|
const builtin = @import("builtin");
const std = @import("std.zig");
const assert = std.debug.assert;
const mem = std.mem;
const testing = std.testing;
|
eArchimedes' constant (π) |
/// Euler's number (e) pub const e = 2.71828182845904523536028747135266249775724709369995; |
piPhi or Golden ratio constant (Φ) = (1 + sqrt(5))/2 |
/// Archimedes' constant (π) pub const pi = 3.14159265358979323846264338327950288419716939937510; |
phiCircle constant (τ) |
/// Phi or Golden ratio constant (Φ) = (1 + sqrt(5))/2 pub const phi = 1.6180339887498948482045868343656381177203091798057628621; |
taulog2(e) |
/// Circle constant (τ) pub const tau = 2 * pi; |
log2elog10(e) |
/// log2(e) pub const log2e = 1.442695040888963407359924681001892137; |
log10eln(2) |
/// log10(e) pub const log10e = 0.434294481903251827651128918916605082; |
ln2ln(10) |
/// ln(2) pub const ln2 = 0.693147180559945309417232121458176568; |
ln102/sqrt(π) |
/// ln(10) pub const ln10 = 2.302585092994045684017991454684364208; |
two_sqrtpisqrt(2) |
/// 2/sqrt(π) pub const two_sqrtpi = 1.128379167095512573896158903121545172; |
sqrt21/sqrt(2) |
/// sqrt(2) pub const sqrt2 = 1.414213562373095048801688724209698079; |
sqrt1_2pi/180.0 |
/// 1/sqrt(2) pub const sqrt1_2 = 0.707106781186547524400844362104849039; |
rad_per_deg180.0/pi |
/// pi/180.0 pub const rad_per_deg = 0.0174532925199432957692369076848861271344287188854172545609719144; |
deg_per_radPerforms an approximate comparison of two floating point values |
/// 180.0/pi pub const deg_per_rad = 57.295779513082320876798154814105170332405472466564321549160243861; |
floatExponentBitsmath/float.zigPerforms an approximate comparison of two floating point values |
pub const floatExponentBits = @import("math/float.zig").floatExponentBits;
|
floatMantissaBitsmath/float.zigSine trigonometric function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @sin |
pub const floatMantissaBits = @import("math/float.zig").floatMantissaBits;
|
floatFractionalBitsmath/float.zigCosine trigonometric function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @cos |
pub const floatFractionalBits = @import("math/float.zig").floatFractionalBits;
|
floatExponentMinmath/float.zigTangent trigonometric function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @tan |
pub const floatExponentMin = @import("math/float.zig").floatExponentMin;
|
floatExponentMaxmath/float.zigConverts an angle in radians to degrees. T must be a float or comptime number or a vector of floats. |
pub const floatExponentMax = @import("math/float.zig").floatExponentMax;
|
floatTrueMinmath/float.zigConverts an angle in degrees to radians. T must be a float or comptime number or a vector of floats. |
pub const floatTrueMin = @import("math/float.zig").floatTrueMin;
|
floatMinmath/float.zigBase-e exponential function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @exp |
pub const floatMin = @import("math/float.zig").floatMin;
|
floatMaxmath/float.zigBase-2 exponential function on a floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @exp2 |
pub const floatMax = @import("math/float.zig").floatMax;
|
floatEpsmath/float.zigGiven two types, returns the smallest one which is capable of holding the full range of the minimum value. |
pub const floatEps = @import("math/float.zig").floatEps;
|
infmath/float.zigOdd sawtooth function
|
pub const inf = @import("math/float.zig").inf;
|
nanmath/float.zigOdd ramp function
|
pub const nan = @import("math/float.zig").nan;
|
snanmath/float.zigReturns the product of a and b. Returns an error on overflow. |
pub const snan = @import("math/float.zig").snan;
|
f16_true_minReturns the sum of a and b. Returns an error on overflow. |
pub const f16_true_min = @compileError("Deprecated: use `floatTrueMin(f16)` instead");
|
f32_true_minReturns a - b, or an error on overflow. |
pub const f32_true_min = @compileError("Deprecated: use `floatTrueMin(f32)` instead");
|
f64_true_minShifts a left by shift_amt. Returns an error on overflow. shift_amt is unsigned. |
pub const f64_true_min = @compileError("Deprecated: use `floatTrueMin(f64)` instead");
|
f80_true_minShifts left. Overflowed bits are truncated. A negative shift amount results in a right shift. |
pub const f80_true_min = @compileError("Deprecated: use `floatTrueMin(f80)` instead");
|
f128_true_minShifts right. Overflowed bits are truncated. A negative shift amount results in a left shift. |
pub const f128_true_min = @compileError("Deprecated: use `floatTrueMin(f128)` instead");
|
f16_minRotates right. Only unsigned values can be rotated. Negative shift values result in shift modulo the bit count. |
pub const f16_min = @compileError("Deprecated: use `floatMin(f16)` instead");
|
f32_minRotates left. Only unsigned values can be rotated. Negative shift values result in shift modulo the bit count. |
pub const f32_min = @compileError("Deprecated: use `floatMin(f32)` instead");
|
f64_minReturns an unsigned int type that can hold the number of bits in T - 1. Suitable for 0-based bit indices of T. |
pub const f64_min = @compileError("Deprecated: use `floatMin(f64)` instead");
|
f80_minReturns an unsigned int type that can hold the number of bits in T. |
pub const f80_min = @compileError("Deprecated: use `floatMin(f80)` instead");
|
f128_minReturns the smallest integer type that can hold both from and to. |
pub const f128_min = @compileError("Deprecated: use `floatMin(f128)` instead");
|
f16_maxDivide numerator by denominator, rounding toward zero. Returns an error on overflow or when denominator is zero. |
pub const f16_max = @compileError("Deprecated: use `floatMax(f16)` instead");
|
f32_maxDivide numerator by denominator, rounding toward negative infinity. Returns an error on overflow or when denominator is zero. |
pub const f32_max = @compileError("Deprecated: use `floatMax(f32)` instead");
|
f64_maxDivide numerator by denominator, rounding toward positive infinity. Returns an error on overflow or when denominator is zero. |
pub const f64_max = @compileError("Deprecated: use `floatMax(f64)` instead");
|
f80_maxDivide numerator by denominator. Return an error if quotient is not an integer, denominator is zero, or on overflow. |
pub const f80_max = @compileError("Deprecated: use `floatMax(f80)` instead");
|
f128_maxReturns numerator modulo denominator, or an error if denominator is zero or negative. Negative numerators never result in negative return values. |
pub const f128_max = @compileError("Deprecated: use `floatMax(f128)` instead");
|
f16_epsilonReturns the remainder when numerator is divided by denominator, or an error if denominator is zero or negative. Negative numerators can give negative results. |
pub const f16_epsilon = @compileError("Deprecated: use `floatEps(f16)` instead");
|
f32_epsilonReturns the negation of the integer parameter. Result is a signed integer. |
pub const f32_epsilon = @compileError("Deprecated: use `floatEps(f32)` instead");
|
f64_epsilonCast an integer to a different integer type. If the value doesn't fit, return null. |
pub const f64_epsilon = @compileError("Deprecated: use `floatEps(f64)` instead");
|
f80_epsilonAlign cast a pointer but return an error if it's the wrong alignment |
pub const f80_epsilon = @compileError("Deprecated: use `floatEps(f80)` instead");
|
f128_epsilonAsserts |
pub const f128_epsilon = @compileError("Deprecated: use `floatEps(f128)` instead");
|
f16_tointAligns the given integer type bit width to a width divisible by 8. |
pub const f16_toint = @compileError("Deprecated: use `1.0 / floatEps(f16)` instead");
|
f32_tointRounds the given floating point number to an integer, away from zero. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @round |
pub const f32_toint = @compileError("Deprecated: use `1.0 / floatEps(f32)` instead");
|
f64_tointRounds the given floating point number to an integer, towards zero. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @trunc |
pub const f64_toint = @compileError("Deprecated: use `1.0 / floatEps(f64)` instead");
|
f80_tointReturns the largest integral value not greater than the given floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @floor |
pub const f80_toint = @compileError("Deprecated: use `1.0 / floatEps(f80)` instead");
|
f128_tointReturns the nearest power of two less than or equal to value, or zero if value is less than or equal to zero. |
pub const f128_toint = @compileError("Deprecated: use `1.0 / floatEps(f128)` instead");
|
inf_u16Returns the smallest integral value not less than the given floating point number. Uses a dedicated hardware instruction when available. This is the same as calling the builtin @ceil |
pub const inf_u16 = @compileError("Deprecated: use `@as(u16, @bitCast(inf(f16)))` instead");
|
inf_f16Returns the next power of two (if the value is not already a power of two). Only unsigned integers can be used. Zero is not an allowed input. Result is a type with 1 more bit than the input type. |
pub const inf_f16 = @compileError("Deprecated: use `inf(f16)` instead");
|
inf_u32Returns the next power of two (if the value is not already a power of two). Only unsigned integers can be used. Zero is not an allowed input. If the value doesn't fit, returns an error. |
pub const inf_u32 = @compileError("Deprecated: use `@as(u32, @bitCast(inf(f32)))` instead");
|
inf_f32Returns the next power of two (if the value is not already a power of two). Only unsigned integers can be used. Zero is not an allowed input. Asserts that the value fits. |
pub const inf_f32 = @compileError("Deprecated: use `inf(f32)` instead");
|
inf_u64Return the log base 2 of integer value x, rounding down to the nearest integer. |
pub const inf_u64 = @compileError("Deprecated: use `@as(u64, @bitCast(inf(f64)))` instead");
|
inf_f64Return the log base 2 of integer value x, rounding up to the nearest integer. |
pub const inf_f64 = @compileError("Deprecated: use `inf(f64)` instead");
|
inf_u80Cast a value to a different type. If the value doesn't fit in, or can't be perfectly represented by, the new type, it will be converted to the closest possible representation. |
pub const inf_u80 = @compileError("Deprecated: use `@as(u80, @bitCast(inf(f80)))` instead");
|
inf_f80Performs linear interpolation between *a* and *b* based on *t*. *t* ranges from 0.0 to 1.0, but may exceed these bounds. Supports floats and vectors of floats. This does not guarantee returning *b* if *t* is 1 due to floating-point errors. This is monotonic. |
pub const inf_f80 = @compileError("Deprecated: use `inf(f80)` instead");
|
inf_u128Returns the maximum value of integer type T. |
pub const inf_u128 = @compileError("Deprecated: use `@as(u128, @bitCast(inf(f128)))` instead");
|
inf_f128Returns the minimum value of integer type T. |
pub const inf_f128 = @compileError("Deprecated: use `inf(f128)` instead");
|
nan_u16Multiply a and b. Return type is wide enough to guarantee no overflow. |
pub const nan_u16 = @compileError("Deprecated: use `@as(u16, @bitCast(nan(f16)))` instead");
|
nan_f16See also |
pub const nan_f16 = @compileError("Deprecated: use `nan(f16)` instead");
|
nan_u32Greater than ( |
pub const nan_u32 = @compileError("Deprecated: use `@as(u32, @bitCast(nan(f32)))` instead");
|
nan_f32Less than ( |
pub const nan_f32 = @compileError("Deprecated: use `nan(f32)` instead");
|
nan_u64Equal ( |
pub const nan_u64 = @compileError("Deprecated: use `@as(u64, @bitCast(nan(f64)))` instead");
|
nan_f64Given two numbers, this function returns the order they are with respect to each other. |
pub const nan_f64 = @compileError("Deprecated: use `nan(f64)` instead");
|
nan_u80See also |
pub const nan_u80 = @compileError("Deprecated: use `@as(u80, @bitCast(nan(f80)))` instead");
|
nan_f80Less than ( |
pub const nan_f80 = @compileError("Deprecated: use `nan(f80)` instead");
|
nan_u128Less than or equal ( |
pub const nan_u128 = @compileError("Deprecated: use `@as(u128, @bitCast(nan(f128)))` instead");
|
nan_f128Equal ( |
pub const nan_f128 = @compileError("Deprecated: use `nan(f128)` instead");
|
qnan_u16Greater than or equal ( |
pub const qnan_u16 = @compileError("Deprecated: use `@as(u16, @bitCast(nan(f16)))` instead");
|
qnan_f16Greater than ( |
pub const qnan_f16 = @compileError("Deprecated: use `nan(f16)` instead");
|
qnan_u32Not equal ( |
pub const qnan_u32 = @compileError("Deprecated: use `@as(u32, @bitCast(nan(f32)))` instead");
|
qnan_f32Reverse the direction of the comparison. Use when swapping the left and right hand operands. |
pub const qnan_f32 = @compileError("Deprecated: use `nan(f32)` instead");
|
qnan_u64This function does the same thing as comparison operators, however the operator is a runtime-known enum value. Works on any operands that support comparison operators. |
pub const qnan_u64 = @compileError("Deprecated: use `@as(u64, @bitCast(nan(f64)))` instead");
|
qnan_f64Returns a mask of all ones if value is true, and a mask of all zeroes if value is false. Compiles to one instruction for register sized integers. |
pub const qnan_f64 = @compileError("Deprecated: use `nan(f64)` instead");
|
qnan_u80Return the mod of |
pub const qnan_u80 = @compileError("Deprecated: use `@as(u80, @bitCast(nan(f80)))` instead");
|
qnan_f80Returns -1, 0, or 1. Supports integer and float types and vectors of integer and float types. Unsigned integer types will always return 0 or 1. Branchless. |
pub const qnan_f80 = @compileError("Deprecated: use `nan(f80)` instead");
|
qnan_u128 |
pub const qnan_u128 = @compileError("Deprecated: use `@as(u128, @bitCast(nan(f128)))` instead");
|
qnan_f128 |
pub const qnan_f128 = @compileError("Deprecated: use `nan(f128)` instead");
|
epsilon |
pub const epsilon = @compileError("Deprecated: use `floatEps` instead");
|
modf32_result |
pub const modf32_result = @compileError("Deprecated: use `Modf(f32)` instead");
|
modf64_result |
pub const modf64_result = @compileError("Deprecated: use `Modf(f64)` instead");
|
approxEqAbs() |
/// Performs an approximate comparison of two floating point values `x` and `y`.
