @import("math/log2.zig").log2;

log10

math/log10.zig
pub const log10 = @import("math/log10.zig").log10;

log10_int

math/log10.zig
pub const log10_int = @import("math/log10.zig").log10_int;

log1p

math/log1p.zig
pub const log1p = @import("math/log1p.zig").log1p;

asinh

math/asinh.zig
pub const asinh = @import("math/asinh.zig").asinh;

acosh

math/acosh.zig
pub const acosh = @import("math/acosh.zig").acosh;

atanh

math/atanh.zig
pub const atanh = @import("math/atanh.zig").atanh;

sinh

math/sinh.zig
pub const sinh = @import("math/sinh.zig").sinh;

cosh

math/cosh.zig
pub const cosh = @import("math/cosh.zig").cosh;

tanh

math/tanh.zig
pub const tanh = @import("math/tanh.zig").tanh;

gcd

math/gcd.zig
pub const gcd = @import("math/gcd.zig").gcd;

sin()


/// Sine trigonometric function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @sin
pub inline fn sin(value: anytype) @TypeOf(value) {
    return @sin(value);

mul()

}

tan()


/// Cosine trigonometric function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @cos
pub inline fn cos(value: anytype) @TypeOf(value) {
    return @cos(value);

mul()

}

Test:

radiansToDegrees


/// Tangent trigonometric function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @tan
pub inline fn tan(value: anytype) @TypeOf(value) {
    return @tan(value);

mul()

}

Test:

degreesToRadians


/// Converts an angle in radians to degrees. T must be a float type.
pub fn radiansToDegrees(comptime T: type, angle_in_radians: T) T {
    if (@typeInfo(T) != .Float and @typeInfo(T) != .ComptimeFloat)
        @compileError("T must be a float type");
    return angle_in_radians * 180.0 / pi;

mul()

}

exp2()


test "radiansToDegrees" {
    try std.testing.expectApproxEqAbs(@as(f32, 0), radiansToDegrees(f32, 0), 1e-6);
    try std.testing.expectApproxEqAbs(@as(f32, 90), radiansToDegrees(f32, pi / 2.0), 1e-6);
    try std.testing.expectApproxEqAbs(@as(f32, -45), radiansToDegrees(f32, -pi / 4.0), 1e-6);
    try std.testing.expectApproxEqAbs(@as(f32, 180), radiansToDegrees(f32, pi), 1e-6);
    try std.testing.expectApproxEqAbs(@as(f32, 360), radiansToDegrees(f32, 2.0 * pi), 1e-6);

mul()

}

Complex


/// Converts an angle in degrees to radians. T must be a float type.
pub fn degreesToRadians(comptime T: type, angle_in_degrees: T) T {
    if (@typeInfo(T) != .Float and @typeInfo(T) != .ComptimeFloat)
        @compileError("T must be a float type");
    return angle_in_degrees * pi / 180.0;

mul()

}

Min()


test "degreesToRadians" {
    try std.testing.expectApproxEqAbs(@as(f32, pi / 2.0), degreesToRadians(f32, 90), 1e-6);
    try std.testing.expectApproxEqAbs(@as(f32, -3 * pi / 2.0), degreesToRadians(f32, -270), 1e-6);
    try std.testing.expectApproxEqAbs(@as(f32, 2 * pi), degreesToRadians(f32, 360), 1e-6);

mul()

}

max


/// Base-e exponential function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @exp
pub inline fn exp(value: anytype) @TypeOf(value) {
    return @exp(value);

mul()

}

max3


/// Base-2 exponential function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @exp2
pub inline fn exp2(value: anytype) @TypeOf(value) {
    return @exp2(value);

mul()

}

clamp()


pub const complex = @import("math/complex.zig");
pub const Complex = complex.Complex;

Test:

clamp


pub const big = @import("math/big.zig");

mul()


test {
    _ = floatExponentBits;
    _ = floatMantissaBits;
    _ = floatFractionalBits;
    _ = floatExponentMin;
    _ = floatExponentMax;
    _ = floatTrueMin;
    _ = floatMin;
    _ = floatMax;
    _ = floatEps;
    _ = inf;

add()


    _ = nan_u16;
    _ = nan_f16;

sub()


    _ = qnan_u16;
    _ = qnan_f16;

negate()


    _ = nan_u32;
    _ = nan_f32;

shlExact()


    _ = qnan_u32;
    _ = qnan_f32;

shl()


    _ = nan_u64;
    _ = nan_f64;

Test:

shl


    _ = qnan_u64;
    _ = qnan_f64;

shr()


    _ = nan_f80;
    _ = qnan_f80;

Test:

shr


    _ = nan_u128;
    _ = nan_f128;

rotr()


    _ = qnan_u128;
    _ = qnan_f128;

Test:

rotr


    _ = nan;
    _ = snan;

rotl()


    _ = isNan;
    _ = isSignalNan;
    _ = frexp;
    _ = Frexp;
    _ = modf;
    _ = modf32_result;
    _ = modf64_result;
    _ = copysign;
    _ = isFinite;
    _ = isInf;
    _ = isPositiveInf;
    _ = isNegativeInf;
    _ = isNormal;
    _ = signbit;
    _ = scalbn;
    _ = ldexp;
    _ = pow;
    _ = powi;
    _ = sqrt;
    _ = cbrt;
    _ = acos;
    _ = asin;
    _ = atan;
    _ = atan2;
    _ = hypot;
    _ = expm1;
    _ = ilogb;
    _ = log;
    _ = log2;
    _ = log10;
    _ = log10_int;
    _ = log1p;
    _ = asinh;
    _ = acosh;
    _ = atanh;
    _ = sinh;
    _ = cosh;
    _ = tanh;
    _ = gcd;

Test:

rotl


    _ = complex;
    _ = Complex;

Log2Int()


    _ = big;

AlignCastError

}

IntFittingRange()


/// Given two types, returns the smallest one which is capable of holding the
/// full range of the minimum value.
pub fn Min(comptime A: type, comptime B: type) type {
    switch (@typeInfo(A)) {
        .Int => |a_info| switch (@typeInfo(B)) {
            .Int => |b_info| if (a_info.signedness == .unsigned and b_info.signedness == .unsigned) {
                if (a_info.bits < b_info.bits) {
                    return A;
                } else {
                    return B;
                }
            },
            else => {},
        },
        else => {},
    }
    return @TypeOf(@as(A, 0) + @as(B, 0));

AlignCastError

}

Test:

overflow functions


pub const min = @compileError("deprecated; use @min instead");
pub const max = @compileError("deprecated; use @max instead");
pub const min3 = @compileError("deprecated; use @min instead");
pub const max3 = @compileError("deprecated; use @max instead");
pub const ln = @compileError("deprecated; use @log instead");

absInt()


/// Limit val to the inclusive range [lower, upper].
pub fn clamp(val: anytype, lower: anytype, upper: anytype) @TypeOf(val, lower, upper) {
    assert(lower <= upper);
    return @max(lower, @min(val, upper));

AlignCastError

}
test "clamp" {
    // Within range
    try testing.expect(std.math.clamp(@as(i32, -1), @as(i32, -4), @as(i32, 7)) == -1);
    // Below
    try testing.expect(std.math.clamp(@as(i32, -5), @as(i32, -4), @as(i32, 7)) == -4);
    // Above
    try testing.expect(std.math.clamp(@as(i32, 8), @as(i32, -4), @as(i32, 7)) == 7);

divTrunc()


    // Floating point
    try testing.expect(std.math.clamp(@as(f32, 1.1), @as(f32, 0.0), @as(f32, 1.0)) == 1.0);
    try testing.expect(std.math.clamp(@as(f32, -127.5), @as(f32, -200), @as(f32, -100)) == -127.5);

Test:

divTrunc


    // Mix of comptime and non-comptime
    var i: i32 = 1;
    try testing.expect(std.math.clamp(i, 0, 1) == 1);

AlignCastError

}

Test:

divFloor


/// Returns the product of a and b. Returns an error on overflow.
pub fn mul(comptime T: type, a: T, b: T) (error{Overflow}!T) {
    if (T == comptime_int) return a * b;
    const ov = @mulWithOverflow(a, b);
    if (ov[1] != 0) return error.Overflow;
    return ov[0];

AlignCastError

}

Test:

divCeil


/// Returns the sum of a and b. Returns an error on overflow.
pub fn add(comptime T: type, a: T, b: T) (error{Overflow}!T) {
    if (T == comptime_int) return a + b;
    const ov = @addWithOverflow(a, b);
    if (ov[1] != 0) return error.Overflow;
    return ov[0];

