zig/lib/std / Build/Step.zig

This field is empty during execution of the user's build script, and then populated during dependency loop checking in the build runner.

id: Id,
name: []const u8,
owner: *Build,
makeFn: MakeFn,

TestResults

Set this field to declare an upper bound on the amount of bytes of memory it will take to run the step. Zero means no limit. The idea to annotate steps that might use a high amount of RAM with an upper bound. For example, perhaps a particular set of unit tests require 4 GiB of RAM, and those tests will be run under 4 different build configurations at once. This would potentially require 16 GiB of memory on the system if all 4 steps executed simultaneously, which could easily be greater than what is actually available, potentially causing the system to crash when using zig build at the default concurrency level. This field causes the build runner to do two things: 1. ulimit child processes, so that they will fail if it would exceed this memory limit. This serves to enforce that this upper bound value is correct. 2. Ensure that the set of concurrent steps at any given time have a total max_rss value that does not exceed the max_total_rss value of the build runner. This value is configurable on the command line, and defaults to the total system memory available.


dependencies: std.ArrayList(*Step),
/// This field is empty during execution of the user's build script, and
/// then populated during dependency loop checking in the build runner.
dependants: std.ArrayListUnmanaged(*Step),
state: State,
/// Set this field to declare an upper bound on the amount of bytes of memory it will
/// take to run the step. Zero means no limit.
///
/// The idea to annotate steps that might use a high amount of RAM with an
/// upper bound. For example, perhaps a particular set of unit tests require 4
/// GiB of RAM, and those tests will be run under 4 different build
/// configurations at once. This would potentially require 16 GiB of memory on
/// the system if all 4 steps executed simultaneously, which could easily be
/// greater than what is actually available, potentially causing the system to
/// crash when using `zig build` at the default concurrency level.
///
/// This field causes the build runner to do two things:
/// 1. ulimit child processes, so that they will fail if it would exceed this
/// memory limit. This serves to enforce that this upper bound value is
/// correct.
/// 2. Ensure that the set of concurrent steps at any given time have a total
/// max_rss value that does not exceed the `max_total_rss` value of the build
/// runner. This value is configurable on the command line, and defaults to the
/// total system memory available.
max_rss: usize,

isSuccess()

0 means unavailable or not reported.


result_error_msgs: std.ArrayListUnmanaged([]const u8),
result_error_bundle: std.zig.ErrorBundle,
result_stderr: []const u8,
result_cached: bool,
result_duration_ns: ?u64,
/// 0 means unavailable or not reported.
result_peak_rss: usize,
test_results: TestResults,

passCount()

The return address associated with creation of this step that can be useful to print along with debugging messages.


/// The return address associated with creation of this step that can be useful
/// to print along with debugging messages.
debug_stack_trace: []usize,

MakeFn

This state indicates that the step did not complete, however, it also did not fail, and it is safe to continue executing its dependencies.


pub const TestResults = struct {
    fail_count: u32 = 0,
    skip_count: u32 = 0,
    leak_count: u32 = 0,
    log_err_count: u32 = 0,
    test_count: u32 = 0,

State

This step was skipped because it specified a max_rss that exceeded the runner's maximum. It is not safe to run its dependencies.


    pub fn isSuccess(tr: TestResults) bool {
        return tr.fail_count == 0 and tr.leak_count == 0 and tr.log_err_count == 0;
    }

Id

If the Step's make function reports error.MakeFailed, it indicates they have already reported the error. Otherwise, we add a simple error report here.


    pub fn passCount(tr: TestResults) u32 {
        return tr.test_count - tr.fail_count - tr.skip_count;
    }
};

Type()

For debugging purposes, prints identifying information about this Step.


pub const MakeFn = *const fn (step: *Step, prog_node: std.Progress.Node) anyerror!void;

CheckFile

Step/CheckFile.zig

Assumes that argv contains --listen=- and that the process being spawned is the zig compiler - the same version that compiled the build runner.


pub const State = enum {
    precheck_unstarted,
    precheck_started,
    precheck_done,
    running,
    dependency_failure,
    success,
    failure,
    /// This state indicates that the step did not complete, however, it also did not fail,
    /// and it is safe to continue executing its dependencies.
    skipped,
    /// This step was skipped because it specified a max_rss that exceeded the runner's maximum.
    /// It is not safe to run its dependencies.
    skipped_oom,
};