/// Returns true if the absolute difference between them is less or equal than
/// the specified tolerance.
///
/// The `tolerance` parameter is the absolute tolerance used when determining if
/// the two numbers are close enough; a good value for this parameter is a small
/// multiple of `floatEps(T)`.
///
/// Note that this function is recommended for comparing small numbers
/// around zero; using `approxEqRel` is suggested otherwise.
///
/// NaN values are never considered equal to any value.
pub fn approxEqAbs(comptime T: type, x: T, y: T, tolerance: T) bool {
assert(@typeInfo(T) == .Float or @typeInfo(T) == .ComptimeFloat);
assert(tolerance >= 0);
|
approxEqRel() |
// Fast path for equal values (and signed zeros and infinites).
if (x == y)
return true;
|
Test: approxEqAbs |
if (isNan(x) or isNan(y))
return false;
|
Test: approxEqRel |
return @abs(x - y) <= tolerance;
|
mul() |
} |
raiseInvalid() |
/// Performs an approximate comparison of two floating point values `x` and `y`.
/// Returns true if the absolute difference between them is less or equal than
/// `max(|x|, |y|) * tolerance`, where `tolerance` is a positive number greater
/// than zero.
///
/// The `tolerance` parameter is the relative tolerance used when determining if
/// the two numbers are close enough; a good value for this parameter is usually
/// `sqrt(floatEps(T))`, meaning that the two numbers are considered equal if at
/// least half of the digits are equal.
///
/// Note that for comparisons of small numbers around zero this function won't
/// give meaningful results, use `approxEqAbs` instead.
///
/// NaN values are never considered equal to any value.
pub fn approxEqRel(comptime T: type, x: T, y: T, tolerance: T) bool {
assert(@typeInfo(T) == .Float or @typeInfo(T) == .ComptimeFloat);
assert(tolerance > 0);
|
raiseUnderflow() |
// Fast path for equal values (and signed zeros and infinites).
if (x == y)
return true;
|
raiseOverflow() |
if (isNan(x) or isNan(y))
return false;
|
raiseInexact() |
return @abs(x - y) <= @max(@abs(x), @abs(y)) * tolerance;
|
mul() |
} |
isNanmath/isnan.zig |
test approxEqAbs {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const eps_value = comptime floatEps(T);
const min_value = comptime floatMin(T);
|
isSignalNanmath/isnan.zig |
try testing.expect(approxEqAbs(T, 0.0, 0.0, eps_value));
try testing.expect(approxEqAbs(T, -0.0, -0.0, eps_value));
try testing.expect(approxEqAbs(T, 0.0, -0.0, eps_value));
try testing.expect(!approxEqAbs(T, 1.0 + 2 * eps_value, 1.0, eps_value));
try testing.expect(approxEqAbs(T, 1.0 + 1 * eps_value, 1.0, eps_value));
try testing.expect(approxEqAbs(T, min_value, 0.0, eps_value * 2));
try testing.expect(approxEqAbs(T, -min_value, 0.0, eps_value * 2));
}
|
frexpmath/frexp.zig |
comptime {
// `comptime_float` is guaranteed to have the same precision and operations of
// the largest other floating point type, which is f128 but it doesn't have a
// defined layout so we can't rely on `@bitCast` to construct the smallest
// possible epsilon value like we do in the tests above. In the same vein, we
// also can't represent a max/min, `NaN` or `Inf` values.
const eps_value = 1e-4;
|
Frexpmath/frexp.zig |
try testing.expect(approxEqAbs(comptime_float, 0.0, 0.0, eps_value));
try testing.expect(approxEqAbs(comptime_float, -0.0, -0.0, eps_value));
try testing.expect(approxEqAbs(comptime_float, 0.0, -0.0, eps_value));
try testing.expect(!approxEqAbs(comptime_float, 1.0 + 2 * eps_value, 1.0, eps_value));
try testing.expect(approxEqAbs(comptime_float, 1.0 + 1 * eps_value, 1.0, eps_value));
}
|
mul() |
} |
Modfmath/modf.zig |
test approxEqRel {
inline for ([_]type{ f16, f32, f64, f128 }) |T| {
const eps_value = comptime floatEps(T);
const sqrt_eps_value = comptime sqrt(eps_value);
const nan_value = comptime nan(T);
const inf_value = comptime inf(T);
const min_value = comptime floatMin(T);
|
copysignmath/copysign.zig |
try testing.expect(approxEqRel(T, 1.0, 1.0, sqrt_eps_value));
try testing.expect(!approxEqRel(T, 1.0, 0.0, sqrt_eps_value));
try testing.expect(!approxEqRel(T, 1.0, nan_value, sqrt_eps_value));
try testing.expect(!approxEqRel(T, nan_value, nan_value, sqrt_eps_value));
try testing.expect(approxEqRel(T, inf_value, inf_value, sqrt_eps_value));
try testing.expect(approxEqRel(T, min_value, min_value, sqrt_eps_value));
try testing.expect(approxEqRel(T, -min_value, -min_value, sqrt_eps_value));
}
|
isFinitemath/isfinite.zig |
comptime {
// `comptime_float` is guaranteed to have the same precision and operations of
// the largest other floating point type, which is f128 but it doesn't have a
// defined layout so we can't rely on `@bitCast` to construct the smallest
// possible epsilon value like we do in the tests above. In the same vein, we
// also can't represent a max/min, `NaN` or `Inf` values.
const eps_value = 1e-4;
const sqrt_eps_value = sqrt(eps_value);
|
isInfmath/isinf.zig |
try testing.expect(approxEqRel(comptime_float, 1.0, 1.0, sqrt_eps_value));
try testing.expect(!approxEqRel(comptime_float, 1.0, 0.0, sqrt_eps_value));
}
|
mul() |
} |
isNegativeInfmath/isinf.zig |
pub const doNotOptimizeAway = @compileError("Deprecated: use `std.mem.doNotOptimizeAway` instead");
|
isPositiveZeromath/iszero.zig |
pub fn raiseInvalid() void {
// Raise INVALID fpu exception
|
mul() |
} |
isNormalmath/isnormal.zig |
pub fn raiseUnderflow() void {
// Raise UNDERFLOW fpu exception
|
mul() |
} |
signbitmath/signbit.zig |
pub fn raiseOverflow() void {
// Raise OVERFLOW fpu exception
|
mul() |
} |
ldexpmath/ldexp.zig |
pub fn raiseInexact() void {
// Raise INEXACT fpu exception
|
mul() |
} |
powimath/powi.zig |
pub fn raiseDivByZero() void {
// Raise INEXACT fpu exception
|
mul() |
} |
cbrtmath/cbrt.zig |
pub const isNan = @import("math/isnan.zig").isNan;
pub const isSignalNan = @import("math/isnan.zig").isSignalNan;
pub const frexp = @import("math/frexp.zig").frexp;
pub const Frexp = @import("math/frexp.zig").Frexp;
pub const modf = @import("math/modf.zig").modf;
pub const Modf = @import("math/modf.zig").Modf;
pub const copysign = @import("math/copysign.zig").copysign;
pub const isFinite = @import("math/isfinite.zig").isFinite;
pub const isInf = @import("math/isinf.zig").isInf;
pub const isPositiveInf = @import("math/isinf.zig").isPositiveInf;
pub const isNegativeInf = @import("math/isinf.zig").isNegativeInf;
pub const isPositiveZero = @import("math/iszero.zig").isPositiveZero;
pub const isNegativeZero = @import("math/iszero.zig").isNegativeZero;
pub const isNormal = @import("math/isnormal.zig").isNormal;
pub const nextAfter = @import("math/nextafter.zig").nextAfter;
pub const signbit = @import("math/signbit.zig").signbit;
pub const scalbn = @import("math/scalbn.zig").scalbn;
pub const ldexp = @import("math/ldexp.zig").ldexp;
pub const pow = @import("math/pow.zig").pow;
pub const powi = @import("math/powi.zig").powi;
pub const sqrt = @import("math/sqrt.zig").sqrt;
pub const cbrt = @import("math/cbrt.zig").cbrt;
|
acosmath/acos.zig |
pub const acos = @import("math/acos.zig").acos;
|
asinmath/asin.zig |
pub const asin = @import("math/asin.zig").asin;
|
atanmath/atan.zig |
pub const atan = @import("math/atan.zig").atan;
|
atan2math/atan2.zig |
pub const atan2 = @import("math/atan2.zig").atan2;
|
hypotmath/hypot.zig |
pub const hypot = @import("math/hypot.zig").hypot;
|
expm1math/expm1.zig |
pub const expm1 = @import("math/expm1.zig").expm1;
|
ilogbmath/ilogb.zig |
pub const ilogb = @import("math/ilogb.zig").ilogb;
|
logmath/log.zig |
pub const log = @import("math/log.zig").log;
|
log2math/log2.zig |
pub const log2 = @import("math/log2.zig").log2;
|
log10math/log10.zig |
pub const log10 = @import("math/log10.zig").log10;
|
log10_intmath/log10.zig |
pub const log10_int = @import("math/log10.zig").log10_int;
|
log_intmath/log_int.zig |
pub const log_int = @import("math/log_int.zig").log_int;
|
log1pmath/log1p.zig |
pub const log1p = @import("math/log1p.zig").log1p;
|
asinhmath/asinh.zig |
pub const asinh = @import("math/asinh.zig").asinh;
|
acoshmath/acosh.zig |
pub const acosh = @import("math/acosh.zig").acosh;
|
atanhmath/atanh.zig |
pub const atanh = @import("math/atanh.zig").atanh;
|
sinhmath/sinh.zig |
pub const sinh = @import("math/sinh.zig").sinh;
|
coshmath/cosh.zig |
pub const cosh = @import("math/cosh.zig").cosh;
|
tanhmath/tanh.zig |
pub const tanh = @import("math/tanh.zig").tanh;
|
gcdmath/gcd.zig |
pub const gcd = @import("math/gcd.zig").gcd;
|
gammamath/gamma.zig |
pub const gamma = @import("math/gamma.zig").gamma;
|
lgammamath/gamma.zig |
pub const lgamma = @import("math/gamma.zig").lgamma;
|
sin() |
/// Sine trigonometric function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @sin
pub inline fn sin(value: anytype) @TypeOf(value) {
return @sin(value);
|
mul() |
} |
tan() |
/// Cosine trigonometric function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @cos
pub inline fn cos(value: anytype) @TypeOf(value) {
return @cos(value);
|
mul() |
} |
Test: radiansToDegrees |
/// Tangent trigonometric function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @tan
pub inline fn tan(value: anytype) @TypeOf(value) {
return @tan(value);
|
mul() |
} |
Test: degreesToRadians |
/// Converts an angle in radians to degrees. T must be a float or comptime number or a vector of floats.