AlignCastError

}

Test:

divExact


/// Returns a - b, or an error on overflow.
pub fn sub(comptime T: type, a: T, b: T) (error{Overflow}!T) {
    if (T == comptime_int) return a - b;
    const ov = @subWithOverflow(a, b);
    if (ov[1] != 0) return error.Overflow;
    return ov[0];

AlignCastError

}

Test:

mod


pub fn negate(x: anytype) !@TypeOf(x) {
    return sub(@TypeOf(x), 0, x);

AlignCastError

}

Test:

rem


/// Shifts a left by shift_amt. Returns an error on overflow. shift_amt
/// is unsigned.
pub fn shlExact(comptime T: type, a: T, shift_amt: Log2Int(T)) !T {
    if (T == comptime_int) return a << shift_amt;
    const ov = @shlWithOverflow(a, shift_amt);
    if (ov[1] != 0) return error.Overflow;
    return ov[0];

AlignCastError

}

absCast()


/// Shifts left. Overflowed bits are truncated.
/// A negative shift amount results in a right shift.
pub fn shl(comptime T: type, a: T, shift_amt: anytype) T {
    const abs_shift_amt = absCast(shift_amt);

Test:

absCast


    const casted_shift_amt = blk: {
        if (@typeInfo(T) == .Vector) {
            const C = @typeInfo(T).Vector.child;
            const len = @typeInfo(T).Vector.len;
            if (abs_shift_amt >= @typeInfo(C).Int.bits) return @splat(0);
            break :blk @as(@Vector(len, Log2Int(C)), @splat(@as(Log2Int(C), @intCast(abs_shift_amt))));
        } else {
            if (abs_shift_amt >= @typeInfo(T).Int.bits) return 0;
            break :blk @as(Log2Int(T), @intCast(abs_shift_amt));
        }
    };

negateCast()


    if (@TypeOf(shift_amt) == comptime_int or @typeInfo(@TypeOf(shift_amt)).Int.signedness == .signed) {
        if (shift_amt < 0) {
            return a >> casted_shift_amt;
        }
    }

Test:

negateCast


    return a << casted_shift_amt;

AlignCastError

}

Test:

cast


test "shl" {
    if (builtin.zig_backend == .stage2_llvm and builtin.cpu.arch == .aarch64) {
        // https://github.com/ziglang/zig/issues/12012
        return error.SkipZigTest;
    }
    try testing.expect(shl(u8, 0b11111111, @as(usize, 3)) == 0b11111000);
    try testing.expect(shl(u8, 0b11111111, @as(usize, 8)) == 0);
    try testing.expect(shl(u8, 0b11111111, @as(usize, 9)) == 0);
    try testing.expect(shl(u8, 0b11111111, @as(isize, -2)) == 0b00111111);
    try testing.expect(shl(u8, 0b11111111, 3) == 0b11111000);
    try testing.expect(shl(u8, 0b11111111, 8) == 0);
    try testing.expect(shl(u8, 0b11111111, 9) == 0);
    try testing.expect(shl(u8, 0b11111111, -2) == 0b00111111);
    try testing.expect(shl(@Vector(1, u32), @Vector(1, u32){42}, @as(usize, 1))[0] == @as(u32, 42) << 1);
    try testing.expect(shl(@Vector(1, u32), @Vector(1, u32){42}, @as(isize, -1))[0] == @as(u32, 42) >> 1);
    try testing.expect(shl(@Vector(1, u32), @Vector(1, u32){42}, 33)[0] == 0);

AlignCastError

}

alignCast()


/// Shifts right. Overflowed bits are truncated.
/// A negative shift amount results in a left shift.
pub fn shr(comptime T: type, a: T, shift_amt: anytype) T {
    const abs_shift_amt = absCast(shift_amt);

isPowerOfTwo()


    const casted_shift_amt = blk: {
        if (@typeInfo(T) == .Vector) {
            const C = @typeInfo(T).Vector.child;
            const len = @typeInfo(T).Vector.len;
            if (abs_shift_amt >= @typeInfo(C).Int.bits) return @splat(0);
            break :blk @as(@Vector(len, Log2Int(C)), @splat(@as(Log2Int(C), @intCast(abs_shift_amt))));
        } else {
            if (abs_shift_amt >= @typeInfo(T).Int.bits) return 0;
            break :blk @as(Log2Int(T), @intCast(abs_shift_amt));
        }
    };

Test: isPowerOfTwo


    if (@TypeOf(shift_amt) == comptime_int or @typeInfo(@TypeOf(shift_amt)).Int.signedness == .signed) {
        if (shift_amt < 0) {
            return a << casted_shift_amt;
        }
    }

ByteAlignedInt()


    return a >> casted_shift_amt;

ceilPowerOfTwo()

}

round()


test "shr" {
    if (builtin.zig_backend == .stage2_llvm and builtin.cpu.arch == .aarch64) {
        // https://github.com/ziglang/zig/issues/12012
        return error.SkipZigTest;
    }
    try testing.expect(shr(u8, 0b11111111, @as(usize, 3)) == 0b00011111);
    try testing.expect(shr(u8, 0b11111111, @as(usize, 8)) == 0);
    try testing.expect(shr(u8, 0b11111111, @as(usize, 9)) == 0);
    try testing.expect(shr(u8, 0b11111111, @as(isize, -2)) == 0b11111100);
    try testing.expect(shr(u8, 0b11111111, 3) == 0b00011111);
    try testing.expect(shr(u8, 0b11111111, 8) == 0);
    try testing.expect(shr(u8, 0b11111111, 9) == 0);
    try testing.expect(shr(u8, 0b11111111, -2) == 0b11111100);
    try testing.expect(shr(@Vector(1, u32), @Vector(1, u32){42}, @as(usize, 1))[0] == @as(u32, 42) >> 1);
    try testing.expect(shr(@Vector(1, u32), @Vector(1, u32){42}, @as(isize, -1))[0] == @as(u32, 42) << 1);
    try testing.expect(shr(@Vector(1, u32), @Vector(1, u32){42}, 33)[0] == 0);

ceilPowerOfTwo()

}

floor()


/// Rotates right. Only unsigned values can be rotated.  Negative shift
/// values result in shift modulo the bit count.
pub fn rotr(comptime T: type, x: T, r: anytype) T {
    if (@typeInfo(T) == .Vector) {
        const C = @typeInfo(T).Vector.child;
        if (C == u0) return 0;

floorPowerOfTwo()


        if (@typeInfo(C).Int.signedness == .signed) {
            @compileError("cannot rotate signed integers");
        }
        const ar = @as(Log2Int(C), @intCast(@mod(r, @typeInfo(C).Int.bits)));
        return (x >> @splat(ar)) | (x << @splat(1 + ~ar));
    } else if (@typeInfo(T).Int.signedness == .signed) {
        @compileError("cannot rotate signed integer");
    } else {
        if (T == u0) return 0;

Test:

floorPowerOfTwo


        if (isPowerOfTwo(@typeInfo(T).Int.bits)) {
            const ar = @as(Log2Int(T), @intCast(@mod(r, @typeInfo(T).Int.bits)));
            return x >> ar | x << (1 +% ~ar);
        } else {
            const ar = @mod(r, @typeInfo(T).Int.bits);
            return shr(T, x, ar) | shl(T, x, @typeInfo(T).Int.bits - ar);
        }
    }

ceilPowerOfTwo()

}

ceilPowerOfTwoPromote()


test "rotr" {
    if (builtin.zig_backend == .stage2_llvm and builtin.cpu.arch == .aarch64) {
        // https://github.com/ziglang/zig/issues/12012
        return error.SkipZigTest;
    }
    try testing.expect(rotr(u0, 0b0, @as(usize, 3)) == 0b0);
    try testing.expect(rotr(u5, 0b00001, @as(usize, 0)) == 0b00001);
    try testing.expect(rotr(u6, 0b000001, @as(usize, 7)) == 0b100000);
    try testing.expect(rotr(u8, 0b00000001, @as(usize, 0)) == 0b00000001);
    try testing.expect(rotr(u8, 0b00000001, @as(usize, 9)) == 0b10000000);
    try testing.expect(rotr(u8, 0b00000001, @as(usize, 8)) == 0b00000001);
    try testing.expect(rotr(u8, 0b00000001, @as(usize, 4)) == 0b00010000);
    try testing.expect(rotr(u8, 0b00000001, @as(isize, -1)) == 0b00000010);
    try testing.expect(rotr(@Vector(1, u32), @Vector(1, u32){1}, @as(usize, 1))[0] == @as(u32, 1) << 31);
    try testing.expect(rotr(@Vector(1, u32), @Vector(1, u32){1}, @as(isize, -1))[0] == @as(u32, 1) << 1);

ceilPowerOfTwo()

}

ceilPowerOfTwoAssert()