CheckObject

Step/CheckObject.zig

pub const Id = enum {
    top_level,
    compile,
    install_artifact,
    install_file,
    install_dir,
    remove_dir,
    fmt,
    translate_c,
    write_file,
    run,
    check_file,
    check_object,
    config_header,
    objcopy,
    options,
    custom,

ConfigHeader

Step/ConfigHeader.zig

    pub fn Type(comptime id: Id) type {
        return switch (id) {
            .top_level => Build.TopLevelStep,
            .compile => Compile,
            .install_artifact => InstallArtifact,
            .install_file => InstallFile,
            .install_dir => InstallDir,
            .remove_dir => RemoveDir,
            .fmt => Fmt,
            .translate_c => TranslateC,
            .write_file => WriteFile,
            .run => Run,
            .check_file => CheckFile,
            .check_object => CheckObject,
            .config_header => ConfigHeader,
            .objcopy => ObjCopy,
            .options => Options,
            .custom => @compileError("no type available for custom step"),
        };
    }
};

Fmt

Step/Fmt.zig

pub const CheckFile = @import("Step/CheckFile.zig");
pub const CheckObject = @import("Step/CheckObject.zig");
pub const ConfigHeader = @import("Step/ConfigHeader.zig");
pub const Fmt = @import("Step/Fmt.zig");

InstallArtifact

Step/InstallArtifact.zig
pub const InstallArtifact = @import("Step/InstallArtifact.zig");

InstallDir

Step/InstallDir.zig
pub const InstallDir = @import("Step/InstallDir.zig");

InstallFile

Step/InstallFile.zig
pub const InstallFile = @import("Step/InstallFile.zig");

ObjCopy

Step/ObjCopy.zig
pub const ObjCopy = @import("Step/ObjCopy.zig");

Compile

Step/Compile.zig
pub const Compile = @import("Step/Compile.zig");

Options

Step/Options.zig
pub const Options = @import("Step/Options.zig");

RemoveDir

Step/RemoveDir.zig
pub const RemoveDir = @import("Step/RemoveDir.zig");

Run

Step/Run.zig
pub const Run = @import("Step/Run.zig");

TranslateC

Step/TranslateC.zig
pub const TranslateC = @import("Step/TranslateC.zig");

WriteFile

Step/WriteFile.zig
pub const WriteFile = @import("Step/WriteFile.zig");

StepOptions


pub const StepOptions = struct {
    id: Id,
    name: []const u8,
    owner: *Build,
    makeFn: MakeFn = makeNoOp,
    first_ret_addr: ?usize = null,
    max_rss: usize = 0,
};

init()


pub fn init(options: StepOptions) Step {
    const arena = options.owner.allocator;

make()


    return .{
        .id = options.id,
        .name = arena.dupe(u8, options.name) catch @panic("OOM"),
        .owner = options.owner,
        .makeFn = options.makeFn,
        .dependencies = std.ArrayList(*Step).init(arena),
        .dependants = .{},
        .state = .precheck_unstarted,
        .max_rss = options.max_rss,
        .debug_stack_trace = blk: {
            const addresses = arena.alloc(usize, options.owner.debug_stack_frames_count) catch @panic("OOM");
            @memset(addresses, 0);
            const first_ret_addr = options.first_ret_addr orelse @returnAddress();
            var stack_trace = std.builtin.StackTrace{
                .instruction_addresses = addresses,
                .index = 0,
            };
            std.debug.captureStackTrace(first_ret_addr, &stack_trace);
            break :blk addresses;
        },
        .result_error_msgs = .{},
        .result_error_bundle = std.zig.ErrorBundle.empty,
        .result_stderr = "",
        .result_cached = false,
        .result_duration_ns = null,
        .result_peak_rss = 0,
        .test_results = .{},
    };

fail()

}

getStackTrace()


/// If the Step's `make` function reports `error.MakeFailed`, it indicates they
/// have already reported the error. Otherwise, we add a simple error report
/// here.
pub fn make(s: *Step, prog_node: std.Progress.Node) error{ MakeFailed, MakeSkipped }!void {
    const arena = s.owner.allocator;

cast()


    s.makeFn(s, prog_node) catch |err| switch (err) {
        error.MakeFailed => return error.MakeFailed,
        error.MakeSkipped => return error.MakeSkipped,
        else => {
            s.result_error_msgs.append(arena, @errorName(err)) catch @panic("OOM");
            return error.MakeFailed;
        },
    };

dump()


    if (!s.test_results.isSuccess()) {
        return error.MakeFailed;
    }

evalChildProcess()


    if (s.max_rss != 0 and s.result_peak_rss > s.max_rss) {
        const msg = std.fmt.allocPrint(arena, "memory usage peaked at {d} bytes, exceeding the declared upper bound of {d}", .{
            s.result_peak_rss, s.max_rss,
        }) catch @panic("OOM");
        s.result_error_msgs.append(arena, msg) catch @panic("OOM");
        return error.MakeFailed;
    }

fail()