pub fn radiansToDegrees(ang: anytype) if (@TypeOf(ang) == comptime_int) comptime_float else @TypeOf(ang) {
const T = @TypeOf(ang);
switch (@typeInfo(T)) {
.Float, .ComptimeFloat, .ComptimeInt => return ang * deg_per_rad,
.Vector => |V| if (@typeInfo(V.child) == .Float) return ang * @as(T, @splat(deg_per_rad)),
else => {},
}
@compileError("Input must be float or a comptime number, or a vector of floats.");
|
mul() |
} |
exp2() |
test radiansToDegrees {
const zero: f32 = 0;
const half_pi: f32 = pi / 2.0;
const neg_quart_pi: f32 = -pi / 4.0;
const one_pi: f32 = pi;
const two_pi: f32 = 2.0 * pi;
try std.testing.expectApproxEqAbs(@as(f32, 0), radiansToDegrees(zero), 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, 90), radiansToDegrees(half_pi), 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, -45), radiansToDegrees(neg_quart_pi), 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, 180), radiansToDegrees(one_pi), 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, 360), radiansToDegrees(two_pi), 1e-6);
|
complexmath/complex.zig |
const result = radiansToDegrees(@Vector(4, f32){
half_pi,
neg_quart_pi,
one_pi,
two_pi,
});
try std.testing.expectApproxEqAbs(@as(f32, 90), result[0], 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, -45), result[1], 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, 180), result[2], 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, 360), result[3], 1e-6);
|
mul() |
} |
bigmath/big.zig |
/// Converts an angle in degrees to radians. T must be a float or comptime number or a vector of floats.
pub fn degreesToRadians(ang: anytype) if (@TypeOf(ang) == comptime_int) comptime_float else @TypeOf(ang) {
const T = @TypeOf(ang);
switch (@typeInfo(T)) {
.Float, .ComptimeFloat, .ComptimeInt => return ang * rad_per_deg,
.Vector => |V| if (@typeInfo(V.child) == .Float) return ang * @as(T, @splat(rad_per_deg)),
else => {},
}
@compileError("Input must be float or a comptime number, or a vector of floats.");
|
mul() |
} |
min |
test degreesToRadians {
const ninety: f32 = 90;
const neg_two_seventy: f32 = -270;
const three_sixty: f32 = 360;
try std.testing.expectApproxEqAbs(@as(f32, pi / 2.0), degreesToRadians(ninety), 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, -3 * pi / 2.0), degreesToRadians(neg_two_seventy), 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, 2 * pi), degreesToRadians(three_sixty), 1e-6);
|
max |
const result = degreesToRadians(@Vector(3, f32){
ninety,
neg_two_seventy,
three_sixty,
});
try std.testing.expectApproxEqAbs(@as(f32, pi / 2.0), result[0], 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, -3 * pi / 2.0), result[1], 1e-6);
try std.testing.expectApproxEqAbs(@as(f32, 2 * pi), result[2], 1e-6);
|
mul() |
} |
max3 |
/// Base-e exponential function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @exp
pub inline fn exp(value: anytype) @TypeOf(value) {
return @exp(value);
|
mul() |
} |
wrap() |
/// Base-2 exponential function on a floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @exp2
pub inline fn exp2(value: anytype) @TypeOf(value) {
return @exp2(value);
|
mul() |
} |
clamp() |
pub const complex = @import("math/complex.zig");
pub const Complex = complex.Complex;
|
Test: clamp |
pub const big = @import("math/big.zig");
|
mul() |
test {
_ = floatExponentBits;
_ = floatMantissaBits;
_ = floatFractionalBits;
_ = floatExponentMin;
_ = floatExponentMax;
_ = floatTrueMin;
_ = floatMin;
_ = floatMax;
_ = floatEps;
_ = inf;
_ = nan;
_ = snan;
_ = isNan;
_ = isSignalNan;
_ = frexp;
_ = Frexp;
_ = modf;
_ = Modf;
_ = copysign;
_ = isFinite;
_ = isInf;
_ = isPositiveInf;
_ = isNegativeInf;
_ = isNormal;
_ = nextAfter;
_ = signbit;
_ = scalbn;
_ = ldexp;
_ = pow;
_ = powi;
_ = sqrt;
_ = cbrt;
_ = acos;
_ = asin;
_ = atan;
_ = atan2;
_ = hypot;
_ = expm1;
_ = ilogb;
_ = log;
_ = log2;
_ = log10;
_ = log10_int;
_ = log_int;
_ = log1p;
_ = asinh;
_ = acosh;
_ = atanh;
_ = sinh;
_ = cosh;
_ = tanh;
_ = gcd;
_ = gamma;
_ = lgamma;
|
add() |
_ = complex;
_ = Complex;
|
sub() |
_ = big;
|
AlignCastError |
} |
shlExact() |
/// Given two types, returns the smallest one which is capable of holding the
/// full range of the minimum value.
pub fn Min(comptime A: type, comptime B: type) type {
switch (@typeInfo(A)) {
.Int => |a_info| switch (@typeInfo(B)) {
.Int => |b_info| if (a_info.signedness == .unsigned and b_info.signedness == .unsigned) {
if (a_info.bits < b_info.bits) {
return A;
} else {
return B;
}
},
else => {},
},
else => {},
}
return @TypeOf(@as(A, 0) + @as(B, 0));
|
AlignCastError |
} |
Test: shl |
pub const min = @compileError("deprecated; use @min instead");
pub const max = @compileError("deprecated; use @max instead");
pub const min3 = @compileError("deprecated; use @min instead");
pub const max3 = @compileError("deprecated; use @max instead");
pub const ln = @compileError("deprecated; use @log instead");
|
shr() |
/// Odd sawtooth function
/// ```
/// |
/// / | / /
/// / |/ /
/// --/----/----/--
/// / /| /
/// / / | /
/// |
/// ```
/// Limit x to the half-open interval [-r, r).
pub fn wrap(x: anytype, r: anytype) @TypeOf(x) {
const info_x = @typeInfo(@TypeOf(x));
const info_r = @typeInfo(@TypeOf(r));
if (info_x == .Int and info_x.Int.signedness != .signed) {
@compileError("x must be floating point, comptime integer, or signed integer.");
}
switch (info_r) {
.Int => {
// in the rare usecase of r not being comptime_int or float,
// take the penalty of having an intermediary type conversion,
// otherwise the alternative is to unwind iteratively to avoid overflow
const R = comptime do: {
var info = info_r;
info.Int.bits += 1;
info.Int.signedness = .signed;
break :do @Type(info);
};
const radius: if (info_r.Int.signedness == .signed) @TypeOf(r) else R = r;
return @intCast(@mod(x - radius, 2 * @as(R, r)) - r); // provably impossible to overflow
},
else => {
return @mod(x - r, 2 * r) - r;
},
}
|
AlignCastError |
}
test wrap {
// Within range
try testing.expect(wrap(@as(i32, -75), @as(i32, 180)) == -75);
try testing.expect(wrap(@as(i32, -75), @as(i32, -180)) == -75);
// Below
try testing.expect(wrap(@as(i32, -225), @as(i32, 180)) == 135);
try testing.expect(wrap(@as(i32, -225), @as(i32, -180)) == 135);
// Above
try testing.expect(wrap(@as(i32, 361), @as(i32, 180)) == 1);
try testing.expect(wrap(@as(i32, 361), @as(i32, -180)) == 1);
|
rotr() |
// One period, right limit, positive r
try testing.expect(wrap(@as(i32, 180), @as(i32, 180)) == -180);
// One period, left limit, positive r
try testing.expect(wrap(@as(i32, -180), @as(i32, 180)) == -180);
// One period, right limit, negative r
try testing.expect(wrap(@as(i32, 180), @as(i32, -180)) == 180);
// One period, left limit, negative r
try testing.expect(wrap(@as(i32, -180), @as(i32, -180)) == 180);
|
Test: rotr |
// Two periods, right limit, positive r
try testing.expect(wrap(@as(i32, 540), @as(i32, 180)) == -180);
// Two periods, left limit, positive r
try testing.expect(wrap(@as(i32, -540), @as(i32, 180)) == -180);
// Two periods, right limit, negative r
try testing.expect(wrap(@as(i32, 540), @as(i32, -180)) == 180);
// Two periods, left limit, negative r
try testing.expect(wrap(@as(i32, -540), @as(i32, -180)) == 180);
|
rotl() |
// Floating point
try testing.expect(wrap(@as(f32, 1.125), @as(f32, 1.0)) == -0.875);
try testing.expect(wrap(@as(f32, -127.5), @as(f32, 180)) == -127.5);
|
Test: rotl |
// Mix of comptime and non-comptime
var i: i32 = 1;
_ = &i;
try testing.expect(wrap(i, 10) == 1);
|
Log2Int() |
const limit: i32 = 180;
// Within range
try testing.expect(wrap(@as(i32, -75), limit) == -75);
// Below
try testing.expect(wrap(@as(i32, -225), limit) == 135);
// Above
try testing.expect(wrap(@as(i32, 361), limit) == 1);
|
AlignCastError |
} |
IntFittingRange() |
/// Odd ramp function
/// ```
/// | _____
/// | /
/// |/
/// -------/-------
/// /|
/// _____/ |
/// |
/// ```
/// Limit val to the inclusive range [lower, upper].
pub fn clamp(val: anytype, lower: anytype, upper: anytype) @TypeOf(val, lower, upper) {
assert(lower <= upper);
return @max(lower, @min(val, upper));
|
AlignCastError |
}
test clamp {
// Within range
try testing.expect(std.math.clamp(@as(i32, -1), @as(i32, -4), @as(i32, 7)) == -1);
// Below
try testing.expect(std.math.clamp(@as(i32, -5), @as(i32, -4), @as(i32, 7)) == -4);
// Above
try testing.expect(std.math.clamp(@as(i32, 8), @as(i32, -4), @as(i32, 7)) == 7);
|
Test:overflow functions |
// Floating point
try testing.expect(std.math.clamp(@as(f32, 1.1), @as(f32, 0.0), @as(f32, 1.0)) == 1.0);
try testing.expect(std.math.clamp(@as(f32, -127.5), @as(f32, -200), @as(f32, -100)) == -127.5);
|
divTrunc() |
// Mix of comptime and non-comptime
var i: i32 = 1;
_ = &i;
try testing.expect(std.math.clamp(i, 0, 1) == 1);
|
AlignCastError |
} |
divFloor() |
/// Returns the product of a and b. Returns an error on overflow.