/// Rotates left. Only unsigned values can be rotated.  Negative shift
/// values result in shift modulo the bit count.
pub fn rotl(comptime T: type, x: T, r: anytype) T {
    if (@typeInfo(T) == .Vector) {
        const C = @typeInfo(T).Vector.child;
        if (C == u0) return 0;

Test:

ceilPowerOfTwoPromote


        if (@typeInfo(C).Int.signedness == .signed) {
            @compileError("cannot rotate signed integers");
        }
        const ar = @as(Log2Int(C), @intCast(@mod(r, @typeInfo(C).Int.bits)));
        return (x << @splat(ar)) | (x >> @splat(1 +% ~ar));
    } else if (@typeInfo(T).Int.signedness == .signed) {
        @compileError("cannot rotate signed integer");
    } else {
        if (T == u0) return 0;

Test:

ceilPowerOfTwo


        if (isPowerOfTwo(@typeInfo(T).Int.bits)) {
            const ar = @as(Log2Int(T), @intCast(@mod(r, @typeInfo(T).Int.bits)));
            return x << ar | x >> 1 +% ~ar;
        } else {
            const ar = @mod(r, @typeInfo(T).Int.bits);
            return shl(T, x, ar) | shr(T, x, @typeInfo(T).Int.bits - ar);
        }
    }
}

log2_int()


test "rotl" {
    if (builtin.zig_backend == .stage2_llvm and builtin.cpu.arch == .aarch64) {
        // https://github.com/ziglang/zig/issues/12012
        return error.SkipZigTest;
    }
    try testing.expect(rotl(u0, 0b0, @as(usize, 3)) == 0b0);
    try testing.expect(rotl(u5, 0b00001, @as(usize, 0)) == 0b00001);
    try testing.expect(rotl(u6, 0b000001, @as(usize, 7)) == 0b000010);
    try testing.expect(rotl(u8, 0b00000001, @as(usize, 0)) == 0b00000001);
    try testing.expect(rotl(u8, 0b00000001, @as(usize, 9)) == 0b00000010);
    try testing.expect(rotl(u8, 0b00000001, @as(usize, 8)) == 0b00000001);
    try testing.expect(rotl(u8, 0b00000001, @as(usize, 4)) == 0b00010000);
    try testing.expect(rotl(u8, 0b00000001, @as(isize, -1)) == 0b10000000);
    try testing.expect(rotl(@Vector(1, u32), @Vector(1, u32){1 << 31}, @as(usize, 1))[0] == 1);
    try testing.expect(rotl(@Vector(1, u32), @Vector(1, u32){1 << 31}, @as(isize, -1))[0] == @as(u32, 1) << 30);
}

log2_int_ceil()


/// Returns an unsigned int type that can hold the number of bits in T
/// - 1. Suitable for 0-based bit indices of T.
pub fn Log2Int(comptime T: type) type {
    // comptime ceil log2
    comptime var count = 0;
    comptime var s = @typeInfo(T).Int.bits - 1;
    inline while (s != 0) : (s >>= 1) {
        count += 1;
    }

Test:

std.math.log2_int_ceil


    return std.meta.Int(.unsigned, count);
}

lossyCast()


/// Returns an unsigned int type that can hold the number of bits in T.
pub fn Log2IntCeil(comptime T: type) type {
    // comptime ceil log2
    comptime var count = 0;
    comptime var s = @typeInfo(T).Int.bits;
    inline while (s != 0) : (s >>= 1) {
        count += 1;
    }

Test:

lossyCast


    return std.meta.Int(.unsigned, count);
}

lerp()


/// Returns the smallest integer type that can hold both from and to.
pub fn IntFittingRange(comptime from: comptime_int, comptime to: comptime_int) type {
    assert(from <= to);
    if (from == 0 and to == 0) {
        return u0;
    }
    const signedness: std.builtin.Signedness = if (from < 0) .signed else .unsigned;
    const largest_positive_integer = @max(if (from < 0) (-from) - 1 else from, to); // two's complement
    const base = log2(largest_positive_integer);
    const upper = (1 << base) - 1;
    var magnitude_bits = if (upper >= largest_positive_integer) base else base + 1;
    if (signedness == .signed) {
        magnitude_bits += 1;
    }
    return std.meta.Int(signedness, magnitude_bits);
}

Test:

lerp


test "IntFittingRange" {
    try testing.expect(IntFittingRange(0, 0) == u0);
    try testing.expect(IntFittingRange(0, 1) == u1);
    try testing.expect(IntFittingRange(0, 2) == u2);
    try testing.expect(IntFittingRange(0, 3) == u2);
    try testing.expect(IntFittingRange(0, 4) == u3);
    try testing.expect(IntFittingRange(0, 7) == u3);
    try testing.expect(IntFittingRange(0, 8) == u4);
    try testing.expect(IntFittingRange(0, 9) == u4);
    try testing.expect(IntFittingRange(0, 15) == u4);
    try testing.expect(IntFittingRange(0, 16) == u5);
    try testing.expect(IntFittingRange(0, 17) == u5);
    try testing.expect(IntFittingRange(0, 4095) == u12);
    try testing.expect(IntFittingRange(2000, 4095) == u12);
    try testing.expect(IntFittingRange(0, 4096) == u13);
    try testing.expect(IntFittingRange(2000, 4096) == u13);
    try testing.expect(IntFittingRange(0, 4097) == u13);
    try testing.expect(IntFittingRange(2000, 4097) == u13);
    try testing.expect(IntFittingRange(0, 123456789123456798123456789) == u87);
    try testing.expect(IntFittingRange(0, 123456789123456798123456789123456789123456798123456789) == u177);

maxInt()


    try testing.expect(IntFittingRange(-1, -1) == i1);
    try testing.expect(IntFittingRange(-1, 0) == i1);
    try testing.expect(IntFittingRange(-1, 1) == i2);
    try testing.expect(IntFittingRange(-2, -2) == i2);
    try testing.expect(IntFittingRange(-2, -1) == i2);
    try testing.expect(IntFittingRange(-2, 0) == i2);
    try testing.expect(IntFittingRange(-2, 1) == i2);
    try testing.expect(IntFittingRange(-2, 2) == i3);
    try testing.expect(IntFittingRange(-1, 2) == i3);
    try testing.expect(IntFittingRange(-1, 3) == i3);
    try testing.expect(IntFittingRange(-1, 4) == i4);
    try testing.expect(IntFittingRange(-1, 7) == i4);
    try testing.expect(IntFittingRange(-1, 8) == i5);
    try testing.expect(IntFittingRange(-1, 9) == i5);
    try testing.expect(IntFittingRange(-1, 15) == i5);
    try testing.expect(IntFittingRange(-1, 16) == i6);
    try testing.expect(IntFittingRange(-1, 17) == i6);
    try testing.expect(IntFittingRange(-1, 4095) == i13);
    try testing.expect(IntFittingRange(-4096, 4095) == i13);
    try testing.expect(IntFittingRange(-1, 4096) == i14);
    try testing.expect(IntFittingRange(-4097, 4095) == i14);
    try testing.expect(IntFittingRange(-1, 4097) == i14);
    try testing.expect(IntFittingRange(-1, 123456789123456798123456789) == i88);
    try testing.expect(IntFittingRange(-1, 123456789123456798123456789123456789123456798123456789) == i178);
}

minInt()


test "overflow functions" {
    try testOverflow();
    try comptime testOverflow();
}

Test:

minInt and maxInt


fn testOverflow() !void {
    try testing.expect((mul(i32, 3, 4) catch unreachable) == 12);
    try testing.expect((add(i32, 3, 4) catch unreachable) == 7);
    try testing.expect((sub(i32, 3, 4) catch unreachable) == -1);
    try testing.expect((shlExact(i32, 0b11, 4) catch unreachable) == 0b110000);
}

Test:

max value type


/// Returns the absolute value of x, where x is a value of a signed integer type.
/// Does not convert and returns a value of a signed integer type.
/// Use `absCast` if you want to convert the result and get an unsigned type.
pub fn absInt(x: anytype) !@TypeOf(x) {
    const T = @TypeOf(x);
    return switch (@typeInfo(T)) {
        .Int => |info| {
            comptime assert(info.signedness == .signed); // must pass a signed integer to absInt
            if (x == minInt(T)) {
                return error.Overflow;
            } else {
                @setRuntimeSafety(false);
                return if (x < 0) -x else x;
            }
        },
        .Vector => |vinfo| blk: {
            switch (@typeInfo(vinfo.child)) {
                .Int => |info| {
                    comptime assert(info.signedness == .signed); // must pass a signed integer to absInt
                    if (@reduce(.Or, x == @as(T, @splat(minInt(vinfo.child))))) {
                        return error.Overflow;
                    }
                    const zero: T = @splat(0);
                    break :blk @select(vinfo.child, x > zero, x, -x);
                },
                else => @compileError("Expected vector of ints, found " ++ @typeName(T)),
            }
        },
        else => @compileError("Expected an int or vector, found " ++ @typeName(T)),
    };
}

mulWide()


test "absInt" {
    try testAbsInt();
    try comptime testAbsInt();
}
fn testAbsInt() !void {
    try testing.expect((absInt(@as(i32, -10)) catch unreachable) == 10);
    try testing.expect((absInt(@as(i32, 10)) catch unreachable) == 10);
    try testing.expectEqual(@Vector(3, i32){ 10, 10, 0 }, (absInt(@Vector(3, i32){ -10, 10, 0 }) catch unreachable));