}

addError()


pub fn dependOn(step: *Step, other: *Step) void {
    step.dependencies.append(other) catch @panic("OOM");
}

evalZigProcess()


pub fn getStackTrace(s: *Step) ?std.builtin.StackTrace {
    var len: usize = 0;
    while (len < s.debug_stack_trace.len and s.debug_stack_trace[len] != 0) {
        len += 1;
    }

handleVerbose()


    return if (len == 0) null else .{
        .instruction_addresses = s.debug_stack_trace,
        .index = len,
    };
}

handleVerbose2()


fn makeNoOp(step: *Step, prog_node: std.Progress.Node) anyerror!void {
    _ = prog_node;

handleChildProcUnsupported()


    var all_cached = true;

handleChildProcessTerm()


    for (step.dependencies.items) |dep| {
        all_cached = all_cached and dep.result_cached;
    }

allocPrintCmd()


    step.result_cached = all_cached;
}

allocPrintCmd2()


pub fn cast(step: *Step, comptime T: type) ?*T {
    if (step.id == T.base_id) {
        return @fieldParentPtr("step", step);
    }
    return null;
}

cacheHit()


/// For debugging purposes, prints identifying information about this Step.
pub fn dump(step: *Step, file: std.fs.File) void {
    const w = file.writer();
    const tty_config = std.io.tty.detectConfig(file);
    const debug_info = std.debug.getSelfDebugInfo() catch |err| {
        w.print("Unable to dump stack trace: Unable to open debug info: {s}\n", .{
            @errorName(err),
        }) catch {};
        return;
    };
    const ally = debug_info.allocator;
    if (step.getStackTrace()) |stack_trace| {
        w.print("name: '{s}'. creation stack trace:\n", .{step.name}) catch {};
        std.debug.writeStackTrace(stack_trace, w, ally, debug_info, tty_config) catch |err| {
            w.print("Unable to dump stack trace: {s}\n", .{@errorName(err)}) catch {};
            return;
        };
    } else {
        const field = "debug_stack_frames_count";
        comptime assert(@hasField(Build, field));
        tty_config.setColor(w, .yellow) catch {};
        w.print("name: '{s}'. no stack trace collected for this step, see std.Build." ++ field ++ "\n", .{step.name}) catch {};
        tty_config.setColor(w, .reset) catch {};
    }
}

writeManifest()


const Step = @This();
const std = @import("../std.zig");
const Build = std.Build;
const Allocator = std.mem.Allocator;
const assert = std.debug.assert;
const builtin = @import("builtin");

pub fn evalChildProcess(s: *Step, argv: []const []const u8) !void {
    const arena = s.owner.allocator;

    try handleChildProcUnsupported(s, null, argv);
    try handleVerbose(s.owner, null, argv);

    const result = std.process.Child.run(.{
        .allocator = arena,
        .argv = argv,
    }) catch |err| return s.fail("unable to spawn {s}: {s}", .{ argv[0], @errorName(err) });

    if (result.stderr.len > 0) {
        try s.result_error_msgs.append(arena, result.stderr);
    }

    try handleChildProcessTerm(s, result.term, null, argv);
}

pub fn fail(step: *Step, comptime fmt: []const u8, args: anytype) error{ OutOfMemory, MakeFailed } {
    try step.addError(fmt, args);
    return error.MakeFailed;
}

pub fn addError(step: *Step, comptime fmt: []const u8, args: anytype) error{OutOfMemory}!void {
    const arena = step.owner.allocator;
    const msg = try std.fmt.allocPrint(arena, fmt, args);
    try step.result_error_msgs.append(arena, msg);
}