pub fn mul(comptime T: type, a: T, b: T) (error{Overflow}!T) {
if (T == comptime_int) return a * b;
const ov = @mulWithOverflow(a, b);
if (ov[1] != 0) return error.Overflow;
return ov[0];
|
AlignCastError |
} |
divCeil() |
/// Returns the sum of a and b. Returns an error on overflow.
pub fn add(comptime T: type, a: T, b: T) (error{Overflow}!T) {
if (T == comptime_int) return a + b;
const ov = @addWithOverflow(a, b);
if (ov[1] != 0) return error.Overflow;
return ov[0];
|
AlignCastError |
} |
divExact() |
/// Returns a - b, or an error on overflow.
pub fn sub(comptime T: type, a: T, b: T) (error{Overflow}!T) {
if (T == comptime_int) return a - b;
const ov = @subWithOverflow(a, b);
if (ov[1] != 0) return error.Overflow;
return ov[0];
|
AlignCastError |
} |
mod() |
pub fn negate(x: anytype) !@TypeOf(x) {
return sub(@TypeOf(x), 0, x);
|
AlignCastError |
} |
rem() |
/// Shifts a left by shift_amt. Returns an error on overflow. shift_amt
/// is unsigned.
pub fn shlExact(comptime T: type, a: T, shift_amt: Log2Int(T)) !T {
if (T == comptime_int) return a << shift_amt;
const ov = @shlWithOverflow(a, shift_amt);
if (ov[1] != 0) return error.Overflow;
return ov[0];
|
AlignCastError |
} |
negateCast() |
/// Shifts left. Overflowed bits are truncated.
/// A negative shift amount results in a right shift.
pub fn shl(comptime T: type, a: T, shift_amt: anytype) T {
const abs_shift_amt = @abs(shift_amt);
|
Test: negateCast |
const casted_shift_amt = blk: {
if (@typeInfo(T) == .Vector) {
const C = @typeInfo(T).Vector.child;
const len = @typeInfo(T).Vector.len;
if (abs_shift_amt >= @typeInfo(C).Int.bits) return @splat(0);
break :blk @as(@Vector(len, Log2Int(C)), @splat(@as(Log2Int(C), @intCast(abs_shift_amt))));
} else {
if (abs_shift_amt >= @typeInfo(T).Int.bits) return 0;
break :blk @as(Log2Int(T), @intCast(abs_shift_amt));
}
};
|
cast() |
if (@TypeOf(shift_amt) == comptime_int or @typeInfo(@TypeOf(shift_amt)).Int.signedness == .signed) {
if (shift_amt < 0) {
return a >> casted_shift_amt;
}
}
|
Test: cast |
return a << casted_shift_amt;
|
AlignCastError |
} |
alignCast() |
test shl {
if (builtin.zig_backend == .stage2_llvm and builtin.cpu.arch == .aarch64) {
// https://github.com/ziglang/zig/issues/12012
return error.SkipZigTest;
}
|
isPowerOfTwo() |
try testing.expect(shl(u8, 0b11111111, @as(usize, 3)) == 0b11111000);
try testing.expect(shl(u8, 0b11111111, @as(usize, 8)) == 0);
try testing.expect(shl(u8, 0b11111111, @as(usize, 9)) == 0);
try testing.expect(shl(u8, 0b11111111, @as(isize, -2)) == 0b00111111);
try testing.expect(shl(u8, 0b11111111, 3) == 0b11111000);
try testing.expect(shl(u8, 0b11111111, 8) == 0);
try testing.expect(shl(u8, 0b11111111, 9) == 0);
try testing.expect(shl(u8, 0b11111111, -2) == 0b00111111);
try testing.expect(shl(@Vector(1, u32), @Vector(1, u32){42}, @as(usize, 1))[0] == @as(u32, 42) << 1);
try testing.expect(shl(@Vector(1, u32), @Vector(1, u32){42}, @as(isize, -1))[0] == @as(u32, 42) >> 1);
try testing.expect(shl(@Vector(1, u32), @Vector(1, u32){42}, 33)[0] == 0);
|
ceilPowerOfTwo() |
} |
ByteAlignedInt() |
/// Shifts right. Overflowed bits are truncated.
/// A negative shift amount results in a left shift.
pub fn shr(comptime T: type, a: T, shift_amt: anytype) T {
const abs_shift_amt = @abs(shift_amt);
|
Test: ByteAlignedInt |
const casted_shift_amt = blk: {
if (@typeInfo(T) == .Vector) {
const C = @typeInfo(T).Vector.child;
const len = @typeInfo(T).Vector.len;
if (abs_shift_amt >= @typeInfo(C).Int.bits) return @splat(0);
break :blk @as(@Vector(len, Log2Int(C)), @splat(@as(Log2Int(C), @intCast(abs_shift_amt))));
} else {
if (abs_shift_amt >= @typeInfo(T).Int.bits) return 0;
break :blk @as(Log2Int(T), @intCast(abs_shift_amt));
}
};
|
round() |
if (@TypeOf(shift_amt) == comptime_int or @typeInfo(@TypeOf(shift_amt)).Int.signedness == .signed) {
if (shift_amt < 0) {
return a << casted_shift_amt;
}
}
|
trunc() |
return a >> casted_shift_amt;
|
ceilPowerOfTwo() |
} |
floorPowerOfTwo() |
test shr {
if (builtin.zig_backend == .stage2_llvm and builtin.cpu.arch == .aarch64) {
// https://github.com/ziglang/zig/issues/12012
return error.SkipZigTest;
}
|
Test: floorPowerOfTwo |
try testing.expect(shr(u8, 0b11111111, @as(usize, 3)) == 0b00011111);
try testing.expect(shr(u8, 0b11111111, @as(usize, 8)) == 0);
try testing.expect(shr(u8, 0b11111111, @as(usize, 9)) == 0);
try testing.expect(shr(u8, 0b11111111, @as(isize, -2)) == 0b11111100);
try testing.expect(shr(u8, 0b11111111, 3) == 0b00011111);
try testing.expect(shr(u8, 0b11111111, 8) == 0);
try testing.expect(shr(u8, 0b11111111, 9) == 0);
try testing.expect(shr(u8, 0b11111111, -2) == 0b11111100);
try testing.expect(shr(@Vector(1, u32), @Vector(1, u32){42}, @as(usize, 1))[0] == @as(u32, 42) >> 1);
try testing.expect(shr(@Vector(1, u32), @Vector(1, u32){42}, @as(isize, -1))[0] == @as(u32, 42) << 1);
try testing.expect(shr(@Vector(1, u32), @Vector(1, u32){42}, 33)[0] == 0);
|
ceilPowerOfTwo() |
} |
ceilPowerOfTwoPromote() |
/// Rotates right. Only unsigned values can be rotated. Negative shift
/// values result in shift modulo the bit count.
pub fn rotr(comptime T: type, x: T, r: anytype) T {
if (@typeInfo(T) == .Vector) {
const C = @typeInfo(T).Vector.child;
if (C == u0) return 0;
|
ceilPowerOfTwo() |
if (@typeInfo(C).Int.signedness == .signed) {
@compileError("cannot rotate signed integers");
}
const ar: Log2Int(C) = @intCast(@mod(r, @typeInfo(C).Int.bits));
return (x >> @splat(ar)) | (x << @splat(1 + ~ar));
} else if (@typeInfo(T).Int.signedness == .signed) {
@compileError("cannot rotate signed integer");
} else {
if (T == u0) return 0;
|
ceilPowerOfTwoAssert() |
if (comptime isPowerOfTwo(@typeInfo(T).Int.bits)) {
const ar: Log2Int(T) = @intCast(@mod(r, @typeInfo(T).Int.bits));
return x >> ar | x << (1 +% ~ar);
} else {
const ar = @mod(r, @typeInfo(T).Int.bits);
return shr(T, x, ar) | shl(T, x, @typeInfo(T).Int.bits - ar);
}
}
}
|
Test: ceilPowerOfTwoPromote |
test rotr {
if (builtin.zig_backend == .stage2_llvm and builtin.cpu.arch == .aarch64) {
// https://github.com/ziglang/zig/issues/12012
return error.SkipZigTest;
}
|
Test: ceilPowerOfTwo |
try testing.expect(rotr(u0, 0b0, @as(usize, 3)) == 0b0);
try testing.expect(rotr(u5, 0b00001, @as(usize, 0)) == 0b00001);
try testing.expect(rotr(u6, 0b000001, @as(usize, 7)) == 0b100000);
try testing.expect(rotr(u8, 0b00000001, @as(usize, 0)) == 0b00000001);
try testing.expect(rotr(u8, 0b00000001, @as(usize, 9)) == 0b10000000);
try testing.expect(rotr(u8, 0b00000001, @as(usize, 8)) == 0b00000001);
try testing.expect(rotr(u8, 0b00000001, @as(usize, 4)) == 0b00010000);
try testing.expect(rotr(u8, 0b00000001, @as(isize, -1)) == 0b00000010);
try testing.expect(rotr(u12, 0o7777, 1) == 0o7777);
try testing.expect(rotr(@Vector(1, u32), @Vector(1, u32){1}, @as(usize, 1))[0] == @as(u32, 1) << 31);
try testing.expect(rotr(@Vector(1, u32), @Vector(1, u32){1}, @as(isize, -1))[0] == @as(u32, 1) << 1);
}
|
log2_int() |
/// Rotates left. Only unsigned values can be rotated. Negative shift
/// values result in shift modulo the bit count.
pub fn rotl(comptime T: type, x: T, r: anytype) T {
if (@typeInfo(T) == .Vector) {
const C = @typeInfo(T).Vector.child;
if (C == u0) return 0;
|
log2_int_ceil() |
if (@typeInfo(C).Int.signedness == .signed) {
@compileError("cannot rotate signed integers");
}
const ar: Log2Int(C) = @intCast(@mod(r, @typeInfo(C).Int.bits));
return (x << @splat(ar)) | (x >> @splat(1 +% ~ar));
} else if (@typeInfo(T).Int.signedness == .signed) {
@compileError("cannot rotate signed integer");
} else {
if (T == u0) return 0;
|
Test: log2_int_ceil |
if (comptime isPowerOfTwo(@typeInfo(T).Int.bits)) {
const ar: Log2Int(T) = @intCast(@mod(r, @typeInfo(T).Int.bits));
return x << ar | x >> 1 +% ~ar;
} else {
const ar = @mod(r, @typeInfo(T).Int.bits);
return shl(T, x, ar) | shr(T, x, @typeInfo(T).Int.bits - ar);
}
}
}
|
lossyCast() |
test rotl {
if (builtin.zig_backend == .stage2_llvm and builtin.cpu.arch == .aarch64) {
// https://github.com/ziglang/zig/issues/12012
return error.SkipZigTest;
}
|
Test: lossyCast |
try testing.expect(rotl(u0, 0b0, @as(usize, 3)) == 0b0);
try testing.expect(rotl(u5, 0b00001, @as(usize, 0)) == 0b00001);
try testing.expect(rotl(u6, 0b000001, @as(usize, 7)) == 0b000010);
try testing.expect(rotl(u8, 0b00000001, @as(usize, 0)) == 0b00000001);
try testing.expect(rotl(u8, 0b00000001, @as(usize, 9)) == 0b00000010);
try testing.expect(rotl(u8, 0b00000001, @as(usize, 8)) == 0b00000001);
try testing.expect(rotl(u8, 0b00000001, @as(usize, 4)) == 0b00010000);
try testing.expect(rotl(u8, 0b00000001, @as(isize, -1)) == 0b10000000);
try testing.expect(rotl(u12, 0o7777, 1) == 0o7777);
try testing.expect(rotl(@Vector(1, u32), @Vector(1, u32){1 << 31}, @as(usize, 1))[0] == 1);
try testing.expect(rotl(@Vector(1, u32), @Vector(1, u32){1 << 31}, @as(isize, -1))[0] == @as(u32, 1) << 30);
}
|
lerp() |
/// Returns an unsigned int type that can hold the number of bits in T
/// - 1. Suitable for 0-based bit indices of T.