Test:

mulWide


    try testing.expectError(error.Overflow, absInt(@as(i32, minInt(i32))));
    try testing.expectError(error.Overflow, absInt(@Vector(3, i32){ 10, -10, minInt(i32) }));
}

Order


/// Divide numerator by denominator, rounding toward zero. Returns an
/// error on overflow or when denominator is zero.
pub fn divTrunc(comptime T: type, numerator: T, denominator: T) !T {
    @setRuntimeSafety(false);
    if (denominator == 0) return error.DivisionByZero;
    if (@typeInfo(T) == .Int and @typeInfo(T).Int.signedness == .signed and numerator == minInt(T) and denominator == -1) return error.Overflow;
    return @divTrunc(numerator, denominator);
}

invert()


test "divTrunc" {
    try testDivTrunc();
    try comptime testDivTrunc();
}
fn testDivTrunc() !void {
    try testing.expect((divTrunc(i32, 5, 3) catch unreachable) == 1);
    try testing.expect((divTrunc(i32, -5, 3) catch unreachable) == -1);
    try testing.expectError(error.DivisionByZero, divTrunc(i8, -5, 0));
    try testing.expectError(error.Overflow, divTrunc(i8, -128, -1));

compare()


    try testing.expect((divTrunc(f32, 5.0, 3.0) catch unreachable) == 1.0);
    try testing.expect((divTrunc(f32, -5.0, 3.0) catch unreachable) == -1.0);
}

order()


/// Divide numerator by denominator, rounding toward negative
/// infinity. Returns an error on overflow or when denominator is
/// zero.
pub fn divFloor(comptime T: type, numerator: T, denominator: T) !T {
    @setRuntimeSafety(false);
    if (denominator == 0) return error.DivisionByZero;
    if (@typeInfo(T) == .Int and @typeInfo(T).Int.signedness == .signed and numerator == minInt(T) and denominator == -1) return error.Overflow;
    return @divFloor(numerator, denominator);
}

CompareOperator


test "divFloor" {
    try testDivFloor();
    try comptime testDivFloor();
}
fn testDivFloor() !void {
    try testing.expect((divFloor(i32, 5, 3) catch unreachable) == 1);
    try testing.expect((divFloor(i32, -5, 3) catch unreachable) == -2);
    try testing.expectError(error.DivisionByZero, divFloor(i8, -5, 0));
    try testing.expectError(error.Overflow, divFloor(i8, -128, -1));

reverse()


    try testing.expect((divFloor(f32, 5.0, 3.0) catch unreachable) == 1.0);
    try testing.expect((divFloor(f32, -5.0, 3.0) catch unreachable) == -2.0);
}

compare()


/// Divide numerator by denominator, rounding toward positive
/// infinity. Returns an error on overflow or when denominator is
/// zero.
pub fn divCeil(comptime T: type, numerator: T, denominator: T) !T {
    @setRuntimeSafety(false);
    if ((comptime std.meta.trait.isNumber(T)) and denominator == 0) return error.DivisionByZero;
    const info = @typeInfo(T);
    switch (info) {
        .ComptimeFloat, .Float => return @ceil(numerator / denominator),
        .ComptimeInt, .Int => {
            if (numerator < 0 and denominator < 0) {
                if (info == .Int and numerator == minInt(T) and denominator == -1)
                    return error.Overflow;
                return @divFloor(numerator + 1, denominator) + 1;
            }
            if (numerator > 0 and denominator > 0)
                return @divFloor(numerator - 1, denominator) + 1;
            return @divTrunc(numerator, denominator);
        },
        else => @compileError("divCeil unsupported on " ++ @typeName(T)),
    }
}

Test:

compare between signed and unsigned


test "divCeil" {
    try testDivCeil();
    try comptime testDivCeil();
}
fn testDivCeil() !void {
    try testing.expectEqual(@as(i32, 2), divCeil(i32, 5, 3) catch unreachable);
    try testing.expectEqual(@as(i32, -1), divCeil(i32, -5, 3) catch unreachable);
    try testing.expectEqual(@as(i32, -1), divCeil(i32, 5, -3) catch unreachable);
    try testing.expectEqual(@as(i32, 2), divCeil(i32, -5, -3) catch unreachable);
    try testing.expectEqual(@as(i32, 0), divCeil(i32, 0, 5) catch unreachable);
    try testing.expectEqual(@as(u32, 0), divCeil(u32, 0, 5) catch unreachable);
    try testing.expectError(error.DivisionByZero, divCeil(i8, -5, 0));
    try testing.expectError(error.Overflow, divCeil(i8, -128, -1));

Test:

order


    try testing.expectEqual(@as(f32, 0.0), divCeil(f32, 0.0, 5.0) catch unreachable);
    try testing.expectEqual(@as(f32, 2.0), divCeil(f32, 5.0, 3.0) catch unreachable);
    try testing.expectEqual(@as(f32, -1.0), divCeil(f32, -5.0, 3.0) catch unreachable);
    try testing.expectEqual(@as(f32, -1.0), divCeil(f32, 5.0, -3.0) catch unreachable);
    try testing.expectEqual(@as(f32, 2.0), divCeil(f32, -5.0, -3.0) catch unreachable);

Test:

order.invert


    try testing.expectEqual(6, divCeil(comptime_int, 23, 4) catch unreachable);
    try testing.expectEqual(-5, divCeil(comptime_int, -23, 4) catch unreachable);
    try testing.expectEqual(-5, divCeil(comptime_int, 23, -4) catch unreachable);
    try testing.expectEqual(6, divCeil(comptime_int, -23, -4) catch unreachable);
    try testing.expectError(error.DivisionByZero, divCeil(comptime_int, 23, 0));

Test:

order.compare


    try testing.expectEqual(6.0, divCeil(comptime_float, 23.0, 4.0) catch unreachable);
    try testing.expectEqual(-5.0, divCeil(comptime_float, -23.0, 4.0) catch unreachable);
    try testing.expectEqual(-5.0, divCeil(comptime_float, 23.0, -4.0) catch unreachable);
    try testing.expectEqual(6.0, divCeil(comptime_float, -23.0, -4.0) catch unreachable);
    try testing.expectError(error.DivisionByZero, divCeil(comptime_float, 23.0, 0.0));
}

Test:

compare.reverse


/// Divide numerator by denominator. Return an error if quotient is
/// not an integer, denominator is zero, or on overflow.
pub fn divExact(comptime T: type, numerator: T, denominator: T) !T {
    @setRuntimeSafety(false);
    if (denominator == 0) return error.DivisionByZero;
    if (@typeInfo(T) == .Int and @typeInfo(T).Int.signedness == .signed and numerator == minInt(T) and denominator == -1) return error.Overflow;
    const result = @divTrunc(numerator, denominator);
    if (result * denominator != numerator) return error.UnexpectedRemainder;
    return result;
}

boolMask()


test "divExact" {
    try testDivExact();
    try comptime testDivExact();
}
fn testDivExact() !void {
    try testing.expect((divExact(i32, 10, 5) catch unreachable) == 2);
    try testing.expect((divExact(i32, -10, 5) catch unreachable) == -2);
    try testing.expectError(error.DivisionByZero, divExact(i8, -5, 0));
    try testing.expectError(error.Overflow, divExact(i8, -128, -1));
    try testing.expectError(error.UnexpectedRemainder, divExact(i32, 5, 2));

Test:

boolMask


    try testing.expect((divExact(f32, 10.0, 5.0) catch unreachable) == 2.0);
    try testing.expect((divExact(f32, -10.0, 5.0) catch unreachable) == -2.0);
    try testing.expectError(error.UnexpectedRemainder, divExact(f32, 5.0, 2.0));
}

comptimeMod()


/// Returns numerator modulo denominator, or an error if denominator is
/// zero or negative. Negative numerators never result in negative
/// return values.
pub fn mod(comptime T: type, numerator: T, denominator: T) !T {
    @setRuntimeSafety(false);
    if (denominator == 0) return error.DivisionByZero;
    if (denominator < 0) return error.NegativeDenominator;
    return @mod(numerator, denominator);
}