/// Assumes that argv contains `--listen=-` and that the process being spawned
/// is the zig compiler - the same version that compiled the build runner.
pub fn evalZigProcess(
    s: *Step,
    argv: []const []const u8,
    prog_node: std.Progress.Node,
) !?[]const u8 {
    assert(argv.len != 0);
    const b = s.owner;
    const arena = b.allocator;
    const gpa = arena;

    try handleChildProcUnsupported(s, null, argv);
    try handleVerbose(s.owner, null, argv);

    var child = std.process.Child.init(argv, arena);
    child.env_map = &b.graph.env_map;
    child.stdin_behavior = .Pipe;
    child.stdout_behavior = .Pipe;
    child.stderr_behavior = .Pipe;
    child.request_resource_usage_statistics = true;
    child.progress_node = prog_node;

    child.spawn() catch |err| return s.fail("unable to spawn {s}: {s}", .{
        argv[0], @errorName(err),
    });
    var timer = try std.time.Timer.start();

    var poller = std.io.poll(gpa, enum { stdout, stderr }, .{
        .stdout = child.stdout.?,
        .stderr = child.stderr.?,
    });
    defer poller.deinit();

    try sendMessage(child.stdin.?, .update);
    try sendMessage(child.stdin.?, .exit);

    const Header = std.zig.Server.Message.Header;
    var result: ?[]const u8 = null;

    const stdout = poller.fifo(.stdout);

    poll: while (true) {
        while (stdout.readableLength() < @sizeOf(Header)) {
            if (!(try poller.poll())) break :poll;
        }
        const header = stdout.reader().readStruct(Header) catch unreachable;
        while (stdout.readableLength() < header.bytes_len) {
            if (!(try poller.poll())) break :poll;
        }
        const body = stdout.readableSliceOfLen(header.bytes_len);

        switch (header.tag) {
            .zig_version => {
                if (!std.mem.eql(u8, builtin.zig_version_string, body)) {
                    return s.fail(
                        "zig version mismatch build runner vs compiler: '{s}' vs '{s}'",
                        .{ builtin.zig_version_string, body },
                    );
                }
            },
            .error_bundle => {
                const EbHdr = std.zig.Server.Message.ErrorBundle;
                const eb_hdr = @as(*align(1) const EbHdr, @ptrCast(body));
                const extra_bytes =
                    body[@sizeOf(EbHdr)..][0 .. @sizeOf(u32) * eb_hdr.extra_len];
                const string_bytes =
                    body[@sizeOf(EbHdr) + extra_bytes.len ..][0..eb_hdr.string_bytes_len];
                // TODO: use @ptrCast when the compiler supports it
                const unaligned_extra = std.mem.bytesAsSlice(u32, extra_bytes);
                const extra_array = try arena.alloc(u32, unaligned_extra.len);
                @memcpy(extra_array, unaligned_extra);
                s.result_error_bundle = .{
                    .string_bytes = try arena.dupe(u8, string_bytes),
                    .extra = extra_array,
                };
            },
            .emit_bin_path => {
                const EbpHdr = std.zig.Server.Message.EmitBinPath;
                const ebp_hdr = @as(*align(1) const EbpHdr, @ptrCast(body));
                s.result_cached = ebp_hdr.flags.cache_hit;
                result = try arena.dupe(u8, body[@sizeOf(EbpHdr)..]);
            },
            else => {}, // ignore other messages
        }

        stdout.discard(body.len);
    }

    const stderr = poller.fifo(.stderr);
    if (stderr.readableLength() > 0) {
        try s.result_error_msgs.append(arena, try stderr.toOwnedSlice());
    }

    // Send EOF to stdin.
    child.stdin.?.close();
    child.stdin = null;

    const term = child.wait() catch |err| {
        return s.fail("unable to wait for {s}: {s}", .{ argv[0], @errorName(err) });
    };
    s.result_duration_ns = timer.read();
    s.result_peak_rss = child.resource_usage_statistics.getMaxRss() orelse 0;

    // Special handling for Compile step that is expecting compile errors.
    if (s.cast(Compile)) |compile| switch (term) {
        .Exited => {
            // Note that the exit code may be 0 in this case due to the
            // compiler server protocol.
            if (compile.expect_errors != null) {
                return error.NeedCompileErrorCheck;
            }
        },
        else => {},
    };

    try handleChildProcessTerm(s, term, null, argv);

    if (s.result_error_bundle.errorMessageCount() > 0) {
        return s.fail("the following command failed with {d} compilation errors:\n{s}", .{
            s.result_error_bundle.errorMessageCount(),
            try allocPrintCmd(arena, null, argv),
        });
    }

    return result;
}

fn sendMessage(file: std.fs.File, tag: std.zig.Client.Message.Tag) !void {
    const header: std.zig.Client.Message.Header = .{
        .tag = tag,
        .bytes_len = 0,
    };
    try file.writeAll(std.mem.asBytes(&header));
}