pub fn Log2Int(comptime T: type) type {
// comptime ceil log2
if (T == comptime_int) return comptime_int;
comptime var count = 0;
comptime var s = @typeInfo(T).Int.bits - 1;
inline while (s != 0) : (s >>= 1) {
count += 1;
}
|
Test: lerp |
return std.meta.Int(.unsigned, count);
}
|
maxInt() |
/// Returns an unsigned int type that can hold the number of bits in T.
pub fn Log2IntCeil(comptime T: type) type {
// comptime ceil log2
if (T == comptime_int) return comptime_int;
comptime var count = 0;
comptime var s = @typeInfo(T).Int.bits;
inline while (s != 0) : (s >>= 1) {
count += 1;
}
|
minInt() |
return std.meta.Int(.unsigned, count);
}
|
Test: maxInt |
/// Returns the smallest integer type that can hold both from and to.
pub fn IntFittingRange(comptime from: comptime_int, comptime to: comptime_int) type {
assert(from <= to);
if (from == 0 and to == 0) {
return u0;
}
const signedness: std.builtin.Signedness = if (from < 0) .signed else .unsigned;
const largest_positive_integer = @max(if (from < 0) (-from) - 1 else from, to); // two's complement
const base = log2(largest_positive_integer);
const upper = (1 << base) - 1;
var magnitude_bits = if (upper >= largest_positive_integer) base else base + 1;
if (signedness == .signed) {
magnitude_bits += 1;
}
return std.meta.Int(signedness, magnitude_bits);
}
|
Test: minInt |
test IntFittingRange {
try testing.expect(IntFittingRange(0, 0) == u0);
try testing.expect(IntFittingRange(0, 1) == u1);
try testing.expect(IntFittingRange(0, 2) == u2);
try testing.expect(IntFittingRange(0, 3) == u2);
try testing.expect(IntFittingRange(0, 4) == u3);
try testing.expect(IntFittingRange(0, 7) == u3);
try testing.expect(IntFittingRange(0, 8) == u4);
try testing.expect(IntFittingRange(0, 9) == u4);
try testing.expect(IntFittingRange(0, 15) == u4);
try testing.expect(IntFittingRange(0, 16) == u5);
try testing.expect(IntFittingRange(0, 17) == u5);
try testing.expect(IntFittingRange(0, 4095) == u12);
try testing.expect(IntFittingRange(2000, 4095) == u12);
try testing.expect(IntFittingRange(0, 4096) == u13);
try testing.expect(IntFittingRange(2000, 4096) == u13);
try testing.expect(IntFittingRange(0, 4097) == u13);
try testing.expect(IntFittingRange(2000, 4097) == u13);
try testing.expect(IntFittingRange(0, 123456789123456798123456789) == u87);
try testing.expect(IntFittingRange(0, 123456789123456798123456789123456789123456798123456789) == u177);
|
Test:max value type |
try testing.expect(IntFittingRange(-1, -1) == i1);
try testing.expect(IntFittingRange(-1, 0) == i1);
try testing.expect(IntFittingRange(-1, 1) == i2);
try testing.expect(IntFittingRange(-2, -2) == i2);
try testing.expect(IntFittingRange(-2, -1) == i2);
try testing.expect(IntFittingRange(-2, 0) == i2);
try testing.expect(IntFittingRange(-2, 1) == i2);
try testing.expect(IntFittingRange(-2, 2) == i3);
try testing.expect(IntFittingRange(-1, 2) == i3);
try testing.expect(IntFittingRange(-1, 3) == i3);
try testing.expect(IntFittingRange(-1, 4) == i4);
try testing.expect(IntFittingRange(-1, 7) == i4);
try testing.expect(IntFittingRange(-1, 8) == i5);
try testing.expect(IntFittingRange(-1, 9) == i5);
try testing.expect(IntFittingRange(-1, 15) == i5);
try testing.expect(IntFittingRange(-1, 16) == i6);
try testing.expect(IntFittingRange(-1, 17) == i6);
try testing.expect(IntFittingRange(-1, 4095) == i13);
try testing.expect(IntFittingRange(-4096, 4095) == i13);
try testing.expect(IntFittingRange(-1, 4096) == i14);
try testing.expect(IntFittingRange(-4097, 4095) == i14);
try testing.expect(IntFittingRange(-1, 4097) == i14);
try testing.expect(IntFittingRange(-1, 123456789123456798123456789) == i88);
try testing.expect(IntFittingRange(-1, 123456789123456798123456789123456789123456798123456789) == i178);
}
|
mulWide() |
test "overflow functions" {
try testOverflow();
try comptime testOverflow();
}
|
Test: mulWide |
fn testOverflow() !void {
try testing.expect((mul(i32, 3, 4) catch unreachable) == 12);
try testing.expect((add(i32, 3, 4) catch unreachable) == 7);
try testing.expect((sub(i32, 3, 4) catch unreachable) == -1);
try testing.expect((shlExact(i32, 0b11, 4) catch unreachable) == 0b110000);
}
|
Order |
/// Divide numerator by denominator, rounding toward zero. Returns an
/// error on overflow or when denominator is zero.
pub fn divTrunc(comptime T: type, numerator: T, denominator: T) !T {
@setRuntimeSafety(false);
if (denominator == 0) return error.DivisionByZero;
if (@typeInfo(T) == .Int and @typeInfo(T).Int.signedness == .signed and numerator == minInt(T) and denominator == -1) return error.Overflow;
return @divTrunc(numerator, denominator);
}
|
invert() |
test divTrunc {
try testDivTrunc();
try comptime testDivTrunc();
}
fn testDivTrunc() !void {
try testing.expect((divTrunc(i32, 5, 3) catch unreachable) == 1);
try testing.expect((divTrunc(i32, -5, 3) catch unreachable) == -1);
try testing.expectError(error.DivisionByZero, divTrunc(i8, -5, 0));
try testing.expectError(error.Overflow, divTrunc(i8, -128, -1));
|
Test: invert |
try testing.expect((divTrunc(f32, 5.0, 3.0) catch unreachable) == 1.0);
try testing.expect((divTrunc(f32, -5.0, 3.0) catch unreachable) == -1.0);
}
|
differ() |
/// Divide numerator by denominator, rounding toward negative
/// infinity. Returns an error on overflow or when denominator is
/// zero.
pub fn divFloor(comptime T: type, numerator: T, denominator: T) !T {
@setRuntimeSafety(false);
if (denominator == 0) return error.DivisionByZero;
if (@typeInfo(T) == .Int and @typeInfo(T).Int.signedness == .signed and numerator == minInt(T) and denominator == -1) return error.Overflow;
return @divFloor(numerator, denominator);
}
|
Test: differ |
test divFloor {
try testDivFloor();
try comptime testDivFloor();
}
fn testDivFloor() !void {
try testing.expect((divFloor(i32, 5, 3) catch unreachable) == 1);
try testing.expect((divFloor(i32, -5, 3) catch unreachable) == -2);
try testing.expectError(error.DivisionByZero, divFloor(i8, -5, 0));
try testing.expectError(error.Overflow, divFloor(i8, -128, -1));
|
compare() |
try testing.expect((divFloor(f32, 5.0, 3.0) catch unreachable) == 1.0);
try testing.expect((divFloor(f32, -5.0, 3.0) catch unreachable) == -2.0);
}
|
Test:compare |
/// Divide numerator by denominator, rounding toward positive
/// infinity. Returns an error on overflow or when denominator is
/// zero.
pub fn divCeil(comptime T: type, numerator: T, denominator: T) !T {
@setRuntimeSafety(false);
if (denominator == 0) return error.DivisionByZero;
const info = @typeInfo(T);
switch (info) {
.ComptimeFloat, .Float => return @ceil(numerator / denominator),
.ComptimeInt, .Int => {
if (numerator < 0 and denominator < 0) {
if (info == .Int and numerator == minInt(T) and denominator == -1)
return error.Overflow;
return @divFloor(numerator + 1, denominator) + 1;
}
if (numerator > 0 and denominator > 0)
return @divFloor(numerator - 1, denominator) + 1;
return @divTrunc(numerator, denominator);
},
else => @compileError("divCeil unsupported on " ++ @typeName(T)),
}
}
|
order() |
test divCeil {
try testDivCeil();
try comptime testDivCeil();
}
fn testDivCeil() !void {
try testing.expectEqual(@as(i32, 2), divCeil(i32, 5, 3) catch unreachable);
try testing.expectEqual(@as(i32, -1), divCeil(i32, -5, 3) catch unreachable);
try testing.expectEqual(@as(i32, -1), divCeil(i32, 5, -3) catch unreachable);
try testing.expectEqual(@as(i32, 2), divCeil(i32, -5, -3) catch unreachable);
try testing.expectEqual(@as(i32, 0), divCeil(i32, 0, 5) catch unreachable);
try testing.expectEqual(@as(u32, 0), divCeil(u32, 0, 5) catch unreachable);
try testing.expectError(error.DivisionByZero, divCeil(i8, -5, 0));
try testing.expectError(error.Overflow, divCeil(i8, -128, -1));
|
CompareOperator |
try testing.expectEqual(@as(f32, 0.0), divCeil(f32, 0.0, 5.0) catch unreachable);
try testing.expectEqual(@as(f32, 2.0), divCeil(f32, 5.0, 3.0) catch unreachable);
try testing.expectEqual(@as(f32, -1.0), divCeil(f32, -5.0, 3.0) catch unreachable);
try testing.expectEqual(@as(f32, -1.0), divCeil(f32, 5.0, -3.0) catch unreachable);
try testing.expectEqual(@as(f32, 2.0), divCeil(f32, -5.0, -3.0) catch unreachable);
|
reverse() |
try testing.expectEqual(6, divCeil(comptime_int, 23, 4) catch unreachable);
try testing.expectEqual(-5, divCeil(comptime_int, -23, 4) catch unreachable);
try testing.expectEqual(-5, divCeil(comptime_int, 23, -4) catch unreachable);
try testing.expectEqual(6, divCeil(comptime_int, -23, -4) catch unreachable);
try testing.expectError(error.DivisionByZero, divCeil(comptime_int, 23, 0));
|
Test: reverse |
try testing.expectEqual(6.0, divCeil(comptime_float, 23.0, 4.0) catch unreachable);
try testing.expectEqual(-5.0, divCeil(comptime_float, -23.0, 4.0) catch unreachable);
try testing.expectEqual(-5.0, divCeil(comptime_float, 23.0, -4.0) catch unreachable);
try testing.expectEqual(6.0, divCeil(comptime_float, -23.0, -4.0) catch unreachable);
try testing.expectError(error.DivisionByZero, divCeil(comptime_float, 23.0, 0.0));
}
|
compare() |
/// Divide numerator by denominator. Return an error if quotient is
/// not an integer, denominator is zero, or on overflow.