F80


test "mod" {
    try testMod();
    try comptime testMod();
}
fn testMod() !void {
    try testing.expect((mod(i32, -5, 3) catch unreachable) == 1);
    try testing.expect((mod(i32, 5, 3) catch unreachable) == 2);
    try testing.expectError(error.NegativeDenominator, mod(i32, 10, -1));
    try testing.expectError(error.DivisionByZero, mod(i32, 10, 0));

make_f80()


    try testing.expect((mod(f32, -5, 3) catch unreachable) == 1);
    try testing.expect((mod(f32, 5, 3) catch unreachable) == 2);
    try testing.expectError(error.NegativeDenominator, mod(f32, 10, -1));
    try testing.expectError(error.DivisionByZero, mod(f32, 10, 0));
}

break_f80()


/// Returns the remainder when numerator is divided by denominator, or
/// an error if denominator is zero or negative. Negative numerators
/// can give negative results.
pub fn rem(comptime T: type, numerator: T, denominator: T) !T {
    @setRuntimeSafety(false);
    if (denominator == 0) return error.DivisionByZero;
    if (denominator < 0) return error.NegativeDenominator;
    return @rem(numerator, denominator);
}

sign()


test "rem" {
    try testRem();
    try comptime testRem();
}
fn testRem() !void {
    try testing.expect((rem(i32, -5, 3) catch unreachable) == -2);
    try testing.expect((rem(i32, 5, 3) catch unreachable) == 2);
    try testing.expectError(error.NegativeDenominator, rem(i32, 10, -1));
    try testing.expectError(error.DivisionByZero, rem(i32, 10, 0));

Test:

sign


    try testing.expect((rem(f32, -5, 3) catch unreachable) == -2);
    try testing.expect((rem(f32, 5, 3) catch unreachable) == 2);
    try testing.expectError(error.NegativeDenominator, rem(f32, 10, -1));
    try testing.expectError(error.DivisionByZero, rem(f32, 10, 0));
}

/// Returns the absolute value of a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @fabs
pub inline fn fabs(value: anytype) @TypeOf(value) {
    return @fabs(value);
}

/// Returns the absolute value of the integer parameter.
/// Converts result type to unsigned if needed and returns a value of an unsigned integer type.
/// Use `absInt` if you want to keep your integer type signed.
pub fn absCast(x: anytype) switch (@typeInfo(@TypeOf(x))) {
    .ComptimeInt => comptime_int,
    .Int => |int_info| std.meta.Int(.unsigned, int_info.bits),
    else => @compileError("absCast only accepts integers"),
} {
    switch (@typeInfo(@TypeOf(x))) {
        .ComptimeInt => {
            if (x < 0) {
                return -x;
            } else {
                return x;
            }
        },
        .Int => |int_info| {
            if (int_info.signedness == .unsigned) return x;
            const Uint = std.meta.Int(.unsigned, int_info.bits);
            if (x < 0) {
                return ~@as(Uint, @bitCast(x +% -1));
            } else {
                return @as(Uint, @intCast(x));
            }
        },
        else => unreachable,
    }
}

test "absCast" {
    try testing.expectEqual(@as(u1, 1), absCast(@as(i1, -1)));
    try testing.expectEqual(@as(u32, 999), absCast(@as(i32, -999)));
    try testing.expectEqual(@as(u32, 999), absCast(@as(i32, 999)));
    try testing.expectEqual(@as(u32, -minInt(i32)), absCast(@as(i32, minInt(i32))));
    try testing.expectEqual(999, absCast(-999));
}

/// Returns the negation of the integer parameter.
/// Result is a signed integer.
pub fn negateCast(x: anytype) !std.meta.Int(.signed, @bitSizeOf(@TypeOf(x))) {
    if (@typeInfo(@TypeOf(x)).Int.signedness == .signed) return negate(x);

    const int = std.meta.Int(.signed, @bitSizeOf(@TypeOf(x)));
    if (x > -minInt(int)) return error.Overflow;

    if (x == -minInt(int)) return minInt(int);

    return -@as(int, @intCast(x));
}

test "negateCast" {
    try testing.expect((negateCast(@as(u32, 999)) catch unreachable) == -999);
    try testing.expect(@TypeOf(negateCast(@as(u32, 999)) catch unreachable) == i32);

    try testing.expect((negateCast(@as(u32, -minInt(i32))) catch unreachable) == minInt(i32));
    try testing.expect(@TypeOf(negateCast(@as(u32, -minInt(i32))) catch unreachable) == i32);

    try testing.expectError(error.Overflow, negateCast(@as(u32, maxInt(i32) + 10)));
}

/// Cast an integer to a different integer type. If the value doesn't fit,
/// return null.
pub fn cast(comptime T: type, x: anytype) ?T {
    comptime assert(@typeInfo(T) == .Int); // must pass an integer
    const is_comptime = @TypeOf(x) == comptime_int;
    comptime assert(is_comptime or @typeInfo(@TypeOf(x)) == .Int); // must pass an integer
    if ((is_comptime or maxInt(@TypeOf(x)) > maxInt(T)) and x > maxInt(T)) {
        return null;
    } else if ((is_comptime or minInt(@TypeOf(x)) < minInt(T)) and x < minInt(T)) {
        return null;
    } else {
        return @as(T, @intCast(x));
    }
}

test "cast" {
    try testing.expect(cast(u8, 300) == null);
    try testing.expect(cast(u8, @as(u32, 300)) == null);
    try testing.expect(cast(i8, -200) == null);
    try testing.expect(cast(i8, @as(i32, -200)) == null);
    try testing.expect(cast(u8, -1) == null);
    try testing.expect(cast(u8, @as(i8, -1)) == null);
    try testing.expect(cast(u64, -1) == null);
    try testing.expect(cast(u64, @as(i8, -1)) == null);

    try testing.expect(cast(u8, 255).? == @as(u8, 255));
    try testing.expect(cast(u8, @as(u32, 255)).? == @as(u8, 255));
    try testing.expect(@TypeOf(cast(u8, 255).?) == u8);
    try testing.expect(@TypeOf(cast(u8, @as(u32, 255)).?) == u8);
}

pub const AlignCastError = error{UnalignedMemory};

fn AlignCastResult(comptime alignment: u29, comptime Ptr: type) type {
    var ptr_info = @typeInfo(Ptr);
    ptr_info.Pointer.alignment = alignment;
    return @Type(ptr_info);
}

/// Align cast a pointer but return an error if it's the wrong alignment
pub fn alignCast(comptime alignment: u29, ptr: anytype) AlignCastError!AlignCastResult(alignment, @TypeOf(ptr)) {
    const addr = @intFromPtr(ptr);
    if (addr % alignment != 0) {
        return error.UnalignedMemory;
    }
    return @alignCast(ptr);
}

/// Asserts `int > 0`.
pub fn isPowerOfTwo(int: anytype) bool {
    assert(int > 0);
    return (int & (int - 1)) == 0;
}

test isPowerOfTwo {
    try testing.expect(isPowerOfTwo(@as(u8, 1)));
    try testing.expect(isPowerOfTwo(2));
    try testing.expect(!isPowerOfTwo(@as(i16, 3)));
    try testing.expect(isPowerOfTwo(4));
    try testing.expect(!isPowerOfTwo(@as(u32, 31)));
    try testing.expect(isPowerOfTwo(32));
    try testing.expect(!isPowerOfTwo(@as(i64, 63)));
    try testing.expect(isPowerOfTwo(128));
    try testing.expect(isPowerOfTwo(@as(u128, 256)));
}

/// Aligns the given integer type bit width to a width divisible by 8.
pub fn ByteAlignedInt(comptime T: type) type {
    const info = @typeInfo(T).Int;
    const bits = (info.bits + 7) / 8 * 8;
    const extended_type = std.meta.Int(info.signedness, bits);
    return extended_type;
}

test "ByteAlignedInt" {
    try testing.expect(ByteAlignedInt(u0) == u0);
    try testing.expect(ByteAlignedInt(i0) == i0);
    try testing.expect(ByteAlignedInt(u3) == u8);
    try testing.expect(ByteAlignedInt(u8) == u8);
    try testing.expect(ByteAlignedInt(i111) == i112);
    try testing.expect(ByteAlignedInt(u129) == u136);
}

/// Rounds the given floating point number to an integer, away from zero.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @round
pub inline fn round(value: anytype) @TypeOf(value) {
    return @round(value);
}

/// Rounds the given floating point number to an integer, towards zero.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @trunc
pub inline fn trunc(value: anytype) @TypeOf(value) {
    return @trunc(value);
}