pub fn handleVerbose(
    b: *Build,
    opt_cwd: ?[]const u8,
    argv: []const []const u8,
) error{OutOfMemory}!void {
    return handleVerbose2(b, opt_cwd, null, argv);
}

pub fn handleVerbose2(
    b: *Build,
    opt_cwd: ?[]const u8,
    opt_env: ?*const std.process.EnvMap,
    argv: []const []const u8,
) error{OutOfMemory}!void {
    if (b.verbose) {
        // Intention of verbose is to print all sub-process command lines to
        // stderr before spawning them.
        const text = try allocPrintCmd2(b.allocator, opt_cwd, opt_env, argv);
        std.debug.print("{s}\n", .{text});
    }
}

pub inline fn handleChildProcUnsupported(
    s: *Step,
    opt_cwd: ?[]const u8,
    argv: []const []const u8,
) error{ OutOfMemory, MakeFailed }!void {
    if (!std.process.can_spawn) {
        return s.fail(
            "unable to execute the following command: host cannot spawn child processes\n{s}",
            .{try allocPrintCmd(s.owner.allocator, opt_cwd, argv)},
        );
    }
}

pub fn handleChildProcessTerm(
    s: *Step,
    term: std.process.Child.Term,
    opt_cwd: ?[]const u8,
    argv: []const []const u8,
) error{ MakeFailed, OutOfMemory }!void {
    const arena = s.owner.allocator;
    switch (term) {
        .Exited => |code| {
            if (code != 0) {
                return s.fail(
                    "the following command exited with error code {d}:\n{s}",
                    .{ code, try allocPrintCmd(arena, opt_cwd, argv) },
                );
            }
        },
        .Signal, .Stopped, .Unknown => {
            return s.fail(
                "the following command terminated unexpectedly:\n{s}",
                .{try allocPrintCmd(arena, opt_cwd, argv)},
            );
        },
    }
}

pub fn allocPrintCmd(
    arena: Allocator,
    opt_cwd: ?[]const u8,
    argv: []const []const u8,
) Allocator.Error![]u8 {
    return allocPrintCmd2(arena, opt_cwd, null, argv);
}

pub fn allocPrintCmd2(
    arena: Allocator,
    opt_cwd: ?[]const u8,
    opt_env: ?*const std.process.EnvMap,
    argv: []const []const u8,
) Allocator.Error![]u8 {
    var buf: std.ArrayListUnmanaged(u8) = .{};
    if (opt_cwd) |cwd| try buf.writer(arena).print("cd {s} && ", .{cwd});
    if (opt_env) |env| {
        const process_env_map = std.process.getEnvMap(arena) catch std.process.EnvMap.init(arena);
        var it = env.iterator();
        while (it.next()) |entry| {
            const key = entry.key_ptr.*;
            const value = entry.value_ptr.*;
            if (process_env_map.get(key)) |process_value| {
                if (std.mem.eql(u8, value, process_value)) continue;
            }
            try buf.writer(arena).print("{s}={s} ", .{ key, value });
        }
    }
    for (argv) |arg| {
        try buf.writer(arena).print("{s} ", .{arg});
    }
    return buf.toOwnedSlice(arena);
}

pub fn cacheHit(s: *Step, man: *std.Build.Cache.Manifest) !bool {
    s.result_cached = man.hit() catch |err| return failWithCacheError(s, man, err);
    return s.result_cached;
}

fn failWithCacheError(s: *Step, man: *const std.Build.Cache.Manifest, err: anyerror) anyerror {
    const i = man.failed_file_index orelse return err;
    const pp = man.files.keys()[i].prefixed_path;
    const prefix = man.cache.prefixes()[pp.prefix].path orelse "";
    return s.fail("{s}: {s}/{s}", .{ @errorName(err), prefix, pp.sub_path });
}

pub fn writeManifest(s: *Step, man: *std.Build.Cache.Manifest) !void {
    if (s.test_results.isSuccess()) {
        man.writeManifest() catch |err| {
            try s.addError("unable to write cache manifest: {s}", .{@errorName(err)});
        };
    }
}

test {
    _ = CheckFile;
    _ = CheckObject;
    _ = Fmt;
    _ = InstallArtifact;
    _ = InstallDir;
    _ = InstallFile;
    _ = ObjCopy;
    _ = Compile;
    _ = Options;
    _ = RemoveDir;
    _ = Run;
    _ = TranslateC;
    _ = WriteFile;
}