pub fn divExact(comptime T: type, numerator: T, denominator: T) !T {
@setRuntimeSafety(false);
if (denominator == 0) return error.DivisionByZero;
if (@typeInfo(T) == .Int and @typeInfo(T).Int.signedness == .signed and numerator == minInt(T) and denominator == -1) return error.Overflow;
const result = @divTrunc(numerator, denominator);
if (result * denominator != numerator) return error.UnexpectedRemainder;
return result;
}
|
Test: compare |
test divExact {
try testDivExact();
try comptime testDivExact();
}
fn testDivExact() !void {
try testing.expect((divExact(i32, 10, 5) catch unreachable) == 2);
try testing.expect((divExact(i32, -10, 5) catch unreachable) == -2);
try testing.expectError(error.DivisionByZero, divExact(i8, -5, 0));
try testing.expectError(error.Overflow, divExact(i8, -128, -1));
try testing.expectError(error.UnexpectedRemainder, divExact(i32, 5, 2));
|
Test: order |
try testing.expect((divExact(f32, 10.0, 5.0) catch unreachable) == 2.0);
try testing.expect((divExact(f32, -10.0, 5.0) catch unreachable) == -2.0);
try testing.expectError(error.UnexpectedRemainder, divExact(f32, 5.0, 2.0));
}
|
boolMask() |
/// Returns numerator modulo denominator, or an error if denominator is
/// zero or negative. Negative numerators never result in negative
/// return values.
pub fn mod(comptime T: type, numerator: T, denominator: T) !T {
@setRuntimeSafety(false);
if (denominator == 0) return error.DivisionByZero;
if (denominator < 0) return error.NegativeDenominator;
return @mod(numerator, denominator);
}
|
Test: boolMask |
test mod {
try testMod();
try comptime testMod();
}
fn testMod() !void {
try testing.expect((mod(i32, -5, 3) catch unreachable) == 1);
try testing.expect((mod(i32, 5, 3) catch unreachable) == 2);
try testing.expectError(error.NegativeDenominator, mod(i32, 10, -1));
try testing.expectError(error.DivisionByZero, mod(i32, 10, 0));
|
comptimeMod() |
try testing.expect((mod(f32, -5, 3) catch unreachable) == 1);
try testing.expect((mod(f32, 5, 3) catch unreachable) == 2);
try testing.expectError(error.NegativeDenominator, mod(f32, 10, -1));
try testing.expectError(error.DivisionByZero, mod(f32, 10, 0));
}
|
F80 |
/// Returns the remainder when numerator is divided by denominator, or
/// an error if denominator is zero or negative. Negative numerators
/// can give negative results.
pub fn rem(comptime T: type, numerator: T, denominator: T) !T {
@setRuntimeSafety(false);
if (denominator == 0) return error.DivisionByZero;
if (denominator < 0) return error.NegativeDenominator;
return @rem(numerator, denominator);
}
|
make_f80() |
test rem {
try testRem();
try comptime testRem();
}
fn testRem() !void {
try testing.expect((rem(i32, -5, 3) catch unreachable) == -2);
try testing.expect((rem(i32, 5, 3) catch unreachable) == 2);
try testing.expectError(error.NegativeDenominator, rem(i32, 10, -1));
try testing.expectError(error.DivisionByZero, rem(i32, 10, 0));
|
break_f80() |
try testing.expect((rem(f32, -5, 3) catch unreachable) == -2);
try testing.expect((rem(f32, 5, 3) catch unreachable) == 2);
try testing.expectError(error.NegativeDenominator, rem(f32, 10, -1));
try testing.expectError(error.DivisionByZero, rem(f32, 10, 0));
}
|
sign() |
/// Returns the negation of the integer parameter.
/// Result is a signed integer.
pub fn negateCast(x: anytype) !std.meta.Int(.signed, @bitSizeOf(@TypeOf(x))) {
if (@typeInfo(@TypeOf(x)).Int.signedness == .signed) return negate(x);
|
Test: sign |
const int = std.meta.Int(.signed, @bitSizeOf(@TypeOf(x)));
if (x > -minInt(int)) return error.Overflow;
if (x == -minInt(int)) return minInt(int);
return -@as(int, @intCast(x));
}
test negateCast {
try testing.expect((negateCast(@as(u32, 999)) catch unreachable) == -999);
try testing.expect(@TypeOf(negateCast(@as(u32, 999)) catch unreachable) == i32);
try testing.expect((negateCast(@as(u32, -minInt(i32))) catch unreachable) == minInt(i32));
try testing.expect(@TypeOf(negateCast(@as(u32, -minInt(i32))) catch unreachable) == i32);
try testing.expectError(error.Overflow, negateCast(@as(u32, maxInt(i32) + 10)));
}
/// Cast an integer to a different integer type. If the value doesn't fit,
/// return null.
pub fn cast(comptime T: type, x: anytype) ?T {
comptime assert(@typeInfo(T) == .Int); // must pass an integer
const is_comptime = @TypeOf(x) == comptime_int;
comptime assert(is_comptime or @typeInfo(@TypeOf(x)) == .Int); // must pass an integer
if ((is_comptime or maxInt(@TypeOf(x)) > maxInt(T)) and x > maxInt(T)) {
return null;
} else if ((is_comptime or minInt(@TypeOf(x)) < minInt(T)) and x < minInt(T)) {
return null;
} else {
return @as(T, @intCast(x));
}
}
test cast {
try testing.expect(cast(u8, 300) == null);
try testing.expect(cast(u8, @as(u32, 300)) == null);
try testing.expect(cast(i8, -200) == null);
try testing.expect(cast(i8, @as(i32, -200)) == null);
try testing.expect(cast(u8, -1) == null);
try testing.expect(cast(u8, @as(i8, -1)) == null);
try testing.expect(cast(u64, -1) == null);
try testing.expect(cast(u64, @as(i8, -1)) == null);
try testing.expect(cast(u8, 255).? == @as(u8, 255));
try testing.expect(cast(u8, @as(u32, 255)).? == @as(u8, 255));
try testing.expect(@TypeOf(cast(u8, 255).?) == u8);
try testing.expect(@TypeOf(cast(u8, @as(u32, 255)).?) == u8);
}
pub const AlignCastError = error{UnalignedMemory};
fn AlignCastResult(comptime alignment: u29, comptime Ptr: type) type {
var ptr_info = @typeInfo(Ptr);
ptr_info.Pointer.alignment = alignment;
return @Type(ptr_info);
}
/// Align cast a pointer but return an error if it's the wrong alignment
pub fn alignCast(comptime alignment: u29, ptr: anytype) AlignCastError!AlignCastResult(alignment, @TypeOf(ptr)) {
const addr = @intFromPtr(ptr);
if (addr % alignment != 0) {
return error.UnalignedMemory;
}
return @alignCast(ptr);
}
/// Asserts `int > 0`.
pub fn isPowerOfTwo(int: anytype) bool {
assert(int > 0);
return (int & (int - 1)) == 0;
}
test isPowerOfTwo {
try testing.expect(isPowerOfTwo(@as(u8, 1)));
try testing.expect(isPowerOfTwo(2));
try testing.expect(!isPowerOfTwo(@as(i16, 3)));
try testing.expect(isPowerOfTwo(4));
try testing.expect(!isPowerOfTwo(@as(u32, 31)));
try testing.expect(isPowerOfTwo(32));
try testing.expect(!isPowerOfTwo(@as(i64, 63)));
try testing.expect(isPowerOfTwo(128));
try testing.expect(isPowerOfTwo(@as(u128, 256)));
}
/// Aligns the given integer type bit width to a width divisible by 8.
pub fn ByteAlignedInt(comptime T: type) type {
const info = @typeInfo(T).Int;
const bits = (info.bits + 7) / 8 * 8;
const extended_type = std.meta.Int(info.signedness, bits);
return extended_type;
}
test ByteAlignedInt {
try testing.expect(ByteAlignedInt(u0) == u0);
try testing.expect(ByteAlignedInt(i0) == i0);
try testing.expect(ByteAlignedInt(u3) == u8);
try testing.expect(ByteAlignedInt(u8) == u8);
try testing.expect(ByteAlignedInt(i111) == i112);
try testing.expect(ByteAlignedInt(u129) == u136);
}
/// Rounds the given floating point number to an integer, away from zero.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @round
pub inline fn round(value: anytype) @TypeOf(value) {
return @round(value);
}
/// Rounds the given floating point number to an integer, towards zero.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @trunc
pub inline fn trunc(value: anytype) @TypeOf(value) {
return @trunc(value);
}
/// Returns the largest integral value not greater than the given floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @floor
pub inline fn floor(value: anytype) @TypeOf(value) {
return @floor(value);
}
/// Returns the nearest power of two less than or equal to value, or
/// zero if value is less than or equal to zero.
pub fn floorPowerOfTwo(comptime T: type, value: T) T {
const uT = std.meta.Int(.unsigned, @typeInfo(T).Int.bits);
if (value <= 0) return 0;
return @as(T, 1) << log2_int(uT, @as(uT, @intCast(value)));
}
test floorPowerOfTwo {
try testFloorPowerOfTwo();
try comptime testFloorPowerOfTwo();
}
fn testFloorPowerOfTwo() !void {
try testing.expect(floorPowerOfTwo(u32, 63) == 32);
try testing.expect(floorPowerOfTwo(u32, 64) == 64);
try testing.expect(floorPowerOfTwo(u32, 65) == 64);
try testing.expect(floorPowerOfTwo(u32, 0) == 0);
try testing.expect(floorPowerOfTwo(u4, 7) == 4);
try testing.expect(floorPowerOfTwo(u4, 8) == 8);
try testing.expect(floorPowerOfTwo(u4, 9) == 8);
try testing.expect(floorPowerOfTwo(u4, 0) == 0);
try testing.expect(floorPowerOfTwo(i4, 7) == 4);
try testing.expect(floorPowerOfTwo(i4, -8) == 0);
try testing.expect(floorPowerOfTwo(i4, -1) == 0);
try testing.expect(floorPowerOfTwo(i4, 0) == 0);
}
/// Returns the smallest integral value not less than the given floating point number.
/// Uses a dedicated hardware instruction when available.
/// This is the same as calling the builtin @ceil
pub inline fn ceil(value: anytype) @TypeOf(value) {
return @ceil(value);
}
/// Returns the next power of two (if the value is not already a power of two).
/// Only unsigned integers can be used. Zero is not an allowed input.
/// Result is a type with 1 more bit than the input type.
pub fn ceilPowerOfTwoPromote(comptime T: type, value: T) std.meta.Int(@typeInfo(T).Int.signedness, @typeInfo(T).Int.bits + 1) {
comptime assert(@typeInfo(T) == .Int);
comptime assert(@typeInfo(T).Int.signedness == .unsigned);
assert(value != 0);
const PromotedType = std.meta.Int(@typeInfo(T).Int.signedness, @typeInfo(T).Int.bits + 1);
const ShiftType = std.math.Log2Int(PromotedType);
return @as(PromotedType, 1) << @as(ShiftType, @intCast(@typeInfo(T).Int.bits - @clz(value - 1)));
}
/// Returns the next power of two (if the value is not already a power of two).
/// Only unsigned integers can be used. Zero is not an allowed input.