/// Returns the largest integral value not greater than the given floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @floor
pub inline fn floor(value: anytype) @TypeOf(value) {
    return @floor(value);
}

/// Returns the nearest power of two less than or equal to value, or
/// zero if value is less than or equal to zero.
pub fn floorPowerOfTwo(comptime T: type, value: T) T {
    const uT = std.meta.Int(.unsigned, @typeInfo(T).Int.bits);
    if (value <= 0) return 0;
    return @as(T, 1) << log2_int(uT, @as(uT, @intCast(value)));
}

test "floorPowerOfTwo" {
    try testFloorPowerOfTwo();
    try comptime testFloorPowerOfTwo();
}

fn testFloorPowerOfTwo() !void {
    try testing.expect(floorPowerOfTwo(u32, 63) == 32);
    try testing.expect(floorPowerOfTwo(u32, 64) == 64);
    try testing.expect(floorPowerOfTwo(u32, 65) == 64);
    try testing.expect(floorPowerOfTwo(u32, 0) == 0);
    try testing.expect(floorPowerOfTwo(u4, 7) == 4);
    try testing.expect(floorPowerOfTwo(u4, 8) == 8);
    try testing.expect(floorPowerOfTwo(u4, 9) == 8);
    try testing.expect(floorPowerOfTwo(u4, 0) == 0);
    try testing.expect(floorPowerOfTwo(i4, 7) == 4);
    try testing.expect(floorPowerOfTwo(i4, -8) == 0);
    try testing.expect(floorPowerOfTwo(i4, -1) == 0);
    try testing.expect(floorPowerOfTwo(i4, 0) == 0);
}

/// Returns the smallest integral value not less than the given floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @ceil
pub inline fn ceil(value: anytype) @TypeOf(value) {
    return @ceil(value);
}

/// Returns the next power of two (if the value is not already a power of two).
/// Only unsigned integers can be used. Zero is not an allowed input.
/// Result is a type with 1 more bit than the input type.
pub fn ceilPowerOfTwoPromote(comptime T: type, value: T) std.meta.Int(@typeInfo(T).Int.signedness, @typeInfo(T).Int.bits + 1) {
    comptime assert(@typeInfo(T) == .Int);
    comptime assert(@typeInfo(T).Int.signedness == .unsigned);
    assert(value != 0);
    const PromotedType = std.meta.Int(@typeInfo(T).Int.signedness, @typeInfo(T).Int.bits + 1);
    const ShiftType = std.math.Log2Int(PromotedType);
    return @as(PromotedType, 1) << @as(ShiftType, @intCast(@typeInfo(T).Int.bits - @clz(value - 1)));
}

/// Returns the next power of two (if the value is not already a power of two).
/// Only unsigned integers can be used. Zero is not an allowed input.
/// If the value doesn't fit, returns an error.
pub fn ceilPowerOfTwo(comptime T: type, value: T) (error{Overflow}!T) {
    comptime assert(@typeInfo(T) == .Int);
    const info = @typeInfo(T).Int;
    comptime assert(info.signedness == .unsigned);
    const PromotedType = std.meta.Int(info.signedness, info.bits + 1);
    const overflowBit = @as(PromotedType, 1) << info.bits;
    var x = ceilPowerOfTwoPromote(T, value);
    if (overflowBit & x != 0) {
        return error.Overflow;
    }
    return @as(T, @intCast(x));
}

/// Returns the next power of two (if the value is not already a power
/// of two). Only unsigned integers can be used. Zero is not an
/// allowed input. Asserts that the value fits.
pub fn ceilPowerOfTwoAssert(comptime T: type, value: T) T {
    return ceilPowerOfTwo(T, value) catch unreachable;
}

test "ceilPowerOfTwoPromote" {
    try testCeilPowerOfTwoPromote();
    try comptime testCeilPowerOfTwoPromote();
}

fn testCeilPowerOfTwoPromote() !void {
    try testing.expectEqual(@as(u33, 1), ceilPowerOfTwoPromote(u32, 1));
    try testing.expectEqual(@as(u33, 2), ceilPowerOfTwoPromote(u32, 2));
    try testing.expectEqual(@as(u33, 64), ceilPowerOfTwoPromote(u32, 63));
    try testing.expectEqual(@as(u33, 64), ceilPowerOfTwoPromote(u32, 64));
    try testing.expectEqual(@as(u33, 128), ceilPowerOfTwoPromote(u32, 65));
    try testing.expectEqual(@as(u6, 8), ceilPowerOfTwoPromote(u5, 7));
    try testing.expectEqual(@as(u6, 8), ceilPowerOfTwoPromote(u5, 8));
    try testing.expectEqual(@as(u6, 16), ceilPowerOfTwoPromote(u5, 9));
    try testing.expectEqual(@as(u5, 16), ceilPowerOfTwoPromote(u4, 9));
}

test "ceilPowerOfTwo" {
    try testCeilPowerOfTwo();
    try comptime testCeilPowerOfTwo();
}

fn testCeilPowerOfTwo() !void {
    try testing.expectEqual(@as(u32, 1), try ceilPowerOfTwo(u32, 1));
    try testing.expectEqual(@as(u32, 2), try ceilPowerOfTwo(u32, 2));
    try testing.expectEqual(@as(u32, 64), try ceilPowerOfTwo(u32, 63));
    try testing.expectEqual(@as(u32, 64), try ceilPowerOfTwo(u32, 64));
    try testing.expectEqual(@as(u32, 128), try ceilPowerOfTwo(u32, 65));
    try testing.expectEqual(@as(u5, 8), try ceilPowerOfTwo(u5, 7));
    try testing.expectEqual(@as(u5, 8), try ceilPowerOfTwo(u5, 8));
    try testing.expectEqual(@as(u5, 16), try ceilPowerOfTwo(u5, 9));
    try testing.expectError(error.Overflow, ceilPowerOfTwo(u4, 9));
}

/// Return the log base 2 of integer value x, rounding down to the
/// nearest integer.
pub fn log2_int(comptime T: type, x: T) Log2Int(T) {
    if (@typeInfo(T) != .Int or @typeInfo(T).Int.signedness != .unsigned)
        @compileError("log2_int requires an unsigned integer, found " ++ @typeName(T));
    assert(x != 0);
    return @as(Log2Int(T), @intCast(@typeInfo(T).Int.bits - 1 - @clz(x)));
}

/// Return the log base 2 of integer value x, rounding up to the
/// nearest integer.
pub fn log2_int_ceil(comptime T: type, x: T) Log2IntCeil(T) {
    if (@typeInfo(T) != .Int or @typeInfo(T).Int.signedness != .unsigned)
        @compileError("log2_int_ceil requires an unsigned integer, found " ++ @typeName(T));
    assert(x != 0);
    if (x == 1) return 0;
    const log2_val: Log2IntCeil(T) = log2_int(T, x - 1);
    return log2_val + 1;
}

test "std.math.log2_int_ceil" {
    try testing.expect(log2_int_ceil(u32, 1) == 0);
    try testing.expect(log2_int_ceil(u32, 2) == 1);
    try testing.expect(log2_int_ceil(u32, 3) == 2);
    try testing.expect(log2_int_ceil(u32, 4) == 2);
    try testing.expect(log2_int_ceil(u32, 5) == 3);
    try testing.expect(log2_int_ceil(u32, 6) == 3);
    try testing.expect(log2_int_ceil(u32, 7) == 3);
    try testing.expect(log2_int_ceil(u32, 8) == 3);
    try testing.expect(log2_int_ceil(u32, 9) == 4);
    try testing.expect(log2_int_ceil(u32, 10) == 4);
}

/// Cast a value to a different type. If the value doesn't fit in, or
/// can't be perfectly represented by, the new type, it will be
/// converted to the closest possible representation.
pub fn lossyCast(comptime T: type, value: anytype) T {
    switch (@typeInfo(T)) {
        .Float => {
            switch (@typeInfo(@TypeOf(value))) {
                .Int => return @as(T, @floatFromInt(value)),
                .Float => return @as(T, @floatCast(value)),
                .ComptimeInt => return @as(T, value),
                .ComptimeFloat => return @as(T, value),
                else => @compileError("bad type"),
            }
        },
        .Int => {
            switch (@typeInfo(@TypeOf(value))) {
                .Int, .ComptimeInt => {
                    if (value >= maxInt(T)) {
                        return @as(T, maxInt(T));
                    } else if (value <= minInt(T)) {
                        return @as(T, minInt(T));
                    } else {
                        return @as(T, @intCast(value));
                    }
                },
                .Float, .ComptimeFloat => {
                    if (value >= maxInt(T)) {
                        return @as(T, maxInt(T));
                    } else if (value <= minInt(T)) {
                        return @as(T, minInt(T));
                    } else {
                        return @as(T, @intFromFloat(value));
                    }
                },
                else => @compileError("bad type"),
            }
        },
        else => @compileError("bad result type"),
    }
}

test "lossyCast" {
    try testing.expect(lossyCast(i16, 70000.0) == @as(i16, 32767));
    try testing.expect(lossyCast(u32, @as(i16, -255)) == @as(u32, 0));
    try testing.expect(lossyCast(i9, @as(u32, 200)) == @as(i9, 200));
    try testing.expect(lossyCast(u32, @as(f32, maxInt(u32))) == maxInt(u32));
}

/// Performs linear interpolation between *a* and *b* based on *t*.
/// *t* must be in range 0.0 to 1.0. Supports floats and vectors of floats.
///
/// This does not guarantee returning *b* if *t* is 1 due to floating-point errors.
/// This is monotonic.
pub fn lerp(a: anytype, b: anytype, t: anytype) @TypeOf(a, b, t) {
    const Type = @TypeOf(a, b, t);

    switch (@typeInfo(Type)) {
        .Float, .ComptimeFloat => assert(t >= 0 and t <= 1),
        .Vector => {
            const lower_bound = @reduce(.And, t >= @as(Type, @splat(0)));
            const upper_bound = @reduce(.And, t <= @as(Type, @splat(1)));
            assert(lower_bound and upper_bound);
        },
        else => comptime unreachable,
    }

    return @mulAdd(Type, b - a, t, a);
}

test "lerp" {
    try testing.expectEqual(@as(f64, 75), lerp(50, 100, 0.5));
    try testing.expectEqual(@as(f32, 43.75), lerp(50, 25, 0.25));
    try testing.expectEqual(@as(f64, -31.25), lerp(-50, 25, 0.25));

    try testing.expectApproxEqRel(@as(f32, -7.16067345e+03), lerp(-10000.12345, -5000.12345, 0.56789), 1e-19);
    try testing.expectApproxEqRel(@as(f64, 7.010987590521e+62), lerp(0.123456789e-64, 0.123456789e64, 0.56789), 1e-33);

    try testing.expectEqual(@as(f32, 0.0), lerp(@as(f32, 1.0e8), 1.0, 1.0));
    try testing.expectEqual(@as(f64, 0.0), lerp(@as(f64, 1.0e16), 1.0, 1.0));
    try testing.expectEqual(@as(f32, 1.0), lerp(@as(f32, 1.0e7), 1.0, 1.0));
    try testing.expectEqual(@as(f64, 1.0), lerp(@as(f64, 1.0e15), 1.0, 1.0));

    {
        const a: @Vector(3, f32) = @splat(0);
        const b: @Vector(3, f32) = @splat(50);
        const t: @Vector(3, f32) = @splat(0.5);
        try testing.expectEqual(
            lerp(a, b, t),
            @Vector(3, f32){ 25, 25, 25 },
        );
    }
    {
        const a: @Vector(3, f64) = @splat(50);
        const b: @Vector(3, f64) = @splat(100);
        const t: @Vector(3, f64) = @splat(0.5);
        try testing.expectEqual(
            lerp(a, b, t),
            @Vector(3, f64){ 75, 75, 75 },
        );
    }
}

/// Returns the maximum value of integer type T.
pub fn maxInt(comptime T: type) comptime_int {
    const info = @typeInfo(T);
    const bit_count = info.Int.bits;
    if (bit_count == 0) return 0;
    return (1 << (bit_count - @intFromBool(info.Int.signedness == .signed))) - 1;
}

/// Returns the minimum value of integer type T.
pub fn minInt(comptime T: type) comptime_int {
    const info = @typeInfo(T);
    const bit_count = info.Int.bits;
    if (info.Int.signedness == .unsigned) return 0;
    if (bit_count == 0) return 0;
    return -(1 << (bit_count - 1));
}

test "minInt and maxInt" {
    try testing.expect(maxInt(u0) == 0);
    try testing.expect(maxInt(u1) == 1);
    try testing.expect(maxInt(u8) == 255);
    try testing.expect(maxInt(u16) == 65535);
    try testing.expect(maxInt(u32) == 4294967295);
    try testing.expect(maxInt(u64) == 18446744073709551615);
    try testing.expect(maxInt(u128) == 340282366920938463463374607431768211455);

    try testing.expect(maxInt(i0) == 0);
    try testing.expect(maxInt(i1) == 0);
    try testing.expect(maxInt(i8) == 127);
    try testing.expect(maxInt(i16) == 32767);
    try testing.expect(maxInt(i32) == 2147483647);
    try testing.expect(maxInt(i63) == 4611686018427387903);
    try testing.expect(maxInt(i64) == 9223372036854775807);
    try testing.expect(maxInt(i128) == 170141183460469231731687303715884105727);

    try testing.expect(minInt(u0) == 0);
    try testing.expect(minInt(u1) == 0);
    try testing.expect(minInt(u8) == 0);
    try testing.expect(minInt(u16) == 0);
    try testing.expect(minInt(u32) == 0);
    try testing.expect(minInt(u63) == 0);
    try testing.expect(minInt(u64) == 0);
    try testing.expect(minInt(u128) == 0);

    try testing.expect(minInt(i0) == 0);
    try testing.expect(minInt(i1) == -1);
    try testing.expect(minInt(i8) == -128);
    try testing.expect(minInt(i16) == -32768);
    try testing.expect(minInt(i32) == -2147483648);
    try testing.expect(minInt(i63) == -4611686018427387904);
    try testing.expect(minInt(i64) == -9223372036854775808);
    try testing.expect(minInt(i128) == -170141183460469231731687303715884105728);
}

test "max value type" {
    const x: u32 = maxInt(i32);
    try testing.expect(x == 2147483647);
}

/// Multiply a and b. Return type is wide enough to guarantee no
/// overflow.
pub fn mulWide(comptime T: type, a: T, b: T) std.meta.Int(
    @typeInfo(T).Int.signedness,
    @typeInfo(T).Int.bits * 2,
) {
    const ResultInt = std.meta.Int(
        @typeInfo(T).Int.signedness,
        @typeInfo(T).Int.bits * 2,
    );
    return @as(ResultInt, a) * @as(ResultInt, b);
}

test "mulWide" {
    try testing.expect(mulWide(u8, 5, 5) == 25);
    try testing.expect(mulWide(i8, 5, -5) == -25);
    try testing.expect(mulWide(u8, 100, 100) == 10000);
}

/// See also `CompareOperator`.
pub const Order = enum {
    /// Greater than (`>`)
    gt,

    /// Less than (`<`)
    lt,

    /// Equal (`==`)
    eq,

    pub fn invert(self: Order) Order {
        return switch (self) {
            .lt => .gt,
            .eq => .eq,
            .gt => .lt,
        };
    }

    pub fn compare(self: Order, op: CompareOperator) bool {
        return switch (self) {
            .lt => switch (op) {
                .lt => true,
                .lte => true,
                .eq => false,
                .gte => false,
                .gt => false,
                .neq => true,
            },
            .eq => switch (op) {
                .lt => false,
                .lte => true,
                .eq => true,
                .gte => true,
                .gt => false,
                .neq => false,
            },
            .gt => switch (op) {
                .lt => false,
                .lte => false,
                .eq => false,
                .gte => true,
                .gt => true,
                .neq => true,
            },
        };
    }
};

/// Given two numbers, this function returns the order they are with respect to each other.
pub fn order(a: anytype, b: anytype) Order {
    if (a == b) {
        return .eq;
    } else if (a < b) {
        return .lt;
    } else if (a > b) {
        return .gt;
    } else {
        unreachable;
    }
}

/// See also `Order`.
pub const CompareOperator = enum {
    /// Less than (`<`)
    lt,
    /// Less than or equal (`<=`)
    lte,
    /// Equal (`==`)
    eq,
    /// Greater than or equal (`>=`)
    gte,
    /// Greater than (`>`)
    gt,
    /// Not equal (`!=`)
    neq,

    /// Reverse the direction of the comparison.
    /// Use when swapping the left and right hand operands.
    pub fn reverse(op: CompareOperator) CompareOperator {
        return switch (op) {
            .lt => .gt,
            .lte => .gte,
            .gt => .lt,
            .gte => .lte,
            .eq => .eq,
            .neq => .neq,
        };
    }
};