/// If the value doesn't fit, returns an error.
pub fn ceilPowerOfTwo(comptime T: type, value: T) (error{Overflow}!T) {
comptime assert(@typeInfo(T) == .Int);
const info = @typeInfo(T).Int;
comptime assert(info.signedness == .unsigned);
const PromotedType = std.meta.Int(info.signedness, info.bits + 1);
const overflowBit = @as(PromotedType, 1) << info.bits;
const x = ceilPowerOfTwoPromote(T, value);
if (overflowBit & x != 0) {
return error.Overflow;
}
return @as(T, @intCast(x));
}
/// Returns the next power of two (if the value is not already a power
/// of two). Only unsigned integers can be used. Zero is not an
/// allowed input. Asserts that the value fits.
pub fn ceilPowerOfTwoAssert(comptime T: type, value: T) T {
return ceilPowerOfTwo(T, value) catch unreachable;
}
test ceilPowerOfTwoPromote {
try testCeilPowerOfTwoPromote();
try comptime testCeilPowerOfTwoPromote();
}
fn testCeilPowerOfTwoPromote() !void {
try testing.expectEqual(@as(u33, 1), ceilPowerOfTwoPromote(u32, 1));
try testing.expectEqual(@as(u33, 2), ceilPowerOfTwoPromote(u32, 2));
try testing.expectEqual(@as(u33, 64), ceilPowerOfTwoPromote(u32, 63));
try testing.expectEqual(@as(u33, 64), ceilPowerOfTwoPromote(u32, 64));
try testing.expectEqual(@as(u33, 128), ceilPowerOfTwoPromote(u32, 65));
try testing.expectEqual(@as(u6, 8), ceilPowerOfTwoPromote(u5, 7));
try testing.expectEqual(@as(u6, 8), ceilPowerOfTwoPromote(u5, 8));
try testing.expectEqual(@as(u6, 16), ceilPowerOfTwoPromote(u5, 9));
try testing.expectEqual(@as(u5, 16), ceilPowerOfTwoPromote(u4, 9));
}
test ceilPowerOfTwo {
try testCeilPowerOfTwo();
try comptime testCeilPowerOfTwo();
}
fn testCeilPowerOfTwo() !void {
try testing.expectEqual(@as(u32, 1), try ceilPowerOfTwo(u32, 1));
try testing.expectEqual(@as(u32, 2), try ceilPowerOfTwo(u32, 2));
try testing.expectEqual(@as(u32, 64), try ceilPowerOfTwo(u32, 63));
try testing.expectEqual(@as(u32, 64), try ceilPowerOfTwo(u32, 64));
try testing.expectEqual(@as(u32, 128), try ceilPowerOfTwo(u32, 65));
try testing.expectEqual(@as(u5, 8), try ceilPowerOfTwo(u5, 7));
try testing.expectEqual(@as(u5, 8), try ceilPowerOfTwo(u5, 8));
try testing.expectEqual(@as(u5, 16), try ceilPowerOfTwo(u5, 9));
try testing.expectError(error.Overflow, ceilPowerOfTwo(u4, 9));
}
/// Return the log base 2 of integer value x, rounding down to the
/// nearest integer.
pub fn log2_int(comptime T: type, x: T) Log2Int(T) {
if (@typeInfo(T) != .Int or @typeInfo(T).Int.signedness != .unsigned)
@compileError("log2_int requires an unsigned integer, found " ++ @typeName(T));
assert(x != 0);
return @as(Log2Int(T), @intCast(@typeInfo(T).Int.bits - 1 - @clz(x)));
}
/// Return the log base 2 of integer value x, rounding up to the
/// nearest integer.
pub fn log2_int_ceil(comptime T: type, x: T) Log2IntCeil(T) {
if (@typeInfo(T) != .Int or @typeInfo(T).Int.signedness != .unsigned)
@compileError("log2_int_ceil requires an unsigned integer, found " ++ @typeName(T));
assert(x != 0);
if (x == 1) return 0;
const log2_val: Log2IntCeil(T) = log2_int(T, x - 1);
return log2_val + 1;
}
test log2_int_ceil {
try testing.expect(log2_int_ceil(u32, 1) == 0);
try testing.expect(log2_int_ceil(u32, 2) == 1);
try testing.expect(log2_int_ceil(u32, 3) == 2);
try testing.expect(log2_int_ceil(u32, 4) == 2);
try testing.expect(log2_int_ceil(u32, 5) == 3);
try testing.expect(log2_int_ceil(u32, 6) == 3);
try testing.expect(log2_int_ceil(u32, 7) == 3);
try testing.expect(log2_int_ceil(u32, 8) == 3);
try testing.expect(log2_int_ceil(u32, 9) == 4);
try testing.expect(log2_int_ceil(u32, 10) == 4);
}
/// Cast a value to a different type. If the value doesn't fit in, or
/// can't be perfectly represented by, the new type, it will be
/// converted to the closest possible representation.
pub fn lossyCast(comptime T: type, value: anytype) T {
switch (@typeInfo(T)) {
.Float => {
switch (@typeInfo(@TypeOf(value))) {
.Int => return @as(T, @floatFromInt(value)),
.Float => return @as(T, @floatCast(value)),
.ComptimeInt => return @as(T, value),
.ComptimeFloat => return @as(T, value),
else => @compileError("bad type"),
}
},
.Int => {
switch (@typeInfo(@TypeOf(value))) {
.Int, .ComptimeInt => {
if (value >= maxInt(T)) {
return @as(T, maxInt(T));
} else if (value <= minInt(T)) {
return @as(T, minInt(T));
} else {
return @as(T, @intCast(value));
}
},
.Float, .ComptimeFloat => {
if (isNan(value)) {
return 0;
} else if (value >= maxInt(T)) {
return @as(T, maxInt(T));
} else if (value <= minInt(T)) {
return @as(T, minInt(T));
} else {
return @as(T, @intFromFloat(value));
}
},
else => @compileError("bad type"),
}
},
else => @compileError("bad result type"),
}
}
test lossyCast {
try testing.expect(lossyCast(i16, 70000.0) == @as(i16, 32767));
try testing.expect(lossyCast(u32, @as(i16, -255)) == @as(u32, 0));
try testing.expect(lossyCast(i9, @as(u32, 200)) == @as(i9, 200));
try testing.expect(lossyCast(u32, @as(f32, maxInt(u32))) == maxInt(u32));
try testing.expect(lossyCast(u32, nan(f32)) == 0);
}
/// Performs linear interpolation between *a* and *b* based on *t*.
/// *t* ranges from 0.0 to 1.0, but may exceed these bounds.
/// Supports floats and vectors of floats.
///
/// This does not guarantee returning *b* if *t* is 1 due to floating-point errors.
/// This is monotonic.
pub fn lerp(a: anytype, b: anytype, t: anytype) @TypeOf(a, b, t) {
const Type = @TypeOf(a, b, t);
return @mulAdd(Type, b - a, t, a);
}
test lerp {
if (builtin.zig_backend == .stage2_c) return error.SkipZigTest; // https://github.com/ziglang/zig/issues/17884
if (builtin.zig_backend == .stage2_x86_64 and
!comptime std.Target.x86.featureSetHas(builtin.cpu.features, .fma)) return error.SkipZigTest;
try testing.expectEqual(@as(f64, 75), lerp(50, 100, 0.5));
try testing.expectEqual(@as(f32, 43.75), lerp(50, 25, 0.25));
try testing.expectEqual(@as(f64, -31.25), lerp(-50, 25, 0.25));
try testing.expectEqual(@as(f64, 30), lerp(10, 20, 2.0));
try testing.expectEqual(@as(f64, 5), lerp(10, 20, -0.5));
try testing.expectApproxEqRel(@as(f32, -7.16067345e+03), lerp(-10000.12345, -5000.12345, 0.56789), 1e-19);
try testing.expectApproxEqRel(@as(f64, 7.010987590521e+62), lerp(0.123456789e-64, 0.123456789e64, 0.56789), 1e-33);
try testing.expectEqual(@as(f32, 0.0), lerp(@as(f32, 1.0e8), 1.0, 1.0));
try testing.expectEqual(@as(f64, 0.0), lerp(@as(f64, 1.0e16), 1.0, 1.0));
try testing.expectEqual(@as(f32, 1.0), lerp(@as(f32, 1.0e7), 1.0, 1.0));
try testing.expectEqual(@as(f64, 1.0), lerp(@as(f64, 1.0e15), 1.0, 1.0));
{
const a: @Vector(3, f32) = @splat(0);
const b: @Vector(3, f32) = @splat(50);
const t: @Vector(3, f32) = @splat(0.5);
try testing.expectEqual(
@Vector(3, f32){ 25, 25, 25 },
lerp(a, b, t),
);
}
{
const a: @Vector(3, f64) = @splat(50);
const b: @Vector(3, f64) = @splat(100);
const t: @Vector(3, f64) = @splat(0.5);
try testing.expectEqual(
@Vector(3, f64){ 75, 75, 75 },
lerp(a, b, t),
);
}
{
const a: @Vector(2, f32) = @splat(40);
const b: @Vector(2, f32) = @splat(80);
const t: @Vector(2, f32) = @Vector(2, f32){ 0.25, 0.75 };
try testing.expectEqual(
@Vector(2, f32){ 50, 70 },
lerp(a, b, t),
);
}
}
/// Returns the maximum value of integer type T.
pub fn maxInt(comptime T: type) comptime_int {
const info = @typeInfo(T);
const bit_count = info.Int.bits;
if (bit_count == 0) return 0;
return (1 << (bit_count - @intFromBool(info.Int.signedness == .signed))) - 1;
}
/// Returns the minimum value of integer type T.
pub fn minInt(comptime T: type) comptime_int {
const info = @typeInfo(T);
const bit_count = info.Int.bits;
if (info.Int.signedness == .unsigned) return 0;
if (bit_count == 0) return 0;
return -(1 << (bit_count - 1));
}
test maxInt {
try testing.expect(maxInt(u0) == 0);
try testing.expect(maxInt(u1) == 1);
try testing.expect(maxInt(u8) == 255);
try testing.expect(maxInt(u16) == 65535);
try testing.expect(maxInt(u32) == 4294967295);
try testing.expect(maxInt(u64) == 18446744073709551615);
try testing.expect(maxInt(u128) == 340282366920938463463374607431768211455);
try testing.expect(maxInt(i0) == 0);
try testing.expect(maxInt(i1) == 0);
try testing.expect(maxInt(i8) == 127);
try testing.expect(maxInt(i16) == 32767);
try testing.expect(maxInt(i32) == 2147483647);
try testing.expect(maxInt(i63) == 4611686018427387903);
try testing.expect(maxInt(i64) == 9223372036854775807);
try testing.expect(maxInt(i128) == 170141183460469231731687303715884105727);
}
test minInt {
try testing.expect(minInt(u0) == 0);
try testing.expect(minInt(u1) == 0);
try testing.expect(minInt(u8) == 0);
try testing.expect(minInt(u16) == 0);
try testing.expect(minInt(u32) == 0);
try testing.expect(minInt(u63) == 0);
try testing.expect(minInt(u64) == 0);
try testing.expect(minInt(u128) == 0);
try testing.expect(minInt(i0) == 0);
try testing.expect(minInt(i1) == -1);
try testing.expect(minInt(i8) == -128);
try testing.expect(minInt(i16) == -32768);
try testing.expect(minInt(i32) == -2147483648);
try testing.expect(minInt(i63) == -4611686018427387904);
try testing.expect(minInt(i64) == -9223372036854775808);
try testing.expect(minInt(i128) == -170141183460469231731687303715884105728);
}
test "max value type" {
const x: u32 = maxInt(i32);
try testing.expect(x == 2147483647);
}
/// Multiply a and b. Return type is wide enough to guarantee no
/// overflow.