/// This function does the same thing as comparison operators, however the
/// operator is a runtime-known enum value. Works on any operands that
/// support comparison operators.
pub fn compare(a: anytype, op: CompareOperator, b: anytype) bool {
    return switch (op) {
        .lt => a < b,
        .lte => a <= b,
        .eq => a == b,
        .neq => a != b,
        .gt => a > b,
        .gte => a >= b,
    };
}

test "compare between signed and unsigned" {
    try testing.expect(compare(@as(i8, -1), .lt, @as(u8, 255)));
    try testing.expect(compare(@as(i8, 2), .gt, @as(u8, 1)));
    try testing.expect(!compare(@as(i8, -1), .gte, @as(u8, 255)));
    try testing.expect(compare(@as(u8, 255), .gt, @as(i8, -1)));
    try testing.expect(!compare(@as(u8, 255), .lte, @as(i8, -1)));
    try testing.expect(compare(@as(i8, -1), .lt, @as(u9, 255)));
    try testing.expect(!compare(@as(i8, -1), .gte, @as(u9, 255)));
    try testing.expect(compare(@as(u9, 255), .gt, @as(i8, -1)));
    try testing.expect(!compare(@as(u9, 255), .lte, @as(i8, -1)));
    try testing.expect(compare(@as(i9, -1), .lt, @as(u8, 255)));
    try testing.expect(!compare(@as(i9, -1), .gte, @as(u8, 255)));
    try testing.expect(compare(@as(u8, 255), .gt, @as(i9, -1)));
    try testing.expect(!compare(@as(u8, 255), .lte, @as(i9, -1)));
    try testing.expect(compare(@as(u8, 1), .lt, @as(u8, 2)));
    try testing.expect(@as(u8, @bitCast(@as(i8, -1))) == @as(u8, 255));
    try testing.expect(!compare(@as(u8, 255), .eq, @as(i8, -1)));
    try testing.expect(compare(@as(u8, 1), .eq, @as(u8, 1)));
}

test "order" {
    try testing.expect(order(0, 0) == .eq);
    try testing.expect(order(1, 0) == .gt);
    try testing.expect(order(-1, 0) == .lt);
}

test "order.invert" {
    try testing.expect(Order.invert(order(0, 0)) == .eq);
    try testing.expect(Order.invert(order(1, 0)) == .lt);
    try testing.expect(Order.invert(order(-1, 0)) == .gt);
}

test "order.compare" {
    try testing.expect(order(-1, 0).compare(.lt));
    try testing.expect(order(-1, 0).compare(.lte));
    try testing.expect(order(0, 0).compare(.lte));
    try testing.expect(order(0, 0).compare(.eq));
    try testing.expect(order(0, 0).compare(.gte));
    try testing.expect(order(1, 0).compare(.gte));
    try testing.expect(order(1, 0).compare(.gt));
    try testing.expect(order(1, 0).compare(.neq));
}

test "compare.reverse" {
    inline for (@typeInfo(CompareOperator).Enum.fields) |op_field| {
        const op = @as(CompareOperator, @enumFromInt(op_field.value));
        try testing.expect(compare(2, op, 3) == compare(3, op.reverse(), 2));
        try testing.expect(compare(3, op, 3) == compare(3, op.reverse(), 3));
        try testing.expect(compare(4, op, 3) == compare(3, op.reverse(), 4));
    }
}

/// Returns a mask of all ones if value is true,
/// and a mask of all zeroes if value is false.
/// Compiles to one instruction for register sized integers.
pub inline fn boolMask(comptime MaskInt: type, value: bool) MaskInt {
    if (@typeInfo(MaskInt) != .Int)
        @compileError("boolMask requires an integer mask type.");

    if (MaskInt == u0 or MaskInt == i0)
        @compileError("boolMask cannot convert to u0 or i0, they are too small.");

    // The u1 and i1 cases tend to overflow,
    // so we special case them here.
    if (MaskInt == u1) return @intFromBool(value);
    if (MaskInt == i1) {
        // The @as here is a workaround for #7950
        return @as(i1, @bitCast(@as(u1, @intFromBool(value))));
    }

    return -%@as(MaskInt, @intCast(@intFromBool(value)));
}

test "boolMask" {
    const runTest = struct {
        fn runTest() !void {
            try testing.expectEqual(@as(u1, 0), boolMask(u1, false));
            try testing.expectEqual(@as(u1, 1), boolMask(u1, true));

            try testing.expectEqual(@as(i1, 0), boolMask(i1, false));
            try testing.expectEqual(@as(i1, -1), boolMask(i1, true));

            try testing.expectEqual(@as(u13, 0), boolMask(u13, false));
            try testing.expectEqual(@as(u13, 0x1FFF), boolMask(u13, true));

            try testing.expectEqual(@as(i13, 0), boolMask(i13, false));
            try testing.expectEqual(@as(i13, -1), boolMask(i13, true));

            try testing.expectEqual(@as(u32, 0), boolMask(u32, false));
            try testing.expectEqual(@as(u32, 0xFFFF_FFFF), boolMask(u32, true));

            try testing.expectEqual(@as(i32, 0), boolMask(i32, false));
            try testing.expectEqual(@as(i32, -1), boolMask(i32, true));
        }
    }.runTest;
    try runTest();
    try comptime runTest();
}

/// Return the mod of `num` with the smallest integer type
pub fn comptimeMod(num: anytype, comptime denom: comptime_int) IntFittingRange(0, denom - 1) {
    return @as(IntFittingRange(0, denom - 1), @intCast(@mod(num, denom)));
}

pub const F80 = struct {
    fraction: u64,
    exp: u16,
};

pub fn make_f80(repr: F80) f80 {
    const int = (@as(u80, repr.exp) << 64) | repr.fraction;
    return @as(f80, @bitCast(int));
}

pub fn break_f80(x: f80) F80 {
    const int = @as(u80, @bitCast(x));
    return .{
        .fraction = @as(u64, @truncate(int)),
        .exp = @as(u16, @truncate(int >> 64)),
    };
}

/// Returns -1, 0, or 1.
/// Supports integer and float types and vectors of integer and float types.
/// Unsigned integer types will always return 0 or 1.
/// Branchless.
pub inline fn sign(i: anytype) @TypeOf(i) {
    const T = @TypeOf(i);
    return switch (@typeInfo(T)) {
        .Int, .ComptimeInt => @as(T, @intFromBool(i > 0)) - @as(T, @intFromBool(i < 0)),
        .Float, .ComptimeFloat => @as(T, @floatFromInt(@intFromBool(i > 0))) - @as(T, @floatFromInt(@intFromBool(i < 0))),
        .Vector => |vinfo| blk: {
            switch (@typeInfo(vinfo.child)) {
                .Int, .Float => {
                    const zero: T = @splat(0);
                    const one: T = @splat(1);
                    break :blk @select(vinfo.child, i > zero, one, zero) - @select(vinfo.child, i < zero, one, zero);
                },
                else => @compileError("Expected vector of ints or floats, found " ++ @typeName(T)),
            }
        },
        else => @compileError("Expected an int, float or vector of one, found " ++ @typeName(T)),
    };
}

fn testSign() !void {
    // each of the following blocks checks the inputs
    // 2, -2, 0, { 2, -2, 0 } provide expected output
    // 1, -1, 0, { 1, -1, 0 } for the given T
    // (negative values omitted for unsigned types)
    {
        const T = i8;
        try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
        try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
        try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
        try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
    }
    {
        const T = i32;
        try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
        try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
        try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
        try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
    }
    {
        const T = i64;
        try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
        try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
        try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
        try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
    }
    {
        const T = u8;
        try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
        try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
        try std.testing.expectEqual(@Vector(2, T){ 1, 0 }, sign(@Vector(2, T){ 2, 0 }));
    }
    {
        const T = u32;
        try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
        try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
        try std.testing.expectEqual(@Vector(2, T){ 1, 0 }, sign(@Vector(2, T){ 2, 0 }));
    }
    {
        const T = u64;
        try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
        try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
        try std.testing.expectEqual(@Vector(2, T){ 1, 0 }, sign(@Vector(2, T){ 2, 0 }));
    }
    {
        const T = f16;
        try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
        try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
        try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
        try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
    }
    {
        const T = f32;
        try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
        try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
        try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
        try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
    }
    {
        const T = f64;
        try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
        try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
        try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
        try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
    }

    // comptime_int
    try std.testing.expectEqual(-1, sign(-10));
    try std.testing.expectEqual(1, sign(10));
    try std.testing.expectEqual(0, sign(0));
    // comptime_float
    try std.testing.expectEqual(-1.0, sign(-10.0));
    try std.testing.expectEqual(1.0, sign(10.0));
    try std.testing.expectEqual(0.0, sign(0.0));
}

test "sign" {
    if (builtin.zig_backend == .stage2_llvm) {
        // https://github.com/ziglang/zig/issues/12012
        return error.SkipZigTest;
    }
    try testSign();
    try comptime testSign();
}