pub fn mulWide(comptime T: type, a: T, b: T) std.meta.Int(
@typeInfo(T).Int.signedness,
@typeInfo(T).Int.bits * 2,
) {
const ResultInt = std.meta.Int(
@typeInfo(T).Int.signedness,
@typeInfo(T).Int.bits * 2,
);
return @as(ResultInt, a) * @as(ResultInt, b);
}
test mulWide {
try testing.expect(mulWide(u8, 5, 5) == 25);
try testing.expect(mulWide(i8, 5, -5) == -25);
try testing.expect(mulWide(u8, 100, 100) == 10000);
}
/// See also `CompareOperator`.
pub const Order = enum {
/// Greater than (`>`)
gt,
/// Less than (`<`)
lt,
/// Equal (`==`)
eq,
pub fn invert(self: Order) Order {
return switch (self) {
.lt => .gt,
.eq => .eq,
.gt => .lt,
};
}
test invert {
try testing.expect(Order.invert(order(0, 0)) == .eq);
try testing.expect(Order.invert(order(1, 0)) == .lt);
try testing.expect(Order.invert(order(-1, 0)) == .gt);
}
pub fn differ(self: Order) ?Order {
return if (self != .eq) self else null;
}
test differ {
const neg: i32 = -1;
const zero: i32 = 0;
const pos: i32 = 1;
try testing.expect(order(zero, neg).differ() orelse
order(pos, zero) == .gt);
try testing.expect(order(zero, zero).differ() orelse
order(zero, zero) == .eq);
try testing.expect(order(pos, pos).differ() orelse
order(neg, zero) == .lt);
try testing.expect(order(zero, zero).differ() orelse
order(pos, neg).differ() orelse
order(neg, zero) == .gt);
try testing.expect(order(pos, pos).differ() orelse
order(pos, pos).differ() orelse
order(neg, neg) == .eq);
try testing.expect(order(zero, pos).differ() orelse
order(neg, pos).differ() orelse
order(pos, neg) == .lt);
}
pub fn compare(self: Order, op: CompareOperator) bool {
return switch (self) {
.lt => switch (op) {
.lt => true,
.lte => true,
.eq => false,
.gte => false,
.gt => false,
.neq => true,
},
.eq => switch (op) {
.lt => false,
.lte => true,
.eq => true,
.gte => true,
.gt => false,
.neq => false,
},
.gt => switch (op) {
.lt => false,
.lte => false,
.eq => false,
.gte => true,
.gt => true,
.neq => true,
},
};
}
// https://github.com/ziglang/zig/issues/19295
test "compare" {
try testing.expect(order(-1, 0).compare(.lt));
try testing.expect(order(-1, 0).compare(.lte));
try testing.expect(order(0, 0).compare(.lte));
try testing.expect(order(0, 0).compare(.eq));
try testing.expect(order(0, 0).compare(.gte));
try testing.expect(order(1, 0).compare(.gte));
try testing.expect(order(1, 0).compare(.gt));
try testing.expect(order(1, 0).compare(.neq));
}
};
/// Given two numbers, this function returns the order they are with respect to each other.
pub fn order(a: anytype, b: anytype) Order {
if (a == b) {
return .eq;
} else if (a < b) {
return .lt;
} else if (a > b) {
return .gt;
} else {
unreachable;
}
}
/// See also `Order`.
pub const CompareOperator = enum {
/// Less than (`<`)
lt,
/// Less than or equal (`<=`)
lte,
/// Equal (`==`)
eq,
/// Greater than or equal (`>=`)
gte,
/// Greater than (`>`)
gt,
/// Not equal (`!=`)
neq,
/// Reverse the direction of the comparison.
/// Use when swapping the left and right hand operands.
pub fn reverse(op: CompareOperator) CompareOperator {
return switch (op) {
.lt => .gt,
.lte => .gte,
.gt => .lt,
.gte => .lte,
.eq => .eq,
.neq => .neq,
};
}
test reverse {
inline for (@typeInfo(CompareOperator).Enum.fields) |op_field| {
const op = @as(CompareOperator, @enumFromInt(op_field.value));
try testing.expect(compare(2, op, 3) == compare(3, op.reverse(), 2));
try testing.expect(compare(3, op, 3) == compare(3, op.reverse(), 3));
try testing.expect(compare(4, op, 3) == compare(3, op.reverse(), 4));
}
}
};
/// This function does the same thing as comparison operators, however the
/// operator is a runtime-known enum value. Works on any operands that
/// support comparison operators.
pub fn compare(a: anytype, op: CompareOperator, b: anytype) bool {
return switch (op) {
.lt => a < b,
.lte => a <= b,
.eq => a == b,
.neq => a != b,
.gt => a > b,
.gte => a >= b,
};
}
test compare {
try testing.expect(compare(@as(i8, -1), .lt, @as(u8, 255)));
try testing.expect(compare(@as(i8, 2), .gt, @as(u8, 1)));
try testing.expect(!compare(@as(i8, -1), .gte, @as(u8, 255)));
try testing.expect(compare(@as(u8, 255), .gt, @as(i8, -1)));
try testing.expect(!compare(@as(u8, 255), .lte, @as(i8, -1)));
try testing.expect(compare(@as(i8, -1), .lt, @as(u9, 255)));
try testing.expect(!compare(@as(i8, -1), .gte, @as(u9, 255)));
try testing.expect(compare(@as(u9, 255), .gt, @as(i8, -1)));
try testing.expect(!compare(@as(u9, 255), .lte, @as(i8, -1)));
try testing.expect(compare(@as(i9, -1), .lt, @as(u8, 255)));
try testing.expect(!compare(@as(i9, -1), .gte, @as(u8, 255)));
try testing.expect(compare(@as(u8, 255), .gt, @as(i9, -1)));
try testing.expect(!compare(@as(u8, 255), .lte, @as(i9, -1)));
try testing.expect(compare(@as(u8, 1), .lt, @as(u8, 2)));
try testing.expect(@as(u8, @bitCast(@as(i8, -1))) == @as(u8, 255));
try testing.expect(!compare(@as(u8, 255), .eq, @as(i8, -1)));
try testing.expect(compare(@as(u8, 1), .eq, @as(u8, 1)));
}
test order {
try testing.expect(order(0, 0) == .eq);
try testing.expect(order(1, 0) == .gt);
try testing.expect(order(-1, 0) == .lt);
}
/// Returns a mask of all ones if value is true,
/// and a mask of all zeroes if value is false.
/// Compiles to one instruction for register sized integers.
pub inline fn boolMask(comptime MaskInt: type, value: bool) MaskInt {
if (@typeInfo(MaskInt) != .Int)
@compileError("boolMask requires an integer mask type.");
if (MaskInt == u0 or MaskInt == i0)
@compileError("boolMask cannot convert to u0 or i0, they are too small.");
// The u1 and i1 cases tend to overflow,
// so we special case them here.
if (MaskInt == u1) return @intFromBool(value);
if (MaskInt == i1) {
// The @as here is a workaround for #7950
return @as(i1, @bitCast(@as(u1, @intFromBool(value))));
}
return -%@as(MaskInt, @intCast(@intFromBool(value)));
}
test boolMask {
const runTest = struct {
fn runTest() !void {
try testing.expectEqual(@as(u1, 0), boolMask(u1, false));
try testing.expectEqual(@as(u1, 1), boolMask(u1, true));
try testing.expectEqual(@as(i1, 0), boolMask(i1, false));
try testing.expectEqual(@as(i1, -1), boolMask(i1, true));
try testing.expectEqual(@as(u13, 0), boolMask(u13, false));
try testing.expectEqual(@as(u13, 0x1FFF), boolMask(u13, true));
try testing.expectEqual(@as(i13, 0), boolMask(i13, false));
try testing.expectEqual(@as(i13, -1), boolMask(i13, true));
try testing.expectEqual(@as(u32, 0), boolMask(u32, false));
try testing.expectEqual(@as(u32, 0xFFFF_FFFF), boolMask(u32, true));
try testing.expectEqual(@as(i32, 0), boolMask(i32, false));
try testing.expectEqual(@as(i32, -1), boolMask(i32, true));
}
}.runTest;
try runTest();
try comptime runTest();
}
/// Return the mod of `num` with the smallest integer type
pub fn comptimeMod(num: anytype, comptime denom: comptime_int) IntFittingRange(0, denom - 1) {
return @as(IntFittingRange(0, denom - 1), @intCast(@mod(num, denom)));
}
pub const F80 = struct {
fraction: u64,
exp: u16,
};
pub fn make_f80(repr: F80) f80 {
const int = (@as(u80, repr.exp) << 64) | repr.fraction;
return @as(f80, @bitCast(int));
}
pub fn break_f80(x: f80) F80 {
const int = @as(u80, @bitCast(x));
return .{
.fraction = @as(u64, @truncate(int)),
.exp = @as(u16, @truncate(int >> 64)),
};
}
/// Returns -1, 0, or 1.
/// Supports integer and float types and vectors of integer and float types.
/// Unsigned integer types will always return 0 or 1.
/// Branchless.
pub inline fn sign(i: anytype) @TypeOf(i) {
const T = @TypeOf(i);
return switch (@typeInfo(T)) {
.Int, .ComptimeInt => @as(T, @intFromBool(i > 0)) - @as(T, @intFromBool(i < 0)),
.Float, .ComptimeFloat => @as(T, @floatFromInt(@intFromBool(i > 0))) - @as(T, @floatFromInt(@intFromBool(i < 0))),
.Vector => |vinfo| blk: {
switch (@typeInfo(vinfo.child)) {
.Int, .Float => {
const zero: T = @splat(0);
const one: T = @splat(1);
break :blk @select(vinfo.child, i > zero, one, zero) - @select(vinfo.child, i < zero, one, zero);
},
else => @compileError("Expected vector of ints or floats, found " ++ @typeName(T)),
}
},
else => @compileError("Expected an int, float or vector of one, found " ++ @typeName(T)),
};
}
fn testSign() !void {
// each of the following blocks checks the inputs
// 2, -2, 0, { 2, -2, 0 } provide expected output
// 1, -1, 0, { 1, -1, 0 } for the given T
// (negative values omitted for unsigned types)
{
const T = i8;
try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
}
{
const T = i32;
try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
}
{
const T = i64;
try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
}
{
const T = u8;
try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
try std.testing.expectEqual(@Vector(2, T){ 1, 0 }, sign(@Vector(2, T){ 2, 0 }));
}
{
const T = u32;
try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
try std.testing.expectEqual(@Vector(2, T){ 1, 0 }, sign(@Vector(2, T){ 2, 0 }));
}
{
const T = u64;
try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
try std.testing.expectEqual(@Vector(2, T){ 1, 0 }, sign(@Vector(2, T){ 2, 0 }));
}
{
const T = f16;
try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
}
{
const T = f32;
try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
}
{
const T = f64;
try std.testing.expectEqual(@as(T, 1), sign(@as(T, 2)));
try std.testing.expectEqual(@as(T, -1), sign(@as(T, -2)));
try std.testing.expectEqual(@as(T, 0), sign(@as(T, 0)));
try std.testing.expectEqual(@Vector(3, T){ 1, -1, 0 }, sign(@Vector(3, T){ 2, -2, 0 }));
}
// comptime_int
try std.testing.expectEqual(-1, sign(-10));
try std.testing.expectEqual(1, sign(10));
try std.testing.expectEqual(0, sign(0));
// comptime_float
try std.testing.expectEqual(-1.0, sign(-10.0));
try std.testing.expectEqual(1.0, sign(10.0));
try std.testing.expectEqual(0.0, sign(0.0));
}
test sign {
if (builtin.zig_backend == .stage2_llvm) {
// https://github.com/ziglang/zig/issues/12012
return error.SkipZigTest;
}
try testSign();
try comptime testSign();
}
|
| Generated by zstd-live on 2025-10-12 02:30:40 UTC